VOLUME I **APPENDICES** (BINDER 2 OF 3)

> COMMUNITY BASED RISK ASSESSMENT PORT COLBORNE, ONTARIO **CROP STUDIES**

COMMUNITY BASED RISK ASSESSMENT PORT COLBORNE, ONTARIO

CROP STUDIES

VOLUME I - APPENDICES (BINDER 2 OF 3)

SOIL SELECTION AND CHARACTERISATION FOR THE YEAR 2000/2001 GREENHOUSE, FIELD PHYTOTOXICITY TRIALS AND BIOMONITORING STUDIES

VOLUME 1 - PART 2 – APPENDICES

DECEMBER, 2004

LIST OF APPENDICES

VOLUME 1 – PART 2 - APPENDICES

- APPENDIX S-1 SUPPORTING STUDIES
- APPENDIX S-1.1 ENPAR SOIL NOTES
- APPENDIX S-1.2 ENPAR SOIL TEST PITS (2001 GREENHOUSE SOILS)
- APPENDIX S-2 GRAIN SIZE ANALYSES CURVES, WELLAND CLAY
- APPENDIX S-3 EXTRACTABLE METALS

APPENDIX S-1 SUPPORTING STUDIES

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

ONT34663 December, 2004 APP. S-1

APPENDIX S-1.1 ENPAR SOIL NOTES

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

ONT34663 December, 2004 APP. S-1.1

October 23, 2001

Jacques Whitford Environmental Limited 1200 Denison St. Markham, Ontario L3R 8G6

Re: Reference notes: soils for greenhouse and field trials.

Attention: Dr. Jim Higgins

The following notes summary of the information requested for your report. If you have any questions regarding this report please contact me at any time.

Sincerely,

C. James Warren Senior Soil Scientist ENPAR Technologies Inc.

/cjw

Selection of Soils for Greenhouse Trials

The contaminated soils and their companion non-contaminated soils used in the 2001 greenhouse trials were selected through a series of logical steps and checks.

- 1. The regional soil map and associated report (Kingston and Presant, 1989) were first examined to identify the different soil series in the Port Colborne area. At lease 16 major soil series and land units are mapped in the contaminated area north and east of the City of Port Colborne. For the purposes of the greenhouse trials, these major soil series were grouped into six "soil groupings" (including a "not mapped" grouping). These groupings were based on similarities in soil texture, soil organic matter content, depth to bedrock and (only in special case of the "not mapped" grouping) land use (See Table 1).
- 2. The regional soil map (Kingston and Presant, 1989) was overlain with existing information reported on the aerial extent of contamination (OMOE, 2000a, 2000b data). The combined mapping information from these two sources was then used to estimate the percentage of area (total approximately 6.5 km²) occupied by each soil grouping contaminated with >500 mg/kg total Ni (Table 1). A value of 500 mg/kg total Ni was chosen based on preliminary work conducted in previous studies (JacquesWhitford, 2000).
- 3. Soils representing each of the four soil groupings were chosen for the present greenhouse study. These groupings (identified here as organic, sand, heavy clay, and shallow soils, see Table 1), together represent more than 60% of the all soils contaminated with >500 mg/kg total Ni and more than 85% of the non-urban (agricultural and rural) soils contaminated with >500 mg/kg total Ni.
- 4. Candidate sample sites representative of each of the four soil groupings were selected from within the contaminated area based on prior knowledge of the contaminated soils (JacquesWhitford, 2000) combined with the ability to obtain permission from landowners to access the selected properties and collect samples. Specific contaminated sites from within a soil grouping were identified for investigative sampling. The investigative samples for each specific site were then collected, analyzed, and scrutinized for suitability before bulk soil material was collected for the greenhouse trials.
- 5. Candidate sites for non-contaminated soils (containing background concentrations of CoC's) were also identified for investigative sampling using regional soil maps (Kingston and Presant, 1989). Candidate sites for each soil grouping were selected from areas outside (generally up-wind) of the "fall zone", and within a 10 km radius of Port Colborne. Investigative sampling of specific background sites was also limited by the ability to gain access to properties and gaining permission from prospective landowners to collect samples.
- 6. Investigative samples were collected at all candidate contaminated and noncontaminated sites using an Oakfield-style hand-held tube sampler. Composite

samples were collected by combining approximately 25 to 30 increments representative of the 0-15 cm depth collected from an area of about 300 m². All investigative samples were analyzed for total concentration of Ni, soil fertility (plant available P, K, and Mg), organic, and inorganic carbon content, soil pH and (if the soil pH measurement was 6.0 or lower) soil buffer pH for agricultural limestone requirement. Analytical data for each selected soil pair (i.e. contaminated and noncontaminated soil for each grouping) are presented in Tables 2 - 4. This analytical data (with the exception of total Ni, Table 4) is typical of soil analyses obtained by agricultural producers (farmers) in the Province of Ontario as part of prudent on-farm soil management strategy. All values for soil fertility (plant available P, K, and Mg), organic matter content, and inorganic carbon content were matched as closely as possible for each pair of contaminated and non-contaminated soils. In the case of the shallow soil pair, selection of a contaminated sampling site was very restricted because few landowners having soils within this grouping would grant permission to collect samples. Consequently, the concentration of organic carbon for the shallow soil pair was very dissimilar for the two materials.

Table 1: Soil series, parent materials, textural range and percentage of contaminated area
containing total concentrations of Ni in excess of 500 mg/kg (approximately
6.5 km^2) for each soil grouping identified for the greenhouse project.

Soil "Grouping"	Soil Series	Parent Material	Textural Range	Percentage of Area with [Ni] > 500 mg/kg
Heavy Clay ¹	Welland Niagara Haldimand	Lacustrine, Heavy Clay	> 40% Clay	23%
Shallow ²	Farmington Franktown Brooke Alluvial	Shallow (<100 cm) Loam, Clay Loam and Siltly Clay Loam over Limestone bedrock	Variable < 30% Clay	20%
Organic	Quarry Lorraine	Organic (swamp) Organic (fen)	Organic matter 40 – 160 cm deep	17%
Clay Loam ³	Jeddo Chinguacousy Peel Malton	Till: Clay and Clay Loam Siltly Clay textures	Variable 20 - 40% Clay	8%
Sand	Fonthill Walsingham (Undifferentiated)	Eolian Sand and Beach Sand	< 20% Clay	1%
Not Mapped	No Designation	Anthropogenic	Variable	30%

Notes: ¹ Heavy Clay soils are generally developed on glacio-lacustrine parent materials. Within the context of the Port Colborne area many of these soils appear to contain a higher iron oxide content (red colored) compared with other soils.

 2 Shallow soils are generally developed in up to 100 cm of variable textured unconsolidated material (lower clay content compared to the Heavy Clay soils) over cherty limestone bedrock.

³ Clay Loam soils are generally developed on till and have a lower clay content compared to the Heavy Clay (lacustrine) soils of the area.

Soil	Contamination Level	Available P (mg/L)	Available K (mg/L)	Available Mg (mg/L)
Organic	Background	11	77	742
Organic	High Ni	14	123	398
Sand	Background	46	75	88
Sand	High Ni	9	101	256
Heavy Clay	Background	13	222	487
Heavy Clay	High Ni	40	263	409
Shallow	Background	21	122	157
Shallow	High Ni	22	270	623

Table 2: Analyses for available P, K and Mg.

Table 3: Concentration of inorganic, organic and total carbon.

Soil	Contamination	Inorganic C	Organic C	Total C
5011	Level	(%)	(%)	(%)
Organic	Background	0.27	32.9	33.2
Organic	High Ni	0.45	40.0	40.4
Sand	Background	0.16	3.46	3.62
Sand	High Ni	2.22	5.05	7.27
Heavy Clay	Background	0.05	6.51	6.56
Heavy Clay	High Ni	0.19	8.46	8.65
Shallow	Background	0.07	6.28	6.35
Shallow	High Ni	0.79	16.30	17.1

Table 4: Total concentration of Ni for investigative samples used to determine blending rates.

Soil	Contamination Level	Total Ni (mg/kg)
Organic	Background	50
Organic	High Ni	10400
Sand	Background	54
Sand	High Ni	3920
Heavy Clay	Background	40
Heavy Clay	High Ni	8660
Shallow	Background	40
Shallow	High Ni	2760

The contaminated and non-contaminated soil pairs were blended to represent concentrations of CoC ranging from background levels (about 50 mg Ni/kg) to about 3000 mg Ni/kg. The total concentration of CoC's in each blend combination was based on analytical values for concentration of total nickel obtained from analyses of the investigative samples (Table 4). Each analytical value therefore represents a single analysis of a composite sample (0-15 cm depth) which was obtained prior to collection of the bulk materials. These analytical values can only be considered as a frame of reference to obtain approximate target values for each blend combination. Analytical values obtained for total Ni, Cu, and Co of the blend combination (individual soil mixtures) will not be exactly the same as the target number because of the variability of the composition of the bulk soil sample, and inherent difficulties obtaining complete homogenization with mixing of the bulk samples. Consequently the final concentrations for each blended mixture <u>must be determined after blending is complete</u>.

- Ontario Ministry of Environment (OMOE), 2000a, Phytotoxicology Soil Investigation: INCO – Port Colborne (1998). Ecological Standards and Toxicology Section, Standards Development Branch, Ontario Ministry of Environment, 125 Resource Rd. Etobicoke, Ontario, January, 2000
- Ontario Ministry of Environment (OMOE), 2000b, Phytotoxicology Soil Investigation: INCO – Port Colborne (1999). Ecological Standards and Toxicology Section, Standards Development Branch, Ontario Ministry of Environment, 125 Resource Rd. Etobicoke, Ontario, July, 2000
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 2000, Field Crop Recommendations, 2000-2001, Publication 296, OMAFRA, Toronto.
- Kingston, M.S. and E.W. Presant, 1989, The soils of the regional municipality of Niagara, Volumes 1 and 2 including 7 map sheets at 1:25,000 scale. Land Resource Research Centre Contribution No. 89-17. Report No. 60 of the Ontario Institute of Pedology.

Soil pH: Initial Adjustment

Soil pH values measured in 0.01 mol/L CaCl₂ solution (Hendershot et al. 1993) are presented in Table 5. Measurements for soil pH were obtained for the bulk soil in its initial condition after collection and also after pH adjustment. Soil pH values were adjusted from their initial values to within a target range of 6.0 to 6.2 for mineral soils. This range is slightly below the average value (6.3) for the surface horizons of mineral soils (see Table 6) reported for the Regional Municipality of Niagara (Kingston, and Presant, 1989). The pH values for organic soils (see Table 7) are slightly lower (5.6 – 5.0), consequently the target pH value for the organic soil pair was below 6.0.

The amount of $CaCO_3$ added to increase soil pH values to the appropriate level, or the amount of aluminum sulfate (Al₂(SO₄)₃ ·14-18 H₂O) added to reduce soil pH values was determined for each soil material through preliminary calibration experiments as follows:

- 1. A series of six 10 g samples of each bulk soil were weighed (in duplicate) into 125 ml plastic containers and treated with increasing amounts of either CaCO₃ or $Al_2(SO_4)_3$ '14-18 H₂O at equivalent rates ranging from 0 to 30 tonne/ha.
- 2. Twenty ml of 0.01 mol/L $CaCl_2$ were added to each container, the container was sealed and the samples were incubated at room temperature for at least three days swirling occasionally (at least twice a day).
- 3. Soil pH values were measured at the end of the incubation.
- 4. Soil pH values were regressed against the amount of either $CaCO_3$ or $Al_2(SO_4)_3$ '14-18 H₂O added to determine the amount of amendment required to adjust the soil pH to within the target range.
- 5. Soil pH of the bulk materials was adjusted by spreading the soil in a thin layer (about 10 cm thick) and spreading either CaCO₃ or Al₂(SO₄)₃ ·14-18 H₂O in the appropriate ratio of amending compound to the amount of bulk soil to adjust the pH value to the desired target range (6.0 6.2 for mineral soils).
- 6. A composite sample of the bulk soil (pH adjusted) was then collected, mixed and allowed to stand for three days to allow for reaction. The soil pH was then measured to verify that the desired pH range had been obtained.

The pH of the sand was not adjusted because the presence of free $CaCO_3$ in these soils. Free $CaCO_3$ (measured as total inorganic carbon content) typically buffers the soil pH in the range of 7.8 to 8.2. Reducing the soil pH value of these highly buffered soils is nearly impossible and highly impractical.

Soil	Contamination Level	pH(CaCl ₂) (initial)	pH(CaCl ₂) (adjusted)
Organic	Background	6.2	5.8
Organic	High Ni	4.9	6.0
Sand	Background	6.9	6.9
Sand	High Ni	6.9	6.9
Heavy Clay	Background	5.8	6.2
Heavy Clay	High Ni	6.2	6.2
Shallow	Background	5.7	6.0
Shallow	High Ni	6.5	6.2

Table 5: Soil pH values measured in 0.01 mol/L CaCl2.

Table 6: Soil pH values (0.01 mol/L CaCl2) of the surface horizons of mineral soils from generalized soil profiles of the Regional Municipality of Niagara (data from Kingston and Presant, 1989).

Soil Series	pH of surface horizons (0.01 mol/L CaCl ₂)
Allunium	6.2
Brooke	6.2, 6.7
Chinuacousy	6.5, 6.6, 6.3, 6.5, 6.3, 6.6
Farmington	6.8
Haldimand	6.2, 6.1
Jeddo	6.7, 6.3, 6.6, 6.6
Lincoln	5.9, 6.0
Niagara	6.1
Toledo	6.2, 6.2
Welland	6.0, 6.0
Mean pH value	6.3

Table 7: Soil pH values (0.01 mol/L CaCl2) of the surface horizons of organic soils from generalized soil profiles of the Regional Municipality of Niagara (data from Kingston and Presant, 1989).

Soil Series	pH of surface horizons (0.01 mol/L CaCl ₂)
Lorraine	5.0
Quarry	5.6

References

- Kingston, M.S. and E.W. Presant, 1989, The soils of the regional municipality of Niagara, Volumes 1 and 2 including 7 map sheets at 1:25,000 scale. Land Resource Research Centre Contribution No. 89-17. Report No. 60 of the Ontario Institute of Pedology.
- Hendershot, W.H. Lalande, H. and Duquette, M. 1993, Soil reaction and exchangeable acidity. Pages, 141-145 IN M.R. Carter, (ed.) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers, Boca Raton, Florida.

Choice of aluminum sulfate to reduce soil pH values.

Lowering soil pH values is not recommended as a general agricultural practice because of the high expense associated with most compounds used to decrease soil pH values. The practice of soil pH reduction is used in the commercial production of some high value crops such as blueberries, and to control disease in some root crops such as potatoes. Although powdered or granular elemental sulfur are most commonly used to reduce soil pH values, the reaction does not take effect immediately and may take 3 months to 1 year to complete, which is impractical for the current experiments. Other faster reacting soil acidifying compounds include ammonium sulfate, iron (ferrous) sulphate, and aluminum sulfate. Aluminum sulfate was chosen in the present case because it reacts quickly and does not overly complicate the pool of plant available nutrients. Ammonium (N), in the case of ammonium sulfate, is a major plant nutrient. The addition of ferrous iron may interfere with Ni uptake in plants. Aluminum is not a plant nutrient and is potentially toxic to plants, but not at soil pH values in the range of 5.5 to 8. Sulfur (as sulfate) is also a plant nutrient typically supplied by atmospheric deposition to field crops in southern Ontario, but is commonly marginal or deficient in greenhouse environments.

- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 1998, Soil Fertility Handbook, Publication 611, OMAFRA, Toronto.
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 2000, Field Crop Recommendations, 2000-2001, Publication 296, OMAFRA, Toronto.

Sample splitting and mixing using a riffle splitter.

All collected soil samples were mixed and split using a Jones-type riffle splitter. Samples were air-dried if required, prior to mixing. Mixing of the samples prior to analyses required passing the material through the splitter and recombined it a minimum of seven times to homogenize the material as much as possible. The splitter was also used to separate the material into equal halves as required.

Specification for plant density in the field plots

Crop	Planting Depth (cm)	Row Spacing (cm)	Seeding Rate (#seeds/m of row)	Final Plant Population (plants per m of row)	Final Plant Population (Plants/ha)
Corn	2.5-3.0	76	13	6	78,800
Oats	0.6-1.3	18	100	50	$2.77 \text{ X } 10^{6}$
Soybean	0.6-1.3	18	20	10	555,000
Radish	0.6-1.3	15	80-100	40-50	3.00×10^{6}

Table 8: Recommended seeding rates, seeding depths and final plant population for field trials.

Specifications for seeding rates, planting depths and final plant populations for field plots (Table 6) were based on government recommendations for the production of field crops (OMAFRA, 2000a) and vegetable crops (OMAFRA, 2000b). It is common practice in field plot studies to plant at double the recommended seeding rate and then thin seedlings to the required plant population after germination and emergence. This is done to compensate for non-uniformity of plant populations that may be encountered due to reduced seed germination or extremes in the environment such as excessive rainfall or drought that reduce germination and emergence.

- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 2000a, Field Crop Recommendations, 2000-2001, Publication 296, OMAFRA, Toronto.
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 2000b, Vegetable Production Recommendations, 2000-2001, Publication 363, OMAFRA, Toronto.

Fertilizer Recommendations

Field Plots

Fertilizer application rates for the field plots were based on applying <u>recommended</u> rates of fertilizer (OMAFRA, 2000) based on interpretation of results for soil fertility analyses obtained for composite samples taken from each of the field plots. Soil fertility analysis for nitrogen was not performed because accurate analysis for soil nitrogen demands special handling requirements of the sample that could not be adequately or consistently met for all samples. Instead a <u>general</u> application rate for N was used which is based on individual crop requirements (OMAFRA, 2000). Nitrogen fertilizer was not supplied to soybeans in favor of the common practice of seed inoculation with soybean rhizobia to induce nitrogen fixation by the roots of the plants.

In cases where excessive ratings for soil analyses were found (Table 7) fertilizer was not added as per recommendations (OMAFRA, 2000). Fertilizer application in not recommended in the case of excessive ratings because this may cause problems due to reduced yields, nutrient imbalances or poor plant quality. Phosphate addition also increases the risk of water pollution. Potassium additions may induce magnesium deficiencies on soils low in magnesium.

		Soil Test	Values	
Crop	Nitrogen*	Phosphate	Potassium	Magnesiun
	-	73 mg/L _{soil}	310 mg/L _{soil}	445 mg/L _{so}
Corn	General	Excessive	Excessive	Adequate
	160 kg/ha	0 kg/ha	0 kg/ha	0 kg/ha
Oats	General	Excessive	Excessive	Adequate
	40 kg/ha	0 kg/ha	0 kg/ha	0 kg/ha
Soybean	General	Excessive	Excessive	Adequate
	0 kg/ha	0 kg/ha	0 kg/ha	0 kg/ha
Radish	General	Excessive	Excessive	Adequate
	60 kg/ha	0 kg/ha	0 kg/ha	0 kg/ha

Table 9:Fertility ratings (e.g. low, medium, high, excessive, etc.) for soil fertility
analyses and the corresponding fertilizer requirements for each crop grown
on the Site 2 (Inco) field plots.

• Note: Fertilizer recommendations for nitrogen are <u>general</u> recommendations for plant requirements and are <u>not</u> based on soil fertility analyses.

		Soil Test	Values	
Crop	Nitrogen*	Phosphate	Potassium	Magnesiun
	-	12 mg/L_{soil}	120 mg/L_{soil}	284 mg/L _{sc}
Corn	General	Medium	Medium	Adequate
	160 kg/ha	50 kg/ha	30 kg/ha	0 kg/ha
Oats	General	Medium	Very High	Adequate
	40 kg/ha	20 kg/ha	0 kg/ha	0 kg/ha
Soybean	General	Medium	Medium	Adequate
-	0 kg/ha	30 kg/ha	30 kg/ha	0 kg/ha

Table 10: Ratings (e.g. low, medium, high, excessive, etc.) for soil fertility analyses and corresponding fertilizer requirements for each crop grown on the Site 3 (Hruska Field) field plots.

* Note: Fertilizer recommendations for nitrogen are general recommendations for plant requirements and are <u>not</u> based on soil fertility analyses.

Fertilizer Requirements

Greenhouse

All fertilizer application rates for greenhouse pots were based on <u>general</u> requirements for oats and radish crops (OMAFRA, 2000). Soil fertility analyses were used in the greenhouse trials to establish the general baseline soil fertility levels and to ensure that fertilizer application rates would not be excessive and cause problems affecting yield and nutrient imbalances. Higher rates of fertilizer must be applied in greenhouse pot studies (compared to the field) to compensate for the limited amount of soil in each pot that is explored by the roots to provide water and nutrients for the growing plants. Fertilizer rates for all soils are listed in Table 9. Phosphate was applied as a circular band of CaHPO₄ in each pot placed about 5 cm below the seed (about 6 cm below the soil surface). Nitrogen and potassium were applied as a solution of KNO₃ immediately after planting.

	Table 11:	Equivalent Rates of N, P	P and K fertilizer applied to each pot.
--	-----------	--------------------------	---

Crop	Nitrogen	Phosphate	Potassium			
Oats and Radish	General	General	General			
	70 kg N/ha	218 kg P/ha (banded)	182 kg K/ha			

Banding of Phosphate Fertilizer.

An effective method of providing a readily available supply of nutrients to growing seedlings is to place the fertilizer in a localized band usually about 5 cm below and 5 cm to either side of the seed (White and Collins, 1976). The practice of fertilizer banding reduces contact of the fertilizer with soil particles thus minimizing the opportunity for fixation of the nutrients, most notably phosphate, by the soil and provides a readily available source of plant nutrients early in the growth cycle when it is required most.

White, W.C. and Collins, D.N. (eds.) 1976. The fertilizer handbook. The Fertilizer Institute, Washington D.C. 208pp.

Agricultural Limestone Requirement

Rates of CaCO₃ and MgCO₃ applied to Greenhouse soils

The rate of application of $CaCO_3$ and $MgCO_3$ was based on the response of each soil to the application of $CaCO_3$ during the initial pH adjustment procedure (see above). An equimolar mixture (1:1) of finely powdered reagent grade $CaCO_3$ and $MgCO_3$ were substituted for dolomitic limestone ($Ca,Mg(CO_3)_2$) to maximize the rate of reaction and pH increase. All pH values were measured in 0.01 mol/L $CaCl_2$ solution (Hendershot et al. 1993). The amount of $CaCO_3$ applied to each soil mixture was calculated to increase soil pH values from the initial values to the target level. Soil pH values were measured in 0.01 mol/L $CaCl_2$ for soil samples collected from each pot to determine the final soil pH environment of the growing plants.

Soil	pH(CaCl ₂) (initial)	pH(CaCl ₂) (target)	Rate of Agricultural Limestone Addition			
Organic	5.8	6.5	2.4 tonnes/ha			
Heavy Clay	6.2	7.0	2.0 tonnes.ha			
Shallow Loam	6.0	7.0	2.0 tonnes/ha			
Sand	6.9	6.9	0 tonne/ha			

Table 12: Soil pH values measured in 0.01 mol/L CaCl2.

The pH of the sand was not adjusted because free $CaCO_3$ was present in these soils buffered the soil pH at 6.9 (0.01 mol/L $CaCl_2$). As an alternative method of treatment these soils were amended with mushroom compost.

Rates of Agricultural Limestone applied to Field Plots

Three rates of agricultural limestone were applied to the field plots at Site 3 (Hruska Field). The lowest rate of application was 0 tonne/ha which represents the application of no agricultural limestone. The highest rate of application was 100 tonne/ha which represented an arbitrarily chosen rate sufficient to increase soil pH values up to 8.2 and provide excess limestone (free CaCO₃) in the topsoil to maintain soil pH at this level for several years.

The intermediate rate of agricultural limestone applied was 11 tonne/ha. This rate represents a prudent rate of application for agricultural limestone intended to increase the soil pH value to approximately 7.0. This rate was calculated using established relationships for pH adjustment (OMAFRA, 1998) and the buffer pH values measured for the 0-15 cm composite sample collected from the site (SC-07).

Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 1998, Soil Fertility Handbook, Publication 611, OMAFRA, Toronto.

Characteristics of mushroom compost used to amend sand samples in greenhouse.

The purpose of adding this amendment was to increase the organic matter content of the sand, and subsequently to increase the metal sequestering potential of the soil and reduce the availability of the CoC's to the growing plants. Increasing the organic matter content of the soil increases the number of adsorption sites and consequently reduces the uptake of CoC's by the growing plants.

The compost used to amend the sand was PC Brand Mushroom Compost purchased from Zehrs. The characteristics of the material are as follows:

Moisture Content	1.64 g/g (164%)
Bulk Density	400 kg/m^3
Organic Matter Content	40.6%

Addition and mixing of 1 kg fresh compost to the soil in each 6.5 L pot should increase the soil organic matter content of the soil by 2.4% from an average of about 7.3% to about 9.7%. This can also be expressed as a 30% increase in total soil organic matter content of the soil.

THEORETICAL METAL UP-TAKE CALCULATION

Within the context of growing oat plants for one growing season in the greenhouse experiment using pots with a limited volume of soil, the question arises as to how much metal the growing plants will remove from the soil in the pot. The following calculation predicts the maximum amount of Ni taken up by 5 to 6 oat plants grown in 6.5 L pots containing soil with a low total concentration of Ni.

- Assume a soil contains a total of 200 mg Ni /kg soil (average background concentration for Ontario soil average = 34 mg/kg). This is the MOE's phytotoxicity limit for total Ni in soil. This value is low compared to the concentration of Ni in the greenhouse soils (with the exception of the background soils). The same amount of Ni removed by plants from soils with higher total concentrations will represent lower percentages of the soil Ni.
- Assume a 6.5 L pot contains 1.3 kg of organic soil (very light). This value represents the lowest mass of soil for all of the 2001 greenhouse experiments.
- Assume a dry matter yield (above ground) for oats = 20 g (very high). This value is greater than the highest dry matter yield for oats in any of the greenhouse experiments (highest about 15 g)
- Assume plant up-take of 100 mg Ni / kg dry matter (100 ppm, very high). This value it is used here for demonstrative purposes only. This value for plant up-take represents an extreme theoretical case and is very high relative to the total amount of Ni (200 ppm) in the soil. It also ignores the phytotoxicity effects of the Ni (i.e. 100 ppm Ni in the dry matter would likely result in dry matter yields lower than 20 g).
- Total mass of Ni in 1 pot of soil = 1.3 kg soil X 200 mg Ni /kg = 325 mg Ni/pot
- Total mass of Ni in plant dry matter = 20 g dry matter X 0.001 kg/g X 100 mg Ni / kg dry matter = 2 mg Ni
- Proportion of Total Ni removed from soil by plants = 2 mg Ni / 325 mg Ni/pot = 0.006 X 100 = 0.6%
- Considering the analytical uncertainty in the analysis of soil Ni will be at least 5% then removal of 0.6% (the maximum possible under these conditions) of the total soil Ni will not be detected in the analytical value for the soil. Actual percentages of removal will be much lower than in all other cases.

Code	Site Location	Status
CWM4-1	Contaminated Welland soil, 0-15 cm composite north of field site 2	Adopted for use in GH Expt
CMW8-1	Welland clay background, Wainfleet Dump, 0-15 cm composite about 100 m west of long beach road, 200 m south of dump site inside woodlot.	Discarded Site Inaccessible
SC-01	Contaminated Sand 0-15 cm composite sample. Site located south of Inco plant, north side of Lakeshore Rd. (prior site SS-23)	Adopted for use in GH Expt.
SC-02	Contaminated Welland clay, Ap horizon (0-23 cm) test pit sample, Hruska field, south of Site 3 field plots.	Preliminary data for field site 3.
SC-03	Background sand, 0-15 cm composite, east refinery, south end of Halloway Bay Road.	Discarded Insufficient Material
SC-04	(a.k.a. T517-2) Contaminated Shallow loam (Farmington series) 0-15 cm composite sample north of school, west of Elizabeth St.	Discarded [Ni] too low
SC-05	(a.k.a. OM4-2) Contaminated organic soil, 0-15 cm composite, former Grotelaars farm, about 20 m east of organic field plots, inside bush lot.	Adopted for use in GH Expt
SC-06	Background organic 0-15 cm composite, Zutt farm, 30 m east of Dritts, Rd, 80 m south of buildings on the edge of the wood lot.	Adopted for use in GH Expt
SC-07	Site 3 field plots, Hruska field, 0-15 cm composite, collected randomly from 50 X 60 m area.	Fertility data for Field Site 3.
SC-08	(a.k.a. LAM29-2) Contaminated Alluvium soil, 0-15 cm composite, about 120 m east of Snider Rd. and 100 m north of abandon CN tracks	Disallowed Site access denied
WeNim-31	(a.k.a. SC-09) Contaminated Welland soil, 0-15 cm composite sample of Site 2 Field plot area.	Fertility data for Field Site 2.
SC-10	(a.k.a. FC-065-1) Contaminated shallow loam, 0-15 cm composite, Farmington series, Robitaille property	Discarded [Ni] too low
SC-11	Background shallow loam, 0-15 cm composite, Farmington series, 50 m west of Morgan Road, 1.2 km south of Lakeshore Rd.	Discarded
SC-12	Welland clay background, Wainfleet Dump, 0-15 cm composite about 80 m west of long beach road, 200 m south of dump site inside woodlot.	Adopted for use in GH Expt
SC-13	Sand background, 0-15 cm composite site 1, about	Discarded

Table 13: Key to Sample Identification

	150 m north of Lakeshore Rd. 1 km west of Cement Plant Rd.	
	Sand background, Lakeshore road, site 2, about 100 m	Adopted for use
SC-14	north of Lakeshore Rd, 1 km west of Cement Plant Rd.	in GH Expt
SC-15	Background shallow loam, (Farmington series) 0-15 cm composite Sabo property 150 m south, of Lakeshore Rd. 150 m west of Morgan's Point Rd.	Adopted for use in GH Expt
SC-16	(a.k.a. FL0626-1) Contaminated shallow loam, (Alluvium series) Inco/CN property, 0-15 cm composite	Adopted for use in GH Expt
SC-20	Mushroom Compost, composite from 12(?) samples from 12 - 18 kg bags	Amendment for sand in GH Expt.

Table II.2.2

Soil "Group"	, Soil Series Parent Materials*		Drainage**	Texture		
Organic (T. Mesisol)	Quarry Lorraine	Organic (swamp) Organic (fen)	V Poor V Poor	160 cm organic over HC (60%)		
Shallow over Bedrock	Farmington Franktown Brooke	100 cm /Limestn 50 cm /Limestn 100 cm /Limestn	Rapid Imp Poor	Variable < 30% Clay		
Till P.M.	Jeddo Chingoucousy Peel (Malton)	Red CL Till Red CL Till Red C / CL Till SiC / C Till	Poor Imp Imp Poor	20 -40% Clay		
Lacustrine P.M.	Welland Niagara Haldimand	Red-Lac HC Red-Lac HC Lac HC	Poor Imp Imp	> 40% Clay		
Other	Alluvium Fonthill Walsingham	Variable / LacHC Red Coarse Sand Eaolian Sand	Well Rapid Imp	< 20% Clay		
Not Mapped	Residential Incustrial Commercial	Anthropogenic	Variable	Variable		

SOIL GROUPINGS IN PORT COLBORNE AREA

Notes: *Parent Materials (examples)

100 cm /Limestn = 100 cm variable textured soil over limestone bedrock

Red CL Till = Red colored Clay Loam textured glacial till LacHC = lacustrine heavy clay SiC = Silty Clay **Drainage V. Poor = Very Poor Imp = Imperfect

Source: Kingston, M.S. and Presant, E.W. 1989. The soils of the regional municipality of Niagara. Land Resource Research Centre Contribution No. 89-17.

Table II-2.3ESTIMATED AREAL DISTRIBUTION OF SOIL "GROUPS"WITHIN A 40 km² AREA NORTHEAST OF THE INCO SMELTER

Soil "Group"	% of Total Area	>500 mg Ni /kg	< 500 mg Ni /kg
Till P.M.	37%	8%	50%
Lacustrine P.M.	17%	23%	13%
Shallow over Bedrock	15%	20%	12%
Organic	5%	17%	2%
Other	<1%	1%	<1%
Not Mapped	24%	30%	22%

Estimates are based on an area of approximately 40 km^2 extending east and north of the Inco smelter, including all areas contaminated with >500 mg Ni/kg soil based on MOE (2000) Report.

Reference: Ontario Ministry of the Environment (2000) Phytotoxicology technical memorandum: Phytotoxicological soil investigation: Inco – Port Colborne (1999) Report No. SDB-032-3511-2000.

Table II-2. 4 CoC CONCENTRATIONS IN COLLECTED SOILS (mg/kg)

SOIL METAL LE	VEL.	1 8	ORGANIC SOIL					CLAY SOIL						SANDY SOIL	
	Total Nickel (mg/g)	Aqueous Nickel (mg/g)	Percentage (%)	DTPA Nickel (mglg)	Percentage (%)	Total Nickel (mg/g)	Aqueous Nickel (mg/g)	Percentage (%)	DTPA Nickel (mg/g)	Percentage (%)	Total Nickel (mg/g)	Aqueous Nickel (mg/g)	Percentage (%)	DTPA Nickel (mg/g)	Percentage (%)
VERY HIGH	5,540.0	11.2	0.2%	410,0	7.4%	8,290.0	13.0	0.2%	505	6.8%	r/a	n/a	nía	t∕a	n/a
HIGH	3,160.0	9.1	0.3%	240.0	7.6%	3,430.0	8.6	0.9%	408.0	11.9%	1,350.0	3.0	0.2%	91.4	6.9%
MEDIUM	1,200.0	1.2	0.1%	99.2	8.9%	517.0	1.7	0.9%	70.3	13.6%	307.0	0.0	0.0%	23.0	7.5%
LOW	216.0	nd	0.0%	28.1	12.1%	194.0	0.5	0.8%	27.3	14.1%	494.0	0.7	0.1%	51.6	10.4%
CONTROL	33.0	nd	0.0%	2.6	7.9%	34.1	nd	0.0%	35	10.3%	5.0	nd	0.0%	nd	0.0%
	Total Copper (mg/g)	Aqueous Copper (mg/g)	Percentage (%)	DTPA Copper (mg/g)	Percentage (%)	Total Copper (mgig)	Aqueous Copper (mg/g)	Percentage (%)	DTPA Copper (mg/g)	Percentage (%)	Total Copper (mg/g)	Aqueous Copper (mg/g)	Percentage (%)	DTPA Copper (mg/g)	Percentage (%)
VERY HIGH	560.0	1.0	0.2%	3.2	0.6%	890	2.1	0.2%	27.6	3.1%	1/8	n/a	nía	n/a	11/9
HIGH	460.0	1.6	0.3%	5.0	1.1%	366.0	0.0	0.0%	29.9	8.2%	137.0	nd	0.0%	36.8	26.9%
MEDIUM	211.0	0.0	0.0%	7.3	3.5%	81.8	0.0	0.0%	15.7	19.2%	39,3	nd	0.0%	11.7	29.8%
LOW	59.0	0.0	0.0%	7.5	12.7%	42.1	0.0	0.0%	13.9	33.0%	71.3	nd	0.0%	22.4	31.4%
CONTROL	16.4	0.0	0.0%	2.0	12.2%	24.6	nd	0.0%	3.8	15.4%	nđ	0.0	0.0%	nd	0.0%
	Total Cobalt (mg/g)	Aqueous Cobalt (mg/g)	Percentage (%)	DTPA Cobalt (mg/g)	Percentage (%)	Total Cobalt (mg/g)	Aqueous Cobalt (mg/g)	Percentage (%)	DTPA Cobalt (mg/g)	Percentage (%)	Total Cobalt (mg/g)	Aqueous Cobalt (mg/g)	Percentage (%)	DTPA Cobalt (mg/g)	Percentage (%)
VERY HIGH	72.8	nd	0.0%	0.5	0.7%	108	nd	0.0%	13	1.2%	n/a	n/a	nía	n/a	nla
HIGH	37.2	nd	0.0%	nd	0.0%	48.5	nd	0.0%	1.4	2.9%	27.9	nd	0.0%	0.6	2.2%
MEDIUM	15.0	nd	0.0%	0.5	3.3%	12.8	nd	0.0%	1.8	10.2%	6.1	nd	0.0%	nd	0.0%
LOW	7.6	nd	0.0%	0.5	6.6%	7.8	nd	0.0%	0.6	7.7%	7.0	nd	0.0%	nid	0.0%
CONTROL	nd	nd	0.0%	nd	0.0%	nd	nd	0.0%	nd	0.0%	nd	nd	0.0%	nd	0.0%

FACTORS CONSIDERED IN DATA ANALYSES

During the implementation of the Year 2000 Greenhouse Trials, experimental results were negatively impacted by several aspects, including:

1) Plants would not germinate and grow in the soil initially collected as the Organic Control soil. It was determined that the soil collected (which was taken from the edge of an onion field well west up the prevailing wind from Port Colborne was contaminated with a broad spectrum herbicide. This problem was resolved by discarding the soil (both in its drum and in the pot tests underway), and accessing a barrel of replacement soil that was not herbicide contaminated. This replacement Organic Control soil was taken near the initial location, but from a location in the bush where herbicide contamination was unlikely.

After sieving and homogenizing, new pot tests were set up with the new Organic Control soil and the plants grew normally in them. The first ramification of this replacement is, however, that despite the fact that pot tests in new control soil were terminated after the same number of days as were those for the other members of their sets, conditions are never the same for a later pot tests run over different periods, even if they can the run over exactly the same number of days (e.g., different photo-periods)

The second ramification is that comparative photographs of the plants for the full sequential tests could not be taken for the Organic soil experiments since the Control pot tests were at a different stage of growth.

2) Shortly after the plants in the Organic soil sequence (three experiments) began to grow, it was apparent that those in the High Organic pots were highly different compared to the plants of the others. In fact, corn, soybeans and oats grew so prolifically in the High Organic soil that plants in their sets were even larger and more vigorous looking than those in the sets of their sequence that were growing in much less impacted soils. Reference to the nutrient levels in the soils in question (see Table II 2) showed that phosphorus levels in the High Organic soil (muck soil from the former Groetelaar farm, taken near the location of the organic soil field test site) were somewhat high relative to those of other members of their sequence.

It was speculated that the soil at this former operating farm had been heavily fertilized when it was in operation, and this might be part of the reason for the anomaly. To test this, one new experiment, a sequence of pot tests for one of the crops (corn), was set up. For it, very much higher amounts of phosphate fertilizers (10 times as much) were added to all of the sets (including the suspect High Organic one) to see if the anomaly went away if all the sets of the sequence were over-fertilized with phosphates.

The results of this experiment 10 (Organic Corn II) do suggest that the speculation may be at least partially true as the plants in the other sets of the sequence did grow much better and the anomaly was partially resolved (see the photographs in Appendix V of Volume III). However, it may not be the full story and more than just over-fertilization by phosphate fertilizers may have been involved with soils from the former Groetelaar farm muck soil site. Because of these results, for all of the doseresponse curves for organic soils, the High Organic data was discounted. This reduced the amount of data available for determining regressions above the TCs for the Organic soil experiments and adds notes of caution to the absolute values of EC₂₅ and EC₅₀ values for oats and soybeans grown in organic soil. (Corn plants grown in Organic soil had so little uptake anyway that the caution is not a factor for them.)

The results also suggest that data for plants grown in soil from the muck soil site may not be indicative of what might be expected from other organic soils in the Port Colborne area. Further testing may have to be carried out to determine just what is the nature of the muck soil from the Groetelaar site and why it differs so much from other local organic soils.

A similar phenomenon became apparent when dose-response graphs were prepared for plants growing in the clay soils, when it was noticed that Control Clay soils had different (higher) relative yields than those of plants growing in Low Clay and medium Clay soils. Since the Clay Control soil had been accessed from just off the edge of a farmed field, it is possible that it too contained higher than normal amounts of fertilizers. It also had a much higher pH than the other Clay soils. For conservatism, the Clay Control results were discounted when defining the continuous points (i.e., relative yield = 1.0) on the Clay soil dose-response graphs. (This has less impact than discounting data above the TCs as these are input to regression analyses, while data below the TCs is only used to define the relative yield = 1.0 line of a dose-response graph.)

3) Many of the results obtained for plant tissue CoC concentration were below the limits of the analytical method used and are reported as ND, non-detect (see the data tables of Appendix II). This complicated statistical calculations as the option then existed to use the data as zero, or as the value of the detection limit (2.5 mg/kg for nickel), or to ignore the data completely. The latter was chosen, but this reduced the amount of data available for determining dose-response graphs.

This had its greatest impact on the results for cobalt, where the low initial values in the greenhouse soils resulted in many cases in plants with cobalt levels below nondetect. While the fact that cobalt uptake is so low indicates that cobalt contamination is not a major factor for the ERA, it does prevent any definitive conclusions from being made for this CoC. It suggests that for future greenhouse trials under the ERA that consideration might have to be given to having some or all of the plant metal analyses carried out under more rigorous (and much more expensive) analytical test procedures with much lower detection limits.

4) As expected, the most sensitive crops used in the greenhouse testing turned out to be Oats and, as mentioned, all of the aboveground plant tissue were analyzed for CoC levels after drying and weighing. (This differs from the situation with Corn and Soybeans where only the dried lower leaves of the plants were sent for CoC analyses.) The first sequence to exhibit adverse effects sufficient to dictate terminating the pot tests was Oats in Clay soil. For the sets of the sequence showing the largest adverse effects (the sets of the sequence growing in High Clay and Very High Clay soils) as might be anticipated the amount of biomass was small, already complicating matters. The plants from this first harvest were, according to protocol, placed in paper bags, dried as required, weighed and sent to Philip Laboratories for CoC analyses.

After the plants were sent off, it was discovered that some of the dry weight (yields) obtained were negative numbers. The problem was quickly traced to the fact that the paper bags used to hold the samples were dehydrating in the drying ovens too, changing their weights as well. The protocol was then adjusted to prevent this problem from recurring. However, by this time the Oats in Clay soil plants had all been sent for analysis, and in the case of oats this involved the entire plants. The analytical procedure used made it impossible to recover the plants for re-weighing. As a result, for the Oats in Clay sequence, although plant tissue metal analyses are available, plant biomass results are not.

Table II-2.7SOIL COLLECTION RECORD FOR YEAR 2001 GREENHOUSE TRIALS

Soil group: Heavy Clay, Highly-Contaminated (V) Site code: none apparent Collection date: May 10/01 Number of loader buckets taken: 4 x 2m³ Date finished sieving: May 31/01 Date moved to onion barn: June 1/01 **Barrel codes**: WeNi1/10M11 WeNi2/10M11 WeNi3/10M11 WeNi4/10M11 WeNi5/10M11 WeNi6/10M11 WeNi7/10M11 WeNi8/10M11 WeNi9/10M30 WeNi10/10M31

Soil group: Sand, Highly-Contaminated Site code: S517#1 Collection date: May 30/01 Number of loader buckets taken: 5 x 2m³ Date finished sieving: June 25/01 Date moved to onion barn: June 1/01 Barrel codes: SaNi1/4M30 SaNi2/4M30 SaNi3/4M31 SaNi4/4M31

Soil group: Organic, Highly- Contaminated Site code: OM4-2 Collection date: May 31/01 Number of loader buckets taken: 2 x 2m³ Date finished sieving: May 31/01 Date moved to onion barn: June 1/01 Barrel codes: OrNi1/4M31 OrNi2/4M31 OrNi3/4M31 OrNi4/4M31

Soil group: Organic Control (C) Site code: OBGM24 Collection date: May 31/01 Number of loader buckets taken: 4 x .89m³ Date finished sieving: June 6/01 Date moved to onion barn: June 7/01 Barrel codes: OrBg1/4J5 OrBg2/4J6 OrBg3/4J6 OrBg4/4J6

Soil group: Heavy Clay, Control (two collection events) Site code: CWM8-1 Collection date: May 31/01, June 20/01 **Number of loader buckets taken:** 9 x 2m³;6 x 2m³ Date finished sieving: July 5/01; July 26 Date moved to onion barn: July 6/01; July 26 Barrel codes: WeBg1/10J8 WeBg2/10J18 WeBg3/10J18 WeBg4/10J19 WeBg5/10J19 WeBg6/10Jy4 WeBg7/10Jy4 WeBg8/10Jy4 WeBg9/10Jy5 WeBg10/10Jy5 WeBg1/3Jy26 WeBg2/3Jy26

WeBg3/3Jy26

Soil group: Till Clay Shallow soils, Control **Site code:** none apparent

Collection date: June 20/01 Number of loader buckets taken: $5 \times .96m^3$ Date finished sieving: June 25/01 Date moved to onion barn: June 22/01 Barrel codes: FaBg1/5J25; FaBg2/5J25; FaBg3/5J25 FaBg4/5J25 FaBg5/5J25

Soil group: Sand, Control Site code: none apparent Collection date: June 20/01 Number of loader buckets taken: 5 x .96m³ Date finished sieving: June 21/01 Date moved to onion barn: June 22/01 Barrel codes: SaBg1/5J21 SaBg2/5J21 SaBg3/5J21 SaBg4/5J21 SaBg5/5J21

Soil group: Till Clay shallow soil, Highly-Contaminated Site code: FL0626-1 Collection date: July 5/01 Number of loader buckets taken: 7 x .96m³ Date finished sieving: July 11/01 Date moved to onion barn: July 12/01 Barrel codes: FaNi1/5Jy10 FaNi2/5Jy10 FaNi3/5Jy11 FaNi4/5Jy11 FaNi5/5Jy11

APPENDIX S-1.2

ENPAR SOIL TEST PITS (2001 GREENHOUSE SOILS)

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

ONT34663 December, 2004 APP. S-1.2

A Company Specialising in Environmental Protection and Remediation Technologies 449 Laird Rd. Unit 12, Guelph, ON, N1G 4W1 Tel.: (519) 836-6155 Fax: (519) 836-5683 E-mail: <u>enpar@sympatico.ca</u> Website: www.enpar-tech.com

September 10, 2001

Jacques Whitford Environment Limited 1200 Denison St. Markham, Ontario L3R 8G6

<u>Re: Soil Test Pits – Greenhouse Soils</u>

Attention: Jim Higgins:

The following report is a summary of descriptions for 9 soil test pits excavated and sampled in Port Colborne, Ontario between May 4, and July 9, 2001. These descriptions for sample sites and soil profiles were written using standardized terms, definitions, and protocols, for soil survey in Canada. The reader is referred to: "Day, J.H. ed. (1983) The Canada soil information system (CanSIS) - Manual for describing soils in the field, 1982 revised, Research Branch, Agriculture Canada" for all details. All descriptions are based on observations taken in the field. Soil texture was estimated using field hand-texturing procedures. Soil reaction is reported only for horizons displaying effervescence when treated with 10% HCl. If you have any questions regarding this report please contact me at any time.

Sincerely,

C. James Warren, Ph.D. Senior Soil Scientist ENPAR Technologies Inc.

/cjw

SOIL PROFILE DESCRIPTIONS

GREENHOUSE SOILS

As part of the Year 2001 Ecological Risk Assessment of the Inco Port Colborne CBRA process, top soils (approximately 0.15 cm depth) were collected for Greenhouse Trials for contaminated soils in the region. The attached report is a summary of descriptions for 9 soil test pits excavated and sampled in Port Colborne, Ontario between May 4, and July 9, 2001. Pits were excavated by hand to a depth of approximately 1 m. The sample sites and soil profiles were described using standardized terms, definitions, and protocols, used for soil survey in Canada (Day, 1983). A sample of each pedogenetic horizon in the soil profile was collected at the time of excavation. All descriptions are based on observations taken in the field. Soil texture was estimated using field hand-texturing procedures. Soil reaction is reported only for horizons displaying effervescence when treated with 10% HCl.

Reference

Day, J.H. ed. (1983) The Canada soil information system (CanSIS) - Manual for describing soils in the field, 1982 revised, Research Branch, Agriculture Canada.

ORGANIC SOIL - BACKGROUND

Site Description:	Lot 11, Concession 2, Township of Wainfleet, about 40 m East of Wright Rd, 0.7 km North of Highway 3.
GPS Location:	E 17 635760 N 4750683
Landform/Parent Materials	8
	Swamp-associated woody forest peat 40-160 cm deep over lacustrine heavy clay.
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Poorly drained; very high (18 cm) water table.
Present Land Use:	Rural farm, border between open field and woodlot
Vegetation:	Grasses, sedges
Date Sampled:	May 29, 2001

Horizon	Depth (cm)	Description
Om	0-15	Black (10YR 2/1 m); moderately decomposed organic matter; plentiful fine and medium roots; gradual smooth boundary.
Om2	15-30	Black (10YR 2/1 m); strongly decomposed organic matter and semidecomposed wood fragments; few medium and coarse roots; gradual smooth boundary
Of	30-45	Black (10YR 2/1 m); weakly decomposed organic matter and semidecomposed wood fragments.

ORGANIC SOIL - CONTAMINATED

Site Description:	Lot 23, Concession 1, City of Port Colborne, about
	30 m East of Reuter Road, and 0.8 km South of
	Durham St.
GPS Location:	E 17 644636 N 4748964
Landform/Parent Materials:	Swamp-associated woody forest peat 40-160 cm
	deep over lacustrine heavy clay.
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Poorly drained; very high (48 cm) water table.
Present Land Use:	Abandon rural farm, woodlot
Vegetation:	Mature oak, maple, ivy

Date Sampled:

May 25, 2001

Horizon	Depth (cm)	Description
		Brown (7.5YR 4/4 d); semi- and non-decomposed leaves,
LFH	4-0	twigs, moss and wood fragments; abundant fine and medium
		roots; abrupt smooth boundary.
Oh	0-15	Black (10YR 2/1 m); very strongly decomposed organic
OII	0-15	matter; plentiful medium roots; gradual diffuse boundary.
		Black (10YR 2/1 m); strongly decomposed organic matter and
Oh2	15-30	semidecomposed wood fragments; plentiful coarse roots;
	gradual diffuse boundary.	
		Very dark grayish brown (10YR 3/2 m); strongly decomposed
Om	30-45	organic matter and semidecomposed wood fragments; few
		medium and coarse roots; gradual diffuse boundary.
		Very dark grayish brown (10YR 3/2 m); strongly decomposed
Om2	45+	organic matter and semidecomposed wood fragments; few fine
		roots.

HEAVY CLAY - BACKGROUND

Site Description:	Lot 20, Concession 1, Township of Wainfleet, about 500 m South of Wainfleet Dump Site
GPS Location:	E 17 632567 N 4748156
Landform/Parent Materials:	Glaciolacustrine
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Poorly drained; very high (30 cm) water table.
Present Land Use:	Woodlot
Vegetation:	Weeds, full grown maple, oak.

Date Sampled:

May 25, 2001

Horizon	Depth (cm)	Description
Ah	0-22	Black (2.5YR 2/0 m); clay; weak medium granular; friable; abrupt smooth boundary.
Aeg	22-33	Gray (10YR 6/1 m); heavy clay; few, large, distinct yellowish brown (10YR 5/6 m) mottles; massive; gradual diffuse boundary.
Bg	33-63	Light yellowish brown (10YR 6/4 m); heavy clay; many, large, distinct yellowish brown (10YR 5/6 m) mottles; massive; gradual smooth boundary.
Ckg	63+	Light brownish gray (10YR 6/2 m); heavy clay; many, medium, distinct yellowish brown (10YR 5/6 m) mottles; massive.

HEAVY CLAY – CONTAMINATED

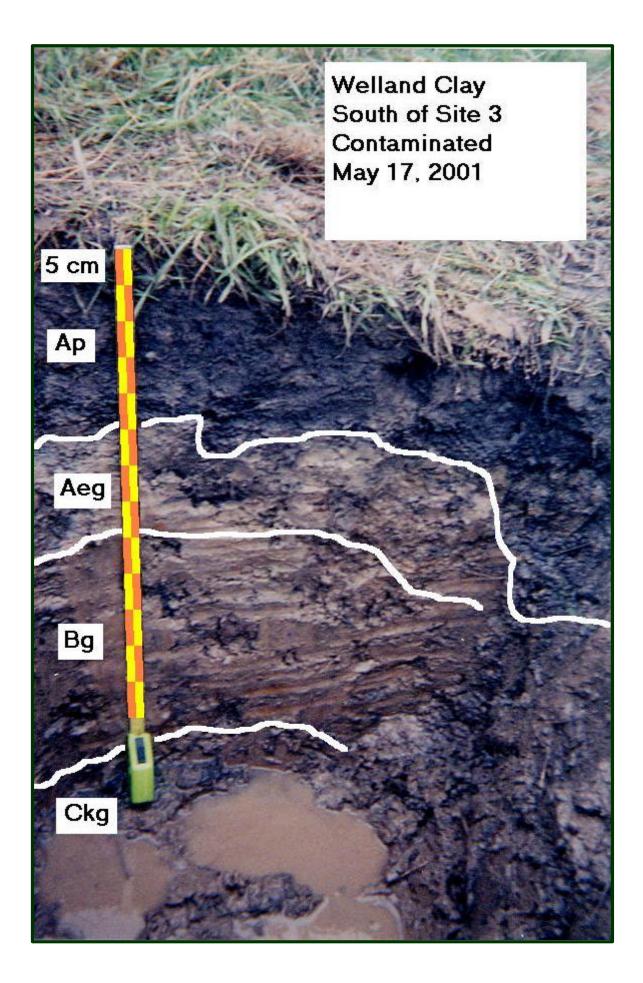
Site Description:	Lot 24, Concession 1, City of Port Colborne,
	abandon farm field about 50 m West of Reuter Rd.
	and 70 m South of Durham St.
GPS Location:	E 17 644483 N 4749500
Landform/Parent Materials:	Glaciolacustrine, reddish-hued lacustrine heavy clay
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Poorly drained; moderately high (60 cm) water
	table.
Present Land Use:	Industrial - abandoned farmland
Vegetation:	Grasses, weeds

Date Sampled:

May 4, 2001

Horizon	Depth (cm)	Description
Ар	0-16	Black (10YR 2/1 m); heavy clay; strong medium and fine granular; friable; abrupt smooth boundary.
Bg1	16-29	Pale brown (10YR 6/3 m); heavy clay; few, large, distinct reddish brown (7.5YR 7/6 m) mottles; massive; gradual smooth boundary.
Bg2	29-55	Brown (10YR 4/3 m); heavy clay; many, large, distinct reddish brown (7.5YR 7/6 m) mottles; massive; gradual smooth boundary.
Ckg	55+	Light brown (7.5YR 6/4 m); heavy clay; many, large, distinct reddish brown (7.5YR 7/6 m) mottles; massive.

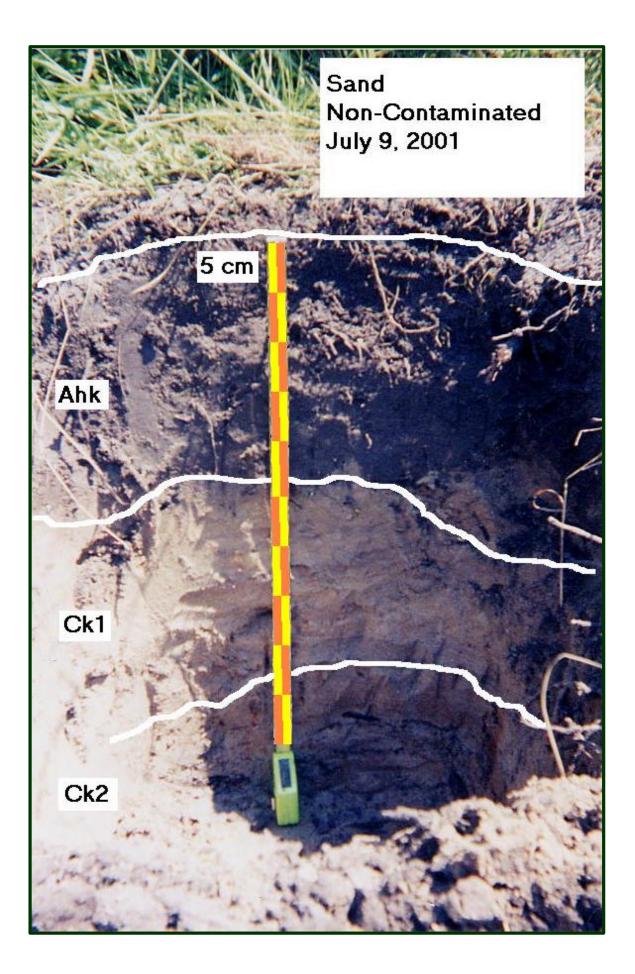
HEAVY CLAY – CONTAMINATED


(ENGINEERED FIELD PLOT AT CLAY 3 FIELD SITE)

Site Description:	Lot 23, Concession 1, City of Port Colborne, abandon farm field, about 100 m East of Reuter Rd. and 100 m North of former CN railway tracks.
GPS Location:	E 17 644682 N 4749668
Landform/Parent Materials:	Glaciolacustrine, reddish-hued lacustrine heavy clay
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Poorly drained; moderately high (68 cm) water table.
Present Land Use:	Abandoned farmland
Vegetation:	Grasses, weeds

Date Sampled:

May 17, 2001


Horizon	Depth (cm)	Description
Ар	0-23	Black (10YR 2/1 d); clay; strong medium granular; friable; abrupt smooth boundary.
Aeg	23-38	Light gray (10YR 7/2 d); heavy clay; few, medium, distinct reddish brown (7.5YR 7/6 d) mottles; massive; gradual smooth boundary.
Bg	38-70	Yellowish brown (10YR 5/4 d); heavy clay; many, medium, distinct reddish brown (7.5YR 7/6) mottles; massive; gradual smooth boundary.
Ckg	70+	Light brown (7.5YR 6/4 d); heavy clay; many, medium, distinct reddish brown (7.5YR 7/6) mottles; massive.

SAND – BACKGROUND

Site Description:	Lot 1, Concession 1, Township of Wainfleet, about 100 m North of Lakeshore Rd. between Cement
	Plant Rd and Augustine Rd.
GPS Location:	E 17 639996 N 4748201
Landform/Parent Materials:	Lake Erie beach sand.
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Rapidly drained; moderately low (200-300 cm) water table.
Present Land Use:	Re-vegetated area
Vegetation:	Weeds, grasses, pine, small scrubs
Date Sampled:	July 9, 2001

Horizon	Depth (cm)	Description
Ahk	0-26	Dark gray (10YR 4/1 m); sand; single grain; few fine roots; abrupt irregular boundary; mildly alkaline.
Ck1	26-44	Yellowish brown (10YR 5/6 m); sand; single grain; few coarse roots, irregular diffuse boundary; mildly alkaline.
Ck2	44+	Very pale brown (10YR 7/3 m); sand; single grain; mildly alkaline.

SAND – CONTAMINATED

Site Description:	Lot 25, Concession 1, City of Port Colborne, near- shore sand – South of Inco refinery
GPS Location:	E 17 643541 N 4748524
Landform/Parent Materials:	Lake Erie beach sand.
Slope and Aspect:	Strong slope, East
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Rapidly drained; very low (> 3 m) water table.
Present Land Use:	Wooded area
Vegetation:	Weeds, full grown trees, scrubs

Date Sampled:

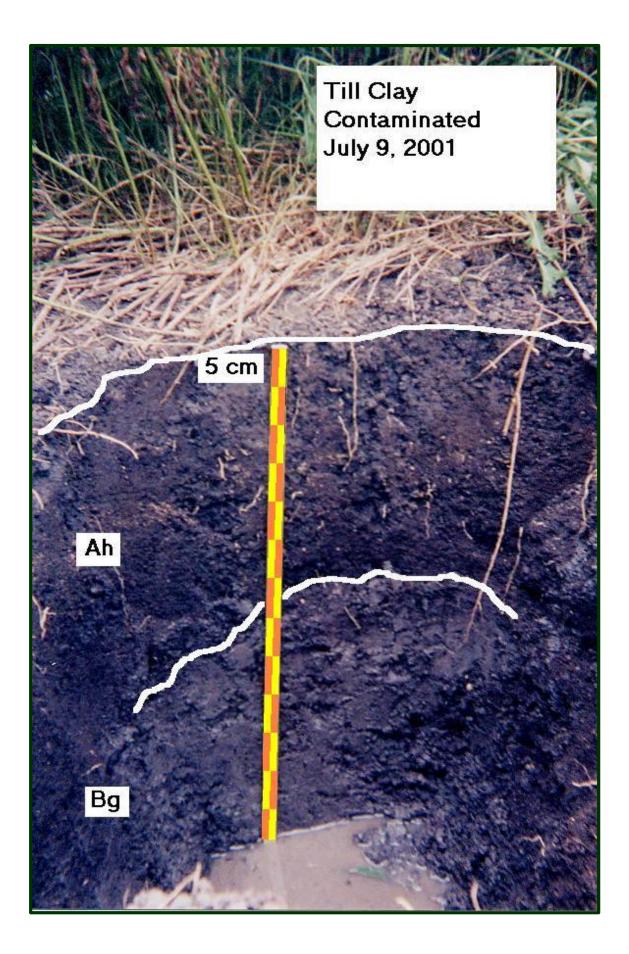
May 17, 2001

Horizon	Depth (cm)	Description
Ahk	0-9	Very dark brown (10YR 2/2 m); sand; single grain; clear wavy boundary.
Ck1	9-29	Dark grayish brown (10YR 4/2 m); sand; single grain; diffuse wavy boundary.
Ck2	29+	Pale brown (10YR 6/3 m); sand; single grain; diffuse wavy boundary.

TILL CLAY – BACKGROUND

Site Description:	Lot 14, Concession 1, Township of Wainfleet,
	Town of Burnaby, about 150 m South of Lakeshore
	Rd. and 200 m West of Morgans Point Road.
GPS Location:	E 17 634953 N 4747322
Landform/Parent Materials:	Shallow till veneer over carbonate bedrock.
Slope and Aspect:	Very gentle slope, South
Stoniness:	Slightly stony
Rock Outcrop:	None
Soil Water Regime:	Well drained; unknown depth to water table.
Present Land Use:	Wooded area
Vegetation:	Weeds, full grown oak and maple.

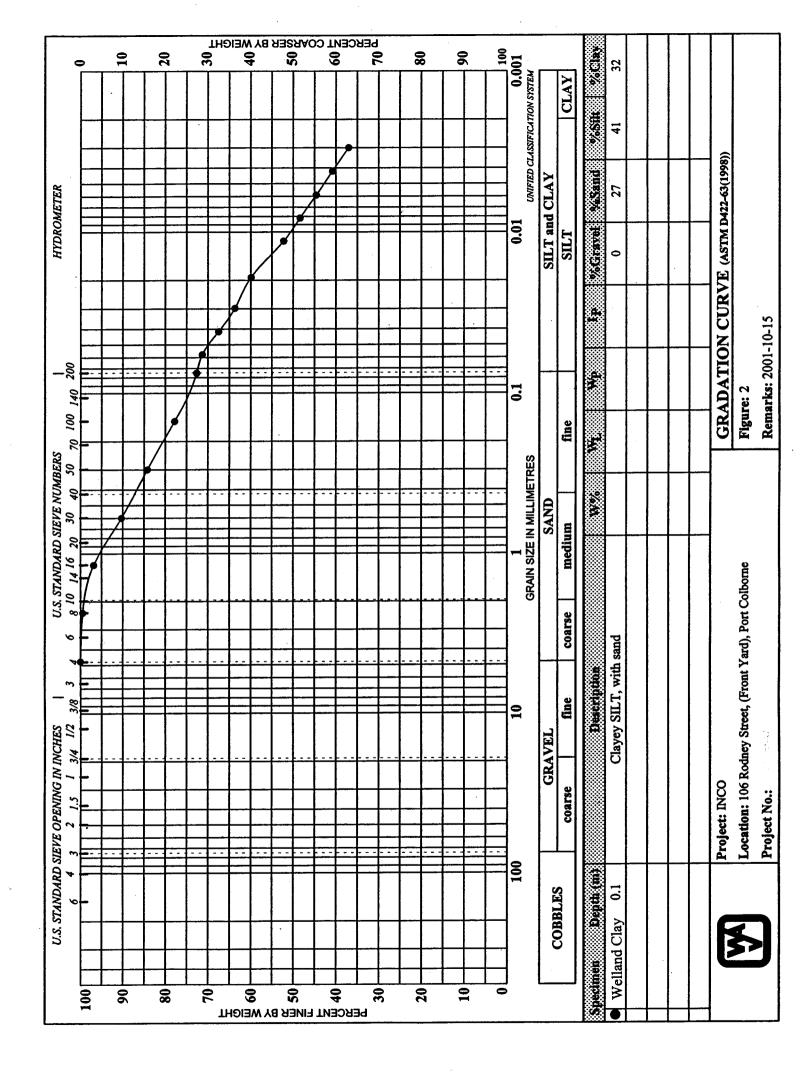
Date Sampled:

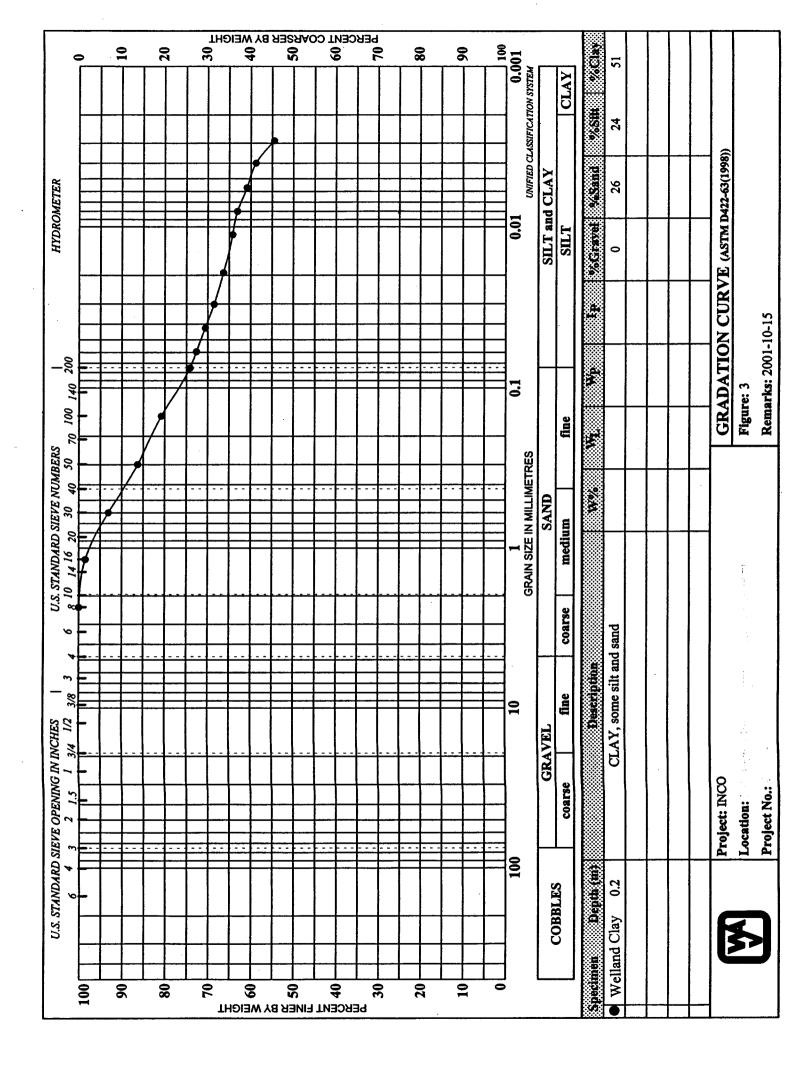

July 9, 2001

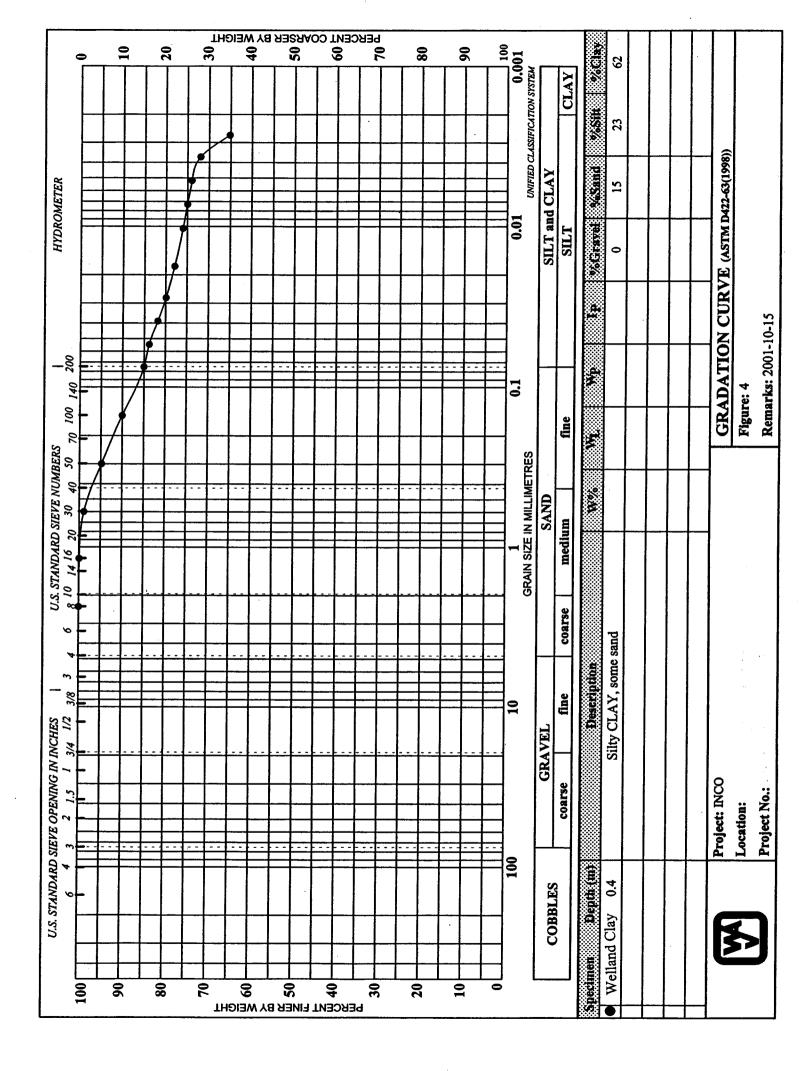
Horizon	Depth (cm)	Description
Ah	0-10	Black (10YR 2/1 m); silt loam; weak medium granular; slightly hard; few fine roots; diffuse smooth boundary.
Ck	10-22	Black (10YR 2/6 m); silt loam with light gray (10YR 7/2) 5 – 10 cm carbonate stones; coarse granular; slightly hard; abrupt smooth boundary; mildly alkaline.
R	22+	Light gray (10YR 7/2); cherty carbonate bedrock; massive.

TILL CLAY - CONTAMINATED

Site Description:	Lot 23, Concession 1, City of Port Colborne, about 50 m North of former CN railway tracks and 70 m West of Snider Rd.
GPS Location:	E 17 644909 N 4749653
Landform/Parent Materials:	Shallow till veneer over carbonate bedrock.
Slope and Aspect:	Level
Stoniness:	Non-Stony
Rock Outcrop:	None
Soil Water Regime:	Poorly drained; moderately high (72 cm) water table.
Present Land Use:	Railway right-of-way, abandoned.
Vegetation:	Weeds, scrubs
Date Sampled:	July 9, 2001


Horizon	Depth (cm)	Description
Ah	0-33	Black (10YR 2/1 m); loam, strong medium granular; friable, abrupt smooth boundary.
Bg	33-75	Gray (10YR 5/1 m); clay loam; massive; abrupt irregular boundary.
R	75+	Light gray (10YR 7/2); cherty carbonate bedrock; massive.




APPENDIX S-2

GRAIN SIZE ANALYSES CURVES, WELLAND CLAY

APPENDIX S-3 EXTRACTABLE METALS

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

1.1 Extractable Metals – Year 2000 Greenhouse Soils

Table 1 shows total and extractable CoC concentrations for the 14 un-amended soils used for the Year 2000 Preliminary Greenhouse Trials. Extractable nickel, copper and cobalt were measured based on two extraction methods: aqueous (water) extraction, and DTPA extraction.

The water (aqueous) extractable CoCs are believed to comprise the most readily available fraction of soil metals (unbound or very weakly bound to soil), while DTPA-extractable metals are reported to be roughly equivalent to the amounts of metal contained in the exchangeable and carbonate soil fractions (Ernst, 1996). These fractions are traditionally thought to be slightly more difficult to access, but do contain phyto/bioavailable micronutrients and heavy metals.

Extractable nickel concentrations achieved via the water (aqueous) extraction did not exceed 1 % in any of the soils indicating that regardless of the total nickel concentrations, very low levels of nickel seem to be immediately available in solution from any of the soil samples.

Concentrations of DTPA extractable nickel in the three soils were somewhat higher than the aqueous extractable nickel. Concentrations ranged from 7 -12 % in Organic soils, 7 -14 % in Clay soils, and 7 -10 % in Sand soils.

Similar to nickel, very low percentages of soil copper were available via the aqueous extraction method in the three soil types. Low percentages of extractable copper were observed in the highly impacted Organic (460 and 560 mg copper/kg) and Clay (890 mg copper/kg) soils. At these CoC levels less than 1 % of the total copper was extracted from the high and very high impacted Organic and Clay soil.

DTPA-extractable copper ranged from less than 1 % to 13 % in Organic soils, and from 3 to 33 % in Clay soils. The DTPA-extractable copper percentages declined with increasing total copper concentration in Organic (from 12 to <1 %) and Clay (from 31.2 to 3 %) soils. Although the actual amount of copper extracted from the Clay soils increased (from 3.8 to 27.6 mg copper/kg) with increasing soil CoC concentrations (fractions), the percentage extracted declined from 31.2 to 3 %. In the low, medium and high impacted Sand soils DTPA extractable copper percentages ranged from 27 to 31.4 %.

No measurable cobalt was extracted from any soil under the aqueous treatment. DTPA extractions for the highest cobalt-impacted soil (maximum concentration of 108 mg cobalt/kg for Clay soil) extracted less than 2 mg cobalt/kg.

Overall, the bioavailable fraction of soil CoCs was relatively low, with DTPA-extractable CoCs not exceeding 31.4% of total levels in any soil.

Soil		Or	ganic				C	Clay					Sand		
CoC	Total Ni	Aqueous	%	DTPA	%	Total Ni	Aqueous	%	DTPA	%	Total Ni	Aqueous	%	DTPA	%
С	33	<0.6	NC	2.6	8	34	<0.6	NC	3.5	10	5	<0.6	NC	<0.6	NC
L	216	<0.6	NC	26.1	12	194	0.5	<1	27.3	14	494	0.7	<1	51.6	10
Μ	1200	1.2	<1	99.2	8	517	1.7	<1	70.3	14	307	<0.6	NC	23	8
Н	3180	9.1	<1	240	8	3430	8.6	<1	408	12	1350	3	<1	91.4	7
V	5550	11.2	<1	410	7	8280	13.6	<1	565	7	NA				
	Total Cu	Aqueous	%	DTPA	%	Total Cu	Aqueous	%	DTPA	%	Total Cu	Aqueous	%	DTPA	%
С	16.4	< 0.2	NC	2	12	12.2	< 0.2	NC	3.8	31.2	<0.2	< 0.2	NC	< 0.2	NC
L	59	< 0.2	NC	7.5	13	42.1	< 0.2	NC	13.9	33.0	71.3	< 0.2	NC	22.4	31.4
Μ	211	< 0.2	NC	7.3	4	81.8	< 0.2	NC	15.7	19.2	39.3	< 0.2	NC	11.7	29.8
Н	460	1.6	<1	5	1	366	< 0.2	NC	29.9	8	137	< 0.2	NC	36.8	27
V	560	1	<1	3.2	<1	890	2.1	<1	27.6	3	NA				
	Total Co	Aqueous	%	DTPA	%	Total Co	Aqueous	%	DTPA	%	Total Co	Aqueous	%	DTPA	%
С	ND	< 0.2	NC	< 0.2	NC	ND	< 0.2	NC	< 0.2	NC	<0.2	< 0.2	NC	< 0.2	NC
L	7.6	< 0.2	NC	0.5	6.6	8	< 0.2	NC	0.6	8	7	< 0.2	NC	< 0.2	NC
Μ	15	< 0.2	NC	0.5	3	12.8	< 0.2	NC	1.3	10.2	6.1	< 0.2	NC	< 0.2	NC
Н	37.2	< 0.2	NC	< 0.2	NC	48.5	< 0.2	NC	1.4	2.9	27.9	< 0.2	NC	0.6	2.2
V	72.8	< 0.2	NC	0.5	0.7	108	< 0.2	NC	1.3	1	NA				

Table 1 Total and Extractable CoC Concentrations (mg/kg) in the Year 2000 Greenhouse Soils

Notes:

C – controlL – low M- medium H – high

V – very high

- Value did not exceed the estimated quantification limit (EQL) for the analytical method. Symbol is followed by the EQL value.

Not Detected. The analytcal result was lest than the Estimated Limit of Quantification (EQL) for the analytical method used

- Not Calculated. The % value was not calculated because the analytical value was ND

- Not Applicable. No Soil was obtained for this CoC concentration due to accessibility issues

- No data

<

ND

NC

NA

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

1.2 Extractable Metals – Year 2001 Greenhouse Soils

During year 2001 Greenhouse Trials, emphasis was given to chemical analyses of extractable metal concentrations and all the four suspected CoCs nickel, copper, cobalt and arsenic were analysed. Extraction data for the soil blends was only collected for the un-amended soils as the soils were identical before adding the amendment.

Table 2 shows total nickel content of the eight original Control and very high CoC (prior the amendment) soils used for the year 2001 Greenhouse Trials and the associated extractable (phytoavailable) nickel measured by four extraction methods using aqueous (water), strontium nitrate, DTPA, and ammonium oxalate extractants. The extractable nickel values measured for each soil using the strontium nitrate and aqueous extractants were very low, with no extraction exceeding 1% of the total nickel for any of the soils.

In contrast, ammonium oxalate extractions removed up to 41, 29 and 40 % of the total nickel from the Control Sand, Organic and Welland Clay (Heavy Clay) Control soils respectively. In one instance, oxalate extraction on Control Till Clay soil indicated that 68 ± 76 mg/kg nickel was available in the soil – a value exceeding the total nickel measured in this soil. Because of the uncertainty associated with these measurements, a percentage oxalate extraction could not be calculated.

For DTPA extraction, a consistent proportion of the soil nickel seems to be extractable regardless of CoC impact level. This proportion or percentage of DTPA extractable nickel remains relatively low (mean = $18 \pm 7\%$).

As shown in Table 3, ammonium oxalate and DTPA extracts were more effective in extracting nickel from the blended soils. Up to 197 mg/kg of nickel was DTPA extracted from the 2386 mg nickel/kg Sand soil blend. However this represented only 8.26 percent of the total nickel. At the same nickel concentration, ammonium oxalate extraction resulted in up to 861 mg nickel/kg (36%) of nickel being extracted. On average, 12 and 40% of total nickel in the Sand blends was available to DTPA and ammonium oxalate extractions respectively.

Although the absolute amount of nickel extracted from the Organic soil by DTPA and ammonium oxalate increased with total nickel concentration as shown in Table 3, extractable nickel percentage remained fairly constant across all the blends. As nickel concentrations in the DTPA and ammonium oxalate extracts increased from 17 to 739 mg/kg and 24 to 804 mg/kg respectively, the percentage extracted averaged 31 ± 7 % and 35 ± 5 %.

As shown in Table 4, Till Clay (Shallow Clay) and Welland Clay (Heavy Clay) soils followed similar trends in DTPA and ammonium oxalate extractions in comparison to the Organic soil. Absolute concentrations of nickel extracted from the Till Clay (Shallow Clay) and Welland Clay (Heavy Clay) soils increased with total soil nickel concentrations, however, the proportion of nickel extracted remained consistent. In the Welland Clay (Heavy Clay) soil, DTPA and ammonium oxalate methods extracted up to 378 and 591 mg nickel/kg respectively, while the same extractions conducted on the Till Clay (Shallow Clay) soil extracted 309 and 477 mg nickel/kg respectively. In the Welland Clay (Heavy Clay) blends these extractions represent average extractable nickel percentage of less than 17 % for DTPA and less than 31 % for ammonium oxalate. In the Till Clay (Shallow Clay) blends, DTPA extractions account for approximately 14% of extractable nickel. Excluding the anomalous ammonium oxalate, Till Clay (Shallow Clay) Control soil (51 mg nickel/kg) results (extractable nickel previously indicated to be greater than the total nickel concentration), the average percentage nickel extracted with ammonium oxalate is approximately 20%.

From the results it is clear that increased amounts of nickel are shown to be available to stronger extractants, however this proportion remains low relative to the total nickel concentrations in each of the soil types. In the Clay and Sand soils, a substantial increase in the extractable nickel fraction is observed from the DTPA extraction to the oxalate extraction, this increase is not seen in the organic soil. It would appear that a majority of the available nickel is released by a weaker extractant, thereby potentially indicating a greater availability in this soil.

Low % of both Cu (Table 5, and 6) and Co (Table 7, and 8) were extracted from both water, and SrNitrate extractions. Extractable % increased substantially with DTPA and Oxalate extractions for both Cu and Co. No extraction exceeded 20 mg/kg for Co while >200 mg/kg of extractable Cu was measured for oxalate extractions in both Organic and Till Clay soils.

For the range of arsenic concentrations tested (up to 24 mg As/kg) arsenic was never present in adequate concentration to be examined in detail. Furthermore, with very few exceptions, concentrations of arsenic observed in plant tissues were below analytical detection limit (0.2 mg As/kg). As such, phytotoxicity testing with respect to extractable arsenic was not considered pertinent in examination of Port Colborne soils.

Table 2Total and Extractable Nickel Concentrations in the Year 2001 prior to pH adjustment. Control and Highly
Impacted Soils (Unamended)

			Total Extractable Nickel									
Soil Type	CoC level	Total Nickel (mg/kg)	Strontium nitrate		Aqueous (water)		DTPA		Oxalate			
			(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%		
Organic	Control (C)	82 ± 58	< 0.4	<1	<0.6	<1	16 ± 3	20	24	29		
Organic	Very High (V)	10045 ± 502	35.2	<1	40.5	<1	2990	30	3650	36		
Sand	Control (C)	46 ± 12	< 0.4	<1	<0.6	<1	11 ± 0.4	23	19 ± 4	41		
Sallu	Very High (V)	3920**	4.1	<1	6.3	<1	258	7	1296 ± 279	33		
Till Clay	Control (C)	51 ± 7	< 0.4	<2	<0.6	<1	9 ± 0.3	17	68 ± 76	NC		
(Shallow Clay)	Very High (V)	2545 ± 156	0.8	<1	5 ± 0.1	<1	309 ± 9	12	477 ± 18	19		
Welland Clay	Control (C)	39 ± 11	< 0.4	<1	<0.6	<2	8 ± 1	20	16 ± 5	40		
(Heavy Clay)	Very High (V)	8655**	15.0	<1	22.0	<1	931	11	1770	20		
		MEAN %		<1		<1		18 ± 7		31 ± 9		

Notes:

*C - control soil V - very high CoC soil

**Sample size did not allow calculation of standard deviation

< - indicates that value did not exceed the estimated quantification limit (EQL) for the analytical method

NA - non-applicable or not calculated due to non-quantified value

NC - not able to calculate based on high level of uncertainty

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

	Total		Total Extractable Nickel									
Soil Type	Nickel (mg/kg)	Strontium Nitrate		Aqueous		DTPA		Oxalate				
	(8/8/	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%			
	46	< 0.4	<1	<0.6	<1	10.7	22	19	39			
	227	< 0.4	<1	<0.6	<1	32.8	15	113	53			
	406	< 0.4	<1	0.7	<1	42.2	11	167	45			
Sand	530	< 0.4	<1	0.9	<1	55.6	11	263	50			
	756	< 0.4	<1	1.3	<1	43.3	5	264	33			
	1,630	< 0.4	<1	2.3	<1	142	9	458	28			
	2,310	< 0.4	<1	2.8	<1	197	8	861	36			
MEAN ± STD DEV		<0.4	<1	1 ± 1	<1	75 ± 68	12 ± 5	306 ± 281	40 ± 9			
	89.5	<0.4	<1	<0.6	<1	16.6	16	24	24			
	283	<0.4	<1	0.8	<1	77.9	29	97	36			
	239	< 0.4	<1	0.6	<1	70	31	89	39			
Organia	596	< 0.4	<1	1.9	<1	212	36	225	38			
Organic	683	0.4	<1	2.4	<1	259	38	258	38			
	1,300	0.8	<1	4.3	<1	456	35	487	37			
	1,640	1	<1	4.7	<1	515	34	536	36			
	2,400	1.6	<1	6.7	<1	739	31	804	34			
MEAN ± STD DEV		1 ± 1	<1	2.7 ± 2.3	<1	293 ± 255	31 ± 7	315 ± 270	35 ± 5			

Table 3Total and Extractable Nickel Concentrations in the Year 2001 pH Adjusted, Blended Greenhouse Soils

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

	Total				Total Extr	actable Nicke	1		
Soil Type	Nickel	Strontium Nitrate		Aque	Aqueous		DTPA		ate
Soil Type Welland Clay (Heavy Clay) MEAN ± STD DEV Till Clay (Shallow Clay)	(mg/kg)	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%
	45.3	<0.4	<1	<0.6	<2	7.8	18	14	33
	188	<0.4	<1	0.8	<1	34	18	57	30
	347	<0.4	<1	1.1	<1	60	18	102	30
Welland Clay	498	< 0.4	<1	1.4	<1	89.7	18	159	32
(Heavy Clay)	673	0.6	<1	1.9	<1	118	18	189	29
	956	0.8	<1	2.7	<1	176	19	275	29
	1,130	1.1	<1	3.2	<1	189	17	325	30
	1,900	3.1	<1	6	<1	378	20	591	31
MEAN ± STD DEV		1 ± 1	<1	2 ± 2	<1	132 ± 118	18 ± 1	214 ± 185	31 ± 1
	51	< 0.4	<1	<0.6	<1	8.9	17	NA	NA
	145	< 0.4	<1	<0.6	<1	23.2	16	32	22
	262	< 0.4	<1	<0.6	<1	37.8	14	61	23
Till Clay (Shallow	438	< 0.4	<1	0.8	<1	48.5	11	72	16
Clay)	554	<0.4	<1	1.2	<1	69.5	13	100	18
	947	0.5	<1	2.7	<1	147	16	216	23
	1,380	0.5	<1	2.65	<1	176	13	257	19
	2,540	0.8	<1	5.05	<1	309	12	477	19
MEAN ± STD DEV		1±1	<1	2 ± 2	<1	102 ± 102	14 ± 2	174 ± 158	20 ± 3

Table 4Total and Extractable Nickel Concentrations in the Year 2001 pH Adjusted, Blended Greenhouse Soils
(continued)

Notes: NA –Data not reported due to large uncertainty in result

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

	Total				Total Extr	actable Coppe	r		
Soil Type	Copper	Strontium Nitrate		Water		DTPA		Oxalate	
	(mg/kg)	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%
	15	< 0.1	<1	0.2	1	7.3	49	11	73
	36	< 0.1	<1	0.1	<1	16.2	45	26	72
	57	< 0.1	<1	0.1	<1	20.2	35	39	68
Sand	73	< 0.1	<1	0.1	<1	26.9	37	61	84
	96.8	< 0.1	<1	0.3	<1	19.3	20	60	62
	195	< 0.1	<1	0.5	<1	69.4	36	97	50
	269	< 0.1	<1	0.5	<1	93.7	35	178	66
MEAN ± STD DEV		<0.1	<1	0.3 ± 0.2	<1	36 ± 32	37 ± 9	67 ± 56	68 ± 10
	47	< 0.1	<1	< 0.2	<1	15	32	25	53
	68	< 0.1	<1	< 0.2	<1	27.3	40	47	69
	64	< 0.1	<1	< 0.2	<1	25.9	40	42	66
Organic	109	< 0.1	<1	0.3	<1	56.4	52	82	75
Organic	120	< 0.1	<1	0.4	<1	67.6	56	93	78
	209	< 0.1	<1	0.6	<1	115	55	168	80
	229	< 0.1	<1	0.6	<1	129	56	180	79
	360	< 0.1	<1	0.7	<1	183	51	264	73
MEAN ± STD DEV		<1	<1	0.4 ± 0.2	<1	77 ± 60	48 ± 9	113 ± 84	72 ± 9

Table 5 Total and Extractable Copper Concentrations in the Year 2001 pH Adjusted, Blended Greenhouse Soils

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

	Total				Total Ext	ractable Coppe	er		
Soil Type	Copper	Strontium	Nitrate	Wat	Water		DTPA		late
	(mg/kg)	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%
	17.4	0.1	<1	0.2	1	7.4	43	13	75
	34	0.1	<1	0.3	1	15.7	46	23	68
	52	0.1	<1	< 0.2	<1	26.1	50	38	73
Welland Clay	69	0.1	<1	0.3	<1	36.4	53	54	78
(Heavy Clay)	84	0.1	<1	0.4	<1	45.2	54	61	73
	116	0.1	<1	0.4	<1	66.2	57	88	76
	142	0.1	<1	0.7	<1	70.1	49	103	73
	234	0.1	<1	0.7	<1	136	58	193	82
MEAN ± STD DEV		0.1	NC	0.4 ± 0.2	NC	50 ± 41	51 ± 5	72 ± 58	75 ± 4
	17	< 0.1	<1	0.2	1	6	35	9	53
	29	< 0.1	<1	< 0.2	1	11.6	40	16	55
	43	< 0.1	<1	0.3	1	16.8	39	27	63
Till Clay (Shallow	68	< 0.1	<1	0.3	<1	22.4	33	33	49
Clay)	81	< 0.1	<1	0.4	<1	31.7	39	45	56
	131	< 0.1	<1	0.8	1	73	56	100	76
	185	< 0.1	<1	0.8	<1	85.1	46	121	65
	338	< 0.1	<1	1.7	1	149	44	224	66
MEAN ± STD DEV		<0.1	NC	1 ± 1	NC	49 ± 50	42 ± 7	72 ± 73	61 ± 9

Table 6Total and Extractable Copper Concentrations in the Year 2001 pH Adjusted, Blended Greenhouse
Soils (continued)

Notes: NC – not calculated due to uncertainty

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

	Total	Total Extractable Cobalt										
Soil Type	Cobalt (mg/kg)	Strontium	Nitrate	Wat	ter	DT	'PA	Oxalate				
	(mg/kg)	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%			
	1.7	< 0.1	<6	< 0.2	<12	0.6	35	1	59			
	5	< 0.1	<2	< 0.2	<4	1.0	20	3	60			
	9	< 0.1	<1	< 0.2	<2	1.0	11	5	56			
Sand	12	< 0.1	<1	< 0.2	<2	1.2	10	7	58			
	17.9	< 0.1	<1	< 0.2	<1	< 0.2	1	6	34			
	34	< 0.1	<1	< 0.2	<1	2.5	7	10	29			
	47	< 0.1	<1	< 0.2	<1	4.1	9	19	40			
MEAN ± STD DEV		<0.1	NC	<0.2	NC	2 ± 1	13 ± 11	7 ± 6	48 ± 13			
	6	< 0.1	<2	< 0.2	<3	1.5	25	3	50			
	8	< 0.1	<1	< 0.2	<3	2.3	29	5	63			
	7.2	< 0.1	<1	< 0.2	<3	2.2	31	4	56			
Organia	12	< 0.1	<1	< 0.2	<2	4	33	6	50			
Organic	13	< 0.1	<1	< 0.2	<2	4.5	35	7	54			
	21	< 0.1	<1	< 0.2	<1	6.5	31	11	52			
	24	< 0.1	<1	< 0.2	<1	7.5	31	12	50			
	36	< 0.1	<1	< 0.2	<1	9.6	27	16	44			
MEAN ± STD DEV		<1	NC	<0.2	NC	5 ± 3	30 ± 3	8 ± 5	52 ± 5			

Table 7 Total and Extractable Cobalt Concentrations in the Year 2001 pH Adjusted, Blended Greenhouse Soils

Notes: NC – not calculated due to uncertainty

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

	Total	Total Extractable Cobalt										
Soil Type	Cobalt	Strontium	Nitrate	Wat	er	DT	PA	Oxalate				
	(mg/kg)	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%	(mg/kg)	%			
	5	< 0.1	<2	< 0.2	<4	0.8	16	1	20			
	7	< 0.1	<1	< 0.2	<3	1.1	16	2	29			
	9	< 0.1	<1	< 0.2	<2	1.5	17	3	33			
Welland Clay	11	< 0.1	<1	< 0.2	<2	2	18	4	36			
(Heavy Clay)	13	< 0.1	<1	< 0.2	<2	2.3	18	4	31			
	17	< 0.1	<1	< 0.2	<1	2.9	17	6	35			
	18	< 0.1	<1	< 0.2	<1	3	17	5	28			
	27	< 0.1	<1	< 0.2	<1	5.2	19	12	44			
MEAN ± STD DEV		<0.1	NC	<0.2	NC	2 ± 1	17 ± 1	5 ± 3	32 ± 7			
	7	< 0.1	<1	< 0.2	<3	1.9	27	4	57			
	9	< 0.1	<1	< 0.2	<2	2.2	24	4	44			
	10	< 0.1	<1	< 0.2	<2	2.4	24	6	60			
Till Clay (Shallow	13	< 0.1	<1	< 0.2	<2	2.8	22	6	46			
Clay)	16	< 0.1	<1	< 0.2	<1	3.3	22	6	40			
	22	< 0.1	<1	< 0.2	<1	5.8	26	9	41			
	29	< 0.1	<1	< 0.2	<1	6.5	22	10	34			
	47	< 0.1	<1	< 0.2	<1	10	21	16	34			
MEAN ± STD DEV		<0.1	NC	<0.2	NC	4 ± 3	24 ± 2	8 ± 4	45 ± 10			

Table 8Total and Extractable Cobalt Concentrations in the Year 2001 pH Adjusted, Blended Greenhouse Soils
(continued)

Notes: NC – not calculated due to uncertainty

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

1.3 EXTRACTABLE METALS - Year 2000 Field Trials

1.3.1 Organic Field Site

Table 9 shows the extractable CoC concentrations of the Organic Field site. Generally, the DTPA extractions were much more effective in extracting CoCs from the organic soils than the aqueous extractions. Using the aqueous extraction method on organic soils, nickel was extracted at less than 1% efficiency, while copper and cobalt were not extracted at levels exceeding analytical detection limits. DTPA extractions ranged from 14 to 24 % for nickel, 2 to 14 % for copper, and <1 to 11.8 % for cobalt. With very few exceptions, no significant differences were observed between plots or between treatments for extractable CoCs via either Aqueous or DTPA methods. Plot 3 showed significantly higher nickel (ANOVA, F=7.383, p=0.012) and copper (ANOVA, F=7.635, p=0.012) extractions via DTPA extraction, however, this mirrored higher total nickel and copper concentrations observed in these soils. Another exception was observed where untreated soils showed significantly higher nickel concentrations via the aqueous extraction when compared to the treated (1X, and 2X) soils (ANOVA, F=757, p=0.011).

1.3.2 Clay 2 Field Site

Table 10 shows the extractable CoC concentrations of the Clay 2 Field site. Similar to the Organic soils, a very limited amount of CoCs were available in the Clay soils at the Clay 2 site via the aqueous extraction technique. As shown in Table 10, aqueous nickel extractions did not generally exceed 1% of total nickel. Copper and cobalt were not detected in any extractions conducted on Clay 2 site soils.

Table 10 indicates that CoCs are extracted in greater concentrations using the DTPA extraction. In general, DTPA extractable nickel ranged from 3 to 4% of total soil nickel with the exceptions of two samples that yielded 57 and 78% of total. This anomalous result is likely related to analytical error. DTPA extractable copper and cobalt ranged from 8 to 20% and 2.8 to 6.5% of total soil nickel.

1.3.3 Clay 1 Field Site

Table 11 shows the extractable CoC concentrations of the Clay 1 Field site. As noted in Table 11, limited amounts of CoCs were available in the Clay soils at the Clay 1 Field site via the aqueous extraction technique. Aqueous nickel extractions did not generally exceed 1% of total soil nickel, while copper and cobalt were not detected in any extractions conducted on these soils. As previously noted for the Organic and Clay 2 Field site soils, CoCs were extracted in greater concentrations using the DTPA extraction. DTPA extractable nickel, copper, and cobalt ranged from 1 to 9%, 11 to 20% and 2.2 to 5.3% of total soil nickel. No significant differences were observed in total extractable CoCs or Extractable percentages between field plots or treatment (amendment) blocks.

Plot	Sample	Amendment	Total	Extra	ctable	Nickel (n	ng/kg)	Total	Extra	ctable C	opper (m	g/kg)	Total	Extrac	table C	obalt (mg	g/kg)
1 100	Number	Level	Nickel	Aqueous	%	DTPA	%	Copper	Aqueous	%	DTPA	%	Cobalt	Aqueous	%	DTPA	%
1	OR/F/P4	U	1750	5.32	<1	263	15	317	1.3	<1	6.1	2	27.6	<0.2	< 0.01	2.2	8.0
	OR/F/P4	1X	1780	2.81	<1	288	16	294	< 0.2	< 0.001	27.4	9	26.5	<0.2	< 0.01	3.0	11.3
	OR/F/P4	2X	1900	3.92	<1	293	15	324	< 0.2	< 0.001	19.3	6	28.6	< 0.2	< 0.01	2.9	10.1
2	OR/F/P3	U	1850	4.88	<1	295	16	321	< 0.2	< 0.001	16.7	5	29.8	<0.2	< 0.01	3.0	10.1
	OR/F/P3	1X	2020	3.08	<1	315	16	326	< 0.2	< 0.001	23.7	7	29.4	<0.2	< 0.01	3.3	11.2
	OR/F/P3	2X	1550	2.74	<1	376	24	254	< 0.2	< 0.001	35.3	14	22.7	<0.2	< 0.01	1.6	7.0
3	OR/F/P2	U	7360	13.3	<1	1110	15	993	1.3	<1	14.7	1	86.0	<0.2	< 0.01	0.5	<1
	OR/F/P2	1X	2800	4.72	<1	499	18	422	< 0.2	< 0.001	13.9	3	39.0	<0.2	< 0.01	1.7	4.4
	OR/F/P2	2X	5650	10.1	<1	1080	19	738	< 0.2	< 0.001	26.5	4	69.2	< 0.2	< 0.01	1.4	2.0
4	OR/F/P1	U	3410	7.77	<1	492	14	475	< 0.2	< 0.001	9.9	2	45.2	<0.2	< 0.01	0.9	2.0
	OR/F/P1	1X	2760	4.16	<1	519	19	388	< 0.2	< 0.001	19.5	5	37.9	< 0.2	< 0.01	3.5	9.2
	OR/F/P1	2X	2080	3.65	<1	362	17	306	< 0.2	< 0.001	36.1	12	29.7	< 0.2	< 0.01	3.5	11.8

Table 9Total Aqueous and DTPA Extractable CoC Concentrations in the Organic Soil at the Organic Field Site Expressed in
mg/kg and as a Percentage of the Total Metal Concentration

values for each plot are based on composite samples

U – Unamended.

1X- Lime amendment level recommended by OMAFRA (15 t/ha).

2X- Double the lime amendment level recommended by OMAFRA (30 t/ha).

Note:

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

Plot	Sample	Amendment	Total	Extra	ctable	Nickel (m	ng/kg)	Total	Extra	ctable C	opper (m	g/kg)	Total	Extrac	table C	obalt (mg	g/kg)
Flot	Number	Level	Nickel	Aqueous	%	DTPA	%	Copper	Aqueous	%	DTPA	%	Cobalt	Aqueous	%	DTPA	%
1	CL/F/P1	U	7140	3.97	<1	237	3	773	< 0.2	< 0.001	100	13	100.0	< 0.2	< 0.01	3.6	3.6
	CL/F/P1	1X	5550	53.7	<1	3190	57	628	< 0.2	< 0.001	119	19	81.8	< 0.2	< 0.01	2.8	3.4
	CL/F/P1	2X	4890	67.7	1	3790	78	569	< 0.2	< 0.001	116	20	71.8	< 0.2	< 0.01	3.0	4.2
2	CL/F/P2	U	7420	4.87	<1	192	3	865	< 0.2	< 0.001	67.4	8	89.7	< 0.2	< 0.01	3.1	3.5
	CL/F/P2	1X	7210	5.53	<1	216	3	760	< 0.2	< 0.001	75.1	10	81.7	< 0.2	< 0.01	2.3	2.8
	CL/F/P2	2X	7610	3.15	<1	286	4	785	< 0.2	< 0.001	68.5	9	90.7	<0.2	< 0.01	3.2	3.5
3	CL/F/P3	U	5140	3.89	<1	198	4	567	< 0.2	< 0.001	62.5	11	68.7	< 0.2	< 0.01	3.1	4.5
	CL/F/P3	1X	6890	4.2	<1	212	3	780	< 0.2	< 0.001	78.9	10	85.5	< 0.2	< 0.01	3.6	4.2
	CL/F/P3	2X	5170	3.29	<1	192	4	575	< 0.2	< 0.001	83.7	15	72.6	< 0.2	< 0.01	3.3	4.5
4	CL/F/P4	U	4620	3.08	<1	129	3	530	< 0.2	< 0.001	93.2	18	58.0	< 0.2	< 0.01	3.4	5.9
	CL/F/P4	1X	4260	1.95	<1	151	4	490	< 0.2	< 0.001	92	19	60.9	< 0.2	< 0.01	3.7	6.1
	CL/F/P4	2X	5030	3.26	<1	183	4	599	< 0.2	< 0.001	94.1	16	71.0	< 0.2	< 0.01	4.6	6.5

Table 10Total Aqueous and DTPA Extractable CoC Concentrations in the Clay Soil from the Clay 2 Field Site Expressed in
mg/kg and as a Percentage of the Total Metal Concentration

values for each plot are based on composite samples

U-Unamended.

1X-Lime amendment level recommended by OMAFRA (7.5 t/ha).

2X – Double the lime amendment level recommended by OMAFRA (15 t/ha).

Note:

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

Plot	Sample	Amendment	Total	Extra	ctable	Nickel (m	ng/kg)	Total	Extra	ctable C	opper (m	g/kg)	Total	Extrac	table C	obalt (m	g/kg)
FIOL	Number	Level	Nickel	Aqueous	%	DTPA	%	Copper	Aqueous	%	DTPA	%	Cobalt	Aqueous	%	DTPA	%
1	CL/F/P1	U	581	1.21	<1	50.1	9	86	< 0.2	< 0.01	16.5	19	15.7	< 0.2	< 0.1	0.7	4.5
	CL/F/P1	1X	591	0.99	<1	44.8	8	85	< 0.2	< 0.01	15.3	18	15.3	< 0.2	< 0.1	0.5	3.3
	CL/F/P1	2X	557	0.77	<1	38.4	7	84	< 0.2	< 0.01	14.8	18	13.8	< 0.2	< 0.1	0.3	2.2
2	CL/F/P2	U	636	1.34	<1	44.6	7	104	<0.2	< 0.01	17.4	17	14.7	< 0.2	< 0.1	0.5	3.4
	CL/F/P2	1X	646	0.81	<1	46.1	7	113	< 0.2	< 0.01	16.3	14	16.7	< 0.2	< 0.1	0.8	4.8
	CL/F/P2	2X	635	1.14	<1	49.1	8	112	<0.2	< 0.01	16.9	15	15.0	< 0.2	< 0.1	0.7	4.7
3	CL/F/P3	U	693	1.02	<1	51.6	7	146	< 0.2	< 0.01	16.1	11	14.4	< 0.2	< 0.1	0.7	4.9
	CL/F/P3	1X	713	0.95	<1	49.0	7	137	< 0.2	< 0.01	25.3	18	15.2	< 0.2	< 0.1	0.6	3.9
	CL/F/P3	2X	675	1.02	<1	4.7	1	128	< 0.2	< 0.01	22.5	18	13.1	< 0.2	< 0.1	0.6	4.6
4	CL/F/P4	U	633	1.24	<1	51.7	8	96	< 0.2	< 0.01	15.9	17	15.0	< 0.2	< 0.1	0.8	5.3
	CL/F/P4	1X	617	1.01	<1	46.6	8	96	<0.2	< 0.01	17.7	19	14.2	<0.2	< 0.1	0.6	4.2
	CL/F/P4	2X	587	1.13	<1	53.5	9	93	< 0.2	< 0.01	19	20	14.6	< 0.2	< 0.1	< 0.2	<0.1

Table 11Total Aqueous and DTPA Extractable CoC Concentrations in the Clay Soil from the Clay 1 Field Site Expressed in
mg/kg and as a Percentage of the Total Metal Concentration

values for each plot are based on composite samples

U – Unamended.

1X-Lime amendment level recommended by OMAFRA (7.5 t/ha).

 $2X-\mbox{Double}$ the lime amendment level recommended by OMAFRA (15 t/ha).

Note:

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

1.4 Extractable Metals - Year 2001 Field Trials

Tables 12 and 13 show extractable nickel, copper and cobalt data for the Clay 2 and Clay 3 field sites respectively. Generally, the water and DTPA extractable nickel and copper concentrations were the lowest in the calcareous plots. However, the cobalt concentrations did not show any variations.

Absolute concentrations of nickel extracted from the Welland Clay (Heavy Clay) soils increased with total soil nickel concentrations; however, the proportion of nickel extracted remained consistent. For unamended Welland Clay (Heavy Clay) soil, DTPA and ammonium oxalate methods extracted up to 246 and 1136 mg nickel/kg respectively for the Clay 2 site soil, while the same extractions conducted on the same soil type at the Clay 3 site yielded 560 and 864 mg nickel/kg respectively.

		DT	PA Extracta	able	Aque	eous Extrac	table	Stronti	um Nitrate	Extract	Acid Ammonium Oxalate Extraction			
Plot	Treat	Nickel	Copper	Cobalt	Nickel	Copper	Cobalt	Nickel	Copper	Cobalt	Nickel	Copper	Cobalt	
	EQL	0.6	0.2	0.2	0.6	0.2	0.2	0.4	0.1	0.1	8	2	2	
	Units	mg/kg	Mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
1A	U	246 ± 69	124 ± 15	0.7 ± 0.2	8.2 ± 1.4	2.3 ± 0.3	< 0.2	3.3 ± 0.8	0.1 ± 0.1	< 0.1	1136 ± 158	393 ± 690	24 ± 2	
2A	U	227 ± 48	100 ± 7.0	0.8 ± 0.2	7.7 ± 1.5	1.9 ± 0.2	< 0.2	2.9 ± 1.3	0.1 ± 0.1	< 0.1	1086 ± 166	349 ± 46	23 ± 3	
3A	U	146 ± 34	92 ± 11	0.6 ± 0.1	6.4 ± 1.0	2.1 ± 0.2	< 0.2	1.7 ± 0.7	0.1 ± 0.1	< 0.1	820 ± 165	300 ± 42	17 ± 3	
4 A	U	225 ± 21	118 ± 14	1.0 ± 0.1	8.8 ± 0.6	2.6 ± 0.2	< 0.2	2.5 ± 0.5	0.2 ± 0.1	< 0.1	1003 ± 70	359 ± 37	23 ± 2	
1A	1X	210 ± 90	121 ± 10	0.6 ± 0.3	7.0 ± 2.3	2.2 ± 0.1	< 0.2	1.9 ± 0.9	< 0.1	< 0.1	1111 ± 180	386 ± 43	23 ± 2	
2A	1X	214 ± 29	104 ± 12	0.8 ± 0.2	7.5 ± 1.0	2.2 ± 0.4	< 0.2	1.6 ± 0.4	0.1 ± 0.1	< 0.1	956 ± 140	338 ± 45	22 ± 2	
3A	1X	146 ± 23	93 ± 7	0.5 ± 0.1	5.8 ± 0.5	2.0 ± 0.1	< 0.2	1.1 ± 0.1	0.1 ± 0.1	< 0.1	845 ± 107	315 ± 40	18 ± 2	
4 A	1X	170 ± 12	104 ± 9	$0.6\pm~0.1$	6.8 ± 0.3	2.4 ± 0.1	< 0.2	1.4 ± 0.1	0.2 ± 0.1	< 0.1	864 ± 135	323 ± 41	20 ± 3	
1A	2X	243 ± 65	132 ± 14	0.7 ± 0.2	7.4 ± 1.4	2.3 ± 0.3	< 0.2	1.8 ± 0.8	< 0.1	< 0.1	1146 ± 344	383 ± 93	24 ± 6	
2A	2X	217 ± 23	100 ± 5	0.7 ± 0.1	6.8 ± 0.4	1.8 ± 0.1	< 0.2	1.3 ± 0.2	0.1 ± 0.1	< 0.1	931 ± 114	333 ± 37	20 ± 2	
3A	2X	149 ± 39	100 ± 15	0.5 ± 0.1	6.0 ± 0.9	2.1 ± 0.1	< 0.2	1.1 ± 0.3	0.1 ± 0.1	< 0.1	801 ± 168	311 ± 54	17 ± 4	
4A	2X	176 ± 16	106 ± 10	0.7 ± 0.1	7.0 ± 0.3	2.4 ± 0.1	< 0.2	1.4 ± 0.2	0.1 ± 0.1	< 0.1	908 ± 81	342 ± 28	19 ± 2	
1B	CAL	141 ± 32	98 ± 24	0.4 ± 0.1	5.3 ± 0.8	2.0 ± 0.3	< 0.2	1.1 ± 0.2	0.1 ± 0.1	< 0.1	859 ± 124	286 ± 59	17 ± 2	
2B	CAL	138 ± 22	81 ± 15	0.5 ± 0.1	5.8 ± 0.8	1.8 ± 0.2	< 0.2	0.9 ± 0.1	0.1 ± 0.1	< 0.1	764 ± 194	257 ± 61	17 ± 4	
3B	CAL	133 ± 16	99 ± 12	0.4 ± 0.1	5.5 ± 0.3	2.1 ± 0.2	< 0.2	0.9 ± 0.1	0.1 ± 0.1	< 0.1	891 ± 125	318 ± 41	20 ± 3	
4B	CAL	122 ± 6	95 ± 4	0.5 ± 0.1	5.0 ± 0.3	2.0 ± 0.1	< 0.2	0.9 ± 0.2	0.2 ± 0.1	< 0.1	737 ± 51	274 ± 21	15 ± 2	

Table 12 Year 2001 Clay 2 Site – Extractable CoCs in Field Soils

Note: U – Unamended.

1X - Lime amendment level recommended by OMAFRA (7.5 t/ha).

2X -Double the lime amendment level recommended by OMAFRA (15 t/ha).

CAL – Lime amendment to make clay soil calcareous (100 t/ha).

EQL - Estimated quantification limit for analytical method.

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 2 – Appendices - Soils Selection and Characterisation

		DT	PA Extracta	ıble	Aque	eous Extract	table	Ammoniu	n Oxalate E	Extractable	Strontiun	n Nitrate Ex	tractable
Plot	Treat	Nickel	Copper	Cobalt	Nickel	Copper	Cobalt	Nickel	Copper	Cobalt	Nickel	Copper	Cobalt
		0.6	0.2	0.2	0.6	0.2	0.2	8	2	2	0.4	0.1	0.1
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1	U	538 ± 38	124 ± 10	2.5 ± 0.4	18.7 ± 1.0	2.5 ± 0.1	< 0.2	823 ± 58	249 ± 20	12 ± 2	15.5 ± 1.4	0.2 ± 0.1	0.2 ± 0.1
2	U	523 ± 48	119 ± 12	3.1 ± 0.7	19.9 ± 1.5	2.7 ± 0.2	< 0.2	796 ± 86	245 ± 30	12 ± 2	20.5 ± 2.5	0.2 ± 0.1	0.3 ± 0.1
3	U	490 ± 170	115 ± 41	2.5 ± 0.9	21.1 ± 1.5	3.0 ± 0.4	< 0.2	780 ± 73	227 ± 23	13 ± 2	16.0 ± 1.6	0.2 ± 0.1	0.2 ± 0.1
4	U	560 ± 68	125 ± 12	2.9 ± 0.7	19.6 ± 2.1	2.6 ± 0.3	< 0.2	864 ± 106	242 ± 26	14 ± 2	18.9 ± 3.0	0.2 ± 0.1	0.2 ± 0.1
1	1X	415 ± 42	110 ± 15	1.3 ± 0.3	15.7 ± 1.1	2.3 ± 0.3	< 0.2	740 ± 58	231 ± 23	11 ± 2	6.3 ± 1.1	0.2 ± 0.1	0.1 ± 0.1
2	1X	468 ± 44	126 ± 10	1.7 ± 0.4	17.1 ± 1.1	2.7 ± 0.2	< 0.2	824 ± 74	263 ± 27	14 ± 1	7.7 ± 1.5	0.3 ± 0.1	0.1 ± 0.1
3	1X	424 ± 41	105 ± 13	1.5 ± 0.3	17.4 ± 1.4	2.9 ± 0.3	< 0.2	763 ± 98	219 ± 28	12 ± 2	6.6 ± 1.3	0.2 ± 0.1	0.1 ± 0.1
4	1X	416 ± 74	111 ± 16	1.5 ± 0.4	15.5 ± 2.3	2.4 ± 0.4	< 0.2	755 ± 120	229 ± 34	12 ± 1	6.6 ± 2.0	0.1 ± 0.1	0.1 ± 0.1
1	2X	347 ± 55	101 ± 14	1.0 ± 0.3	12.1 ± 1.1	2.1 ± 0.2	< 0.2	700 ± 58	234 ± 20	11 ± 2	3.3 ± 0.6	0.2 ± 0.1	0.1 ± 0.1
2	2X	372 ± 72	110 ± 16	1.3 ± 0.6	13.7 ± 2.7	2.3 ± 0.3	< 0.2	672 ± 79	218 ± 24	11 ± 1	4.8 ± 3.1	0.2 ± 0.1	0.1 ± 0.1
3	2X	330 ± 43	104 ± 14	1.0 ± 0.2	13.1 ± 1.3	2.6 ± 0.3	< 0.2	769 ± 80	238 ± 22	12 ± 2	3.1 ± 0.5	0.2 ± 0.1	0.1 ± 0.1
4	2X	313 ± 62	98 ± 16	1.0 ± 0.3	11.8 ± 1.6	2.1 ± 0.2	< 0.2	665 ± 86	216 ± 30	10 ± 1	3.3 ± 1.2	0.1 ± 0.1	0.1 ± 0.1

Table 13 Year 2001 Clay 3 Site – Extractable CoC Concentrations in Field Soils

Note: U – Unamended.

1X- Lime amendment level recommended by OMAFRA (1X = "prudent farmer") to raise soil pH to 7.0.

2X-Lime amendment level recommended by OMAFRA to make clay soil calcareous.

EQL – Estimated quantification limit for analytical method.

ONT34663 December, 2004 APP. S-3-20 **GREENHOUSE TRIALS**

2000 & 2001

VOLUME 1 - PART 3 – APPENDICES

DECEMBER, 2004

LIST OF APPENDICES VOLUME 1 – PART 3 – APPENDICES

APPENDIX GH-1A	YEAR 2000 DATA TABLES
APPENDIX GH-1B	YEAR 2001 DATA TABLES
APPENDIX GH-2A	PHOTO PLATES – YEAR 2000
APPENDIX GH-2B	PHOTO PLATES – YEAR 2001
APPENDIX GH-3	ANALYSIS OF SOIL PROPERTIES WITH RESPECT TO BLENDING
APPENDIX GH-4	RADISH EXPERIMENT ON WELLAND CLAY
APPENDIX GH-5	pH EXPERIMENT ON WELLAND CLAY
APPENDIX GH-6	RELATIONSHIP BETWEEN SOIL EXTRACTABLE METALS AND PLANT METALS
APPENDIX GH-7	DESCRIPTION OF SOIL CHARACTERISTICS AND PLANT ELEMENTAL COMPOSITION
APPENDIX GH-8	SOIL BLENDING SENSITIVITY ANALYSIS DATA TABLE

APPENDIX GH-1A YEAR 2000 DATA TABLES

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Diomass Tield Ranges for Corn Shoots (grams D W/pot)									
	Impact Level	Control	Low	Medium	High	Very High			
	Soil nickel (mg/kg)	34	200	500	3450	8300			
CLAY	UNAMENDED (U)	*	7.7 – 10.2	8.2 - 10.8	1.7 - 2.4	2.4 - 3.3			
CLAI	OMAFRA(1X)	*	10.0 - 14.9	3.4 - 9.5	8.9 - 10.6	5.6 - 7.5			
	2X OMAFRA(2X)	*	6.3 – 10.7	7.6 - 8.4	10.1 - 10.7	8.4 - 8.7			
	Soil nickel (mg/kg)	33	200	1200	3200	5550			
ORGANIC	UNAMENDED (U)	**	6.3 – 6.9	3.4 - 3.5	7.6 - 9.4	1.0 - 1.5			
ORGANIC	OMAFRA(1X)	**	4.2 - 5.1	1.3 - 5.5	7.4 - 8.8	1.1 – 1.3			
	2X OMAFRA(2X)	**	4.6 - 5.8	2.2 - 2.9	5.0 - 6.8	0.5 - 1.1			
	Soil nickel (mg/kg)	33	200	1200	3200	5550			
ORGANIC	UNAMENDED (U)	9.1 – 11.	6.3 – 8.0	3.0 - 3.4	5.5 - 6.4	1.6 - 3.0			
П	OMAFRA(1X)	7.2 - 8.5	4.6 - 5.6	3.2 - 3.7	3.9 - 5.6	1.7 –2.8			
	2X OMAFRA(2X)	7.7 - 10.4	5.7 - 6.1	2.0 - 3.2	3.4 - 4.2	1.4 - 3.4			
	Soil nickel (mg/kg)	5	300	500	1350	NA			
SAND	UNAMENDED (U)	13.5 - 15.4	10.0 - 11.6	4.7 – 7.3	5.0 - 7.4	NA			
SAIND	OMAFRA(1X)	16.6 – 18.1	11.6 - 14.8	7.2 - 9.9	10.5 - 17.8	NA			
	2X OMAFRA(2X)	7.3 – 13.9	10.9 - 13.0	5.8 - 7.3	11.0 - 11.5	NA			

Table GH-1 **Biomass Yield Ranges for Corn Shoots (grams DW/pot)**

* - Clay Control biomass is not reported due to uncertainty of data
 ** - Organic Control results for corn were not available due to source soil problems – no germination NA – no soil collected for this CoC concentration

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	*	8.8 ^b	9.3 ^b	2 ^c	2.7 ^c
SOIL	OMAFRA(1X)	*	5.8 ^c	12.6 ^b	9.7b ^c	6.4 ^c
	2X OMAFRA(2X)	*	7.9 ^b	8.1 ^b	10.3 ^b	8.6 ^b
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	**	6.62 ^a	3.44 ^b	8.51 ^a	1.25 ^c
ONGAINIC	OMAFRA(1X)	**	4.71 ^{bc}	3.58 ^{cd}	8.27^{a}	1.2 ^d
	2X OMAFRA(2X)	**	5.44 ^a	2.51 ^b	6.16 ^a	0.88°
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	9.97^{a}	7.31 ^b	3.23°	5.94 ^b	2.18 ^c
П	OMAFRA(1X)	7.65 ^a	4.97 ^b	3.5°	4.79 ^b	2.13 ^d
	2X OMAFRA(2X)	8.69 ^a	5.91 ^b	2.59 ^c	3.78 ^c	2.48 ^c
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	14.6 ^a	10.8 ^b	6.2 ^c	6.4 ^c	NA
CORN	OMAFRA(1X)	17.2^{a}	12.4 ^{ab}	8.3 ^b	13.4 ^{ab}	NA
	2X OMAFRA(2X)	10.7 ^a	12.3 ^a	6.7 ^b	11.2 ^a	NA

 Table GH-2

 Average Corn Biomass Yield (g DW/pot) Compared Between Soil CoC Concentrations

* - Clay Control biomass is not reported due to uncertainty of data

** - Organic Control results for corn were not available due to source soil problems - no germination

NA – no soil collected for this CoC concentration

(a, b, c, etc.) - Rank indicates statistical differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	63 - 86	67 - 140
CLAI	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	4 - 9	7 - 11
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	<0.1 - 3	5 - 6
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	*	< 0.1	< 0.1	3 - 4	9 - 14
ORGANIC	OMAFRA(1X)	*	< 0.1	< 0.1	3 - 17	7 - 12
	2X OMAFRA(2X)	*	< 0.1	< 0.1	3 - 4	10 - 13
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	< 0.1	10 - 29
П	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	<0.1 - 3	11 - 20
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	3	4 - 5
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	3 - 15	NA
BAILD	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	<0.1 - 3	NA
	2X OMAFRA(2X)	< 0.1	< 0.1	<0.1	< 0.1	NA

 Table GH-3

 Nickel Concentration Ranges (mg/kg DW) in Corn Shoot Tissue

* - Organic Control results for corn were not available due to source soil problems - no germination

NA – no soil collected for this CoC concentration

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

	Impact Level	Control	Low	Medium	High	Very High
CLAY	Soil nickel (mg/kg)	34	200	500	3450	8300
	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	73 ^a	112 ^a
CLAI	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	6.7 ^a	8.5 ^a
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	2.7 ^b	5.4 ^a
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	*	< 0.1	< 0.1	2.8 ^b	11.6 ^a
UNGAINE	OMAFRA(1X)	*	< 0.1	< 0.1	7.9 ^a	9.1 ^a
	2X OMAFRA(2X)	*	< 0.1	< 0.1	3.5 ^b	10.9 ^a
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	< 0.1	18.8
п	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	2.7 ^b	15.9 ^a
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	3.1 ^b	4.6 ^a
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	6	NA
SAND	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	< 0.1	NA
	2X OMAFRA(2X)	< 0.1	< 0.1	<0.1	< 0.1	NA

 Table GH-4

 Average Nickel Concentrations (mg/kg DW) in Corn Tissue Compared between Soil CoC Concentrations

* - Organic Control results for corn were not available due to source soil problems – no germination

NA – no soil collected for this CoC concentration

(a, b, c, etc.) - Rank indicates statistically differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	*	9.8 - 15.0	8.4 - 8.8	0.9 - 1.4	0.9 – 1.2
CLAI	OMAFRA(1X)	*	14.0-18.0	6.5 – 7.3	6.0 - 6.9	5.0 - 6.4
	2X OMAFRA(2X)	*	6.3 – 9.5	6.4 – 9.4	6.4 - 7.5	5.8 - 6.8
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	6.7 – 9.0	11.2 - 12.4	11.4 - 14.2	8.6 - 10.6	3.3 – 4.6
UNGAINE	OMAFRA(1X)		8.7 - 11.3	10.3 - 12.7	9.8 - 10.3	2.9 - 3.9
	2X OMAFRA(2X)		7.6 - 12.0	11.5 – 13.4	10.3 - 12.0	2.8 - 5.5
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	15.9 - 16.9	10.7 - 12.3	7.5 - 9.7	5.0 - 7.1	NA
SAND	OMAFRA(1X)	9.9 – 14.7	10.5 - 12.5	6.4 - 11.2	8.4 - 10.4	NA
	2X OMAFRA(2X)	5.8-9.9	7.5 – 12.1	6.8 - 9.6	9.2 - 10.3	NA

 Table GH-5

 Biomass Yield Ranges (grams) for Soybean Shoots

* - analytical error has prevented inclusion of control clay soil soybean data

NA – No soil Collected at this CoC impact level

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	*	13.3 ^a	8.5 ^b	1.1 ^c	1 ^c
CLAI	OMAFRA(1X)	*	15.4 ^a	6.9 ^b	6.5 ^b	5.6 ^b
	2X OMAFRA(2X)	*	8.3 ^b	7.4 ^b	6.9 ^b	6.4 ^b
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORG	UNAMENDED (U)	7.8 ^b	11.6 ^a	13 ^a	8.5 ^b	3.9 ^c
UKG	OMAFRA(1X)	7.4 ^b	10.3 ^a	11.5 ^a	10^{a}	3.6 ^c
	2X OMAFRA(2X)	7.4 ^b	10.1 ^a	12.5 ^a	11.2 ^a	3.9 ^c
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	16.4 ^a	11.7 ^b	8.6 ^c	6.1 ^d	NA
SAIND	OMAFRA(1X)	12.0 ^a	11.3 ^a	9.2 ^a	8.5 ^a	NA
	2X OMAFRA(2X)	10.1 ^a	9.6 ^a	8.1 ^a	8.0^{a}	NA

 Table GH-6

 Average Soybean Biomass Yield (g DW/pot) Compared Between Soil CoC Concentrations

* - analytical error has prevented inclusion of control clay soybean data

NA - No soil collected at this CoC impact level

(a, b, or c) - indicates statistical differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	< 0.1	< 0.1	9 - 17	218 - 242	156 - 204
CLAI	OMAFRA(1X)	< 0.1	< 0.1 – 5	<0.1 - 15	48 - 77	57 - 90
	2X OMAFRA(2X)	< 0.1	<0.1 - 3	5 - 9	24 - 40	25 - 47
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	31 - 41	35 - 44
UNGAINC	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	20 - 37	28 - 33
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	13 - 20	35 - 42
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	< 0.1	<0.1 - 6	4.5 - 12	45 - 70	NA
BAIND	OMAFRA(1X)	< 0.1	<0.1 - 6	4.3 - 7.3	36 - 48	NA
	2X OMAFRA(2X)	< 0.1	< 0.1	6 - 20	35 - 40	NA

 Table GH-7

 Nickel Concentration Ranges (mg/kg DW) in Soybean Shoot Tissue

NA - No soil Collected at this CoC impact level

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Impact Level High Very High Control Low Medium Soil nickel (mg/kg) 34 200 500 3450 8300 11° 227^b 186^b UNAMENDED (U) < 0.1 < 0.1 CLAY 9^b 62^{a} 73^a < 0.1 < 0.1 OMAFRA(1X) 7.7^b 32^{a} 33^a 2X OMAFRA(2X) < 0.1 < 0.1Soil nickel (mg/kg) 33 200 1200 3200 5550 35.6^a 38.3^a UNAMENDED (U) < 0.1 < 0.1< 0.1 ORGANIC 28.3^a 30.5^a OMAFRA(1X) < 0.1 < 0.1 < 0.1 17.1^b 32.3^a 2X OMAFRA(2X) < 0.1< 0.1< 0.1 Soil nickel (mg/kg) 5 300 500 1350 NA 5.6^b < 0.1 8.6^b 55^a UNAMENDED (U) NA SAND 4.2 ^b 5.6^b 41^{a} OMAFRA(1X) < 0.1 NA 11.2^b 37.3^a < 0.1 2X OMAFRA(2X) < 0.1NA

 Table GH-8

 Average Nickel Concentrations (mg/kg DW) in Soybean Tissue Compared between Soil CoC Concentrations

NA - No soil Collected at this CoC impact level

(a, b, or c) - indicates statistical differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	*	*	*	*	*
CLAI	OMAFRA(1X)	*	*	*	*	*
	2X OMAFRA(2X)	*	*	*	*	*
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	2.5 - 2.9	2.0 - 3.5	0.5 - 0.8	4.8 - 5.9	0.3 - 0.6
UNGAINC	OMAFRA(1X)	2.3 - 2.4	3.0 - 5.0	0.7 - 1.5	1.7 - 2.3	0.6 - 0.7
	2X OMAFRA(2X)	0.4 - 1.4	2.1 - 4.3	0.5 - 1.4	0.7 - 1.6	0.5
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	1.9 - 3.1	1.2 - 1.4	0.9 – 1.1	0.4 - 0.5	NA
SAND	OMAFRA(1X)	0.6 - 0.9	1.2 - 1.6	0.4 - 0.8	0.4 - 0.6	NA
	2X OMAFRA(2X)	0.2 - 0.3	0.8 - 1.2	0.7 - 0.8	0.6 - 0.7	NA

 Table GH-9

 Biomass Yield Ranges (grams) for Oat Shoots

* - analytical error has prevented inclusion of biomass data for oat on clay soil

NA – No soil Collected at this CoC impact level

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	*	*	*	*	*
CLAY	OMAFRA(1X)	*	*	*	*	*
	2X OMAFRA(2X)	*	*	*	*	*
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	2.7 ^b	2.6 ^b	0.6 ^c	5.1 ^a	0.5 ^c
UKGANIC	OMAFRA(1X)	2.4 ^b	3.9 ^a	1.1 ^c	2.1 ^b	0.6 ^c
	2X OMAFRA(2X)	0.9 ^b	2.9 ^a	0.9 ^b	1.1 ^b	0.5 ^b
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	2.4 ^a	1.3 ^b	$0.9^{\rm bc}$	0.43 ^c	NA
SAND	OMAFRA(1X)	0.74 ^b	1.5 ^a	0.59 ^b	0.47 ^b	NA
	2X OMAFRA(2X)	0.27 ^c	0.99 ^a	0.8^{ab}	0.63 ^b	NA

 Table GH-10

 Average Oat Biomass Yield (g DW/pot) Compared Between Soil CoC Concentrations

* - analytical error has prevented inclusion of biomass data for oat on clay soil

NA – No soil Collected at this CoC impact level

(a, b, or c) - indicates statistically differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CLAY	UNAMENDED (U)	< 0.1	4 - 6	20 - 25	213 - 237	136 - 203
CLAI	OMAFRA(1X)	< 0.1	7 -12	16 - 18	77 - 86	105 - 217
	2X OMAFRA(2X)	< 0.1	5 - 16	14 - 18	62 - 85	60 - 125
	Soil nickel (mg/kg)	33	200	1200	3200	5550
ORGANIC	UNAMENDED (U)	< 0.1	< 0.1	5.6-10	45 - 59	76 - 88
UNGAINE	OMAFRA(1X)	< 0.1	< 0.1	10-12.5	33 - 42	76 - 92
	2X OMAFRA(2X)	< 0.1	1.6 - 3	6.1-13.1	32 - 49	80 - 92
	Soil nickel (mg/kg)	5	300	500	1350	NA
SAND	UNAMENDED (U)	< 0.1	27 - 50	35 - 56	105 - 123	NA
SAND	OMAFRA(1X)	<0.1 - 4	32 - 49	54 - 65	93 - 121	NA
	2X OMAFRA(2X)	< 0.1	36 - 63	47 - 74	104 - 135	NA

 Table GH-11

 Nickel Concentration Ranges (mg/kg DW) in Oat Shoot Tissue

NA – No soil Collected at this CoC impact level

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Α	Average Nickel Concentrations (mg/kg DW) in Oat Tissue Compared between Soil CoC Concentrations										
		Impact Level	Control	Low	Medium	High	Very High				
-		Soil nickel (mg/kg)	34	200	500	3450	8300				
	CLAY	UNAMENDED (U)	< 0.1	4.8 ^c	21.9 ^c	164 ^b	223 ^a				
	CLAI	OMAFRA(1X)	< 0.1	8.5°	16.7 ^c	80.2 ^b	148 ^a				
		2X OMAFRA(2X)	< 0.1	9.9°	15.8 ^c	61.2 ^b	102 ^a				

200

< 0.1

< 0.1 2.1^d

300

37.5^b

37.4 °

50.7[°]

1200

8.9^c

 11°

9.9^c

500

48.4^b

59.7^b

60.5^b

3200

47^b

36.3^b

38.9^b

1350

116^a

103^a

123^a

Table GH-12 . . 4:. S

2X OMAFRA(2X) NA - No soil Collected at this CoC impact level

Soil nickel (mg/kg)

UNAMENDED (U)

2X OMAFRA(2X)

Soil nickel (mg/kg)

UNAMENDED (U)

OMAFRA(1X)

OMAFRA(1X)

ORGANIC

SAND

(a, b, or c) indicates statistical differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

33

< 0.1

< 0.1

< 0.1

5

< 0.1

3^d

< 0.1

5550

 80.4^{a}

83.1^a

85^a

NA

NA

NA

NA

Table	GH-13
-------	-------

Average Copper Concentration (mg/kg DW) in Plant Tissue Compared Between Soil CoC Concentrations A. CLAY SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil Copper (mg/kg)	25	42	100	400	900
CORN	UNAMENDED (U)	3 ^b	3 ^b	6.2 ^b	8.6 ^b	33 ^a
	OMAFRA(1X)	3.4°	2.5°	7.6 ^b	12.8 ^a	13 ^a
	2X OMAFRA(2X)	2.8°	2.7°	17.6 ^a	10.3 ^b	19.4 ^a
SOYBEAN	UNAMENDED (U)	3.6 ^b	3.8 ^b	4.2 ^b	5.9 ^a	6 ^a
SUIDEAN	OMAFRA(1X)	4 ^b	3.6 ^b	5.4 ^{ab}	6.5 ^a	7 ^a
	2X OMAFRA(2X)	2.9 ^b	2.9 ^b	6.9 ^a	6.8 ^a	7.4 ^a
OAT	UNAMENDED (U)	6.8 ^a	8.6 ^a	7.5 ^a	6 ^a	7.4 ^a
UAI	OMAFRA(1X)	7.1 ^b	9.3 ^b	10.2 ^b	17 ^b	24.7 ^a
	2X OMAFRA(2X)	7.2 ^b	9 ^b	9.5 ^b	17.5 ^a	22.1 ^a

(a, b, or c) indicates statistical differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

Table GH-13 continued...

Average Copper Concentration (mg/kg DW) in Plant Tissue Compared Between Soil CoC Concentrations

	Impact Level	Control	Low	Medium	High	Very High
	Soil Copper (mg/kg)	16	100	200	500	600
CORN	UNAMENDED (U)	2.3°	1.9 ^c	2.4 ^c	5.3 ^b	12.5 ^a
	OMAFRA(1X)	2.4 ^c	1.9 ^c	3.8 ^{bc}	6.1 ^b	11.9 ^a
	2X OMAFRA(2X)	2.4 ^c	2.5 [°]	3.2 ^c	6.1 ^b	11.8 ^a
CORN II	UNAMENDED (U)	2.6 ^b	2.7 ^b	3.9 ^b	7.8 ^a	9.2 ^a
COKNII	OMAFRA(1X)	2.3°	2.1 ^c	3.9°	6.5 ^b	8.5 ^a
	2X OMAFRA(2X)	2.8 ^c	2.9 ^c	3.3°	8^{a}	5.9 ^b
SOYBEAN	UNAMENDED (U)	3.2 ^a	2.6 ^a	2.8 ^a	2.9 ^a	3.7 ^a
SUIDEAN	OMAFRA(1X)	3.4 ^a	3.6 ^a	2.7 ^a	3.1 ^a	4.8 ^a
	2X OMAFRA(2X)		3.3 ^b	2.5 ^b	3.4 ^{ab}	4.4 ^a
OAT	UNAMENDED (U)	2.4 ^d	1.7 ^d	3.9 ^c	6 ^b	9.8 ^a
UAI	OMAFRA(1X)	3°	1.6 ^d	3.3°	7 ^b	8.9 ^a
	2X OMAFRA(2X)	2.1 ^c	2.8 ^c	3°	6.6 ^b	9.9 ^a

B. ORGANIC SOIL

(a, b, or c) indicates statistical differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Table GH-13 continued...

Average Copper Concentration (mg/kg DW) in Plant Tissue Compared Between Soil CoC Concentrations C. SAND SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil Copper (mg/kg)	<0.05	39	71	150	NA
CORN	UNAMENDED (U)	2.2°	6 ^c	15 ^b	20 ^a	NA
	OMAFRA(1X)	2.2 ^a	7.7 ^a	15.1 ^a	15.8 ^a	NA
	2X OMAFRA(2X)	2.3°	8.8 ^b	14.8 ^a	17.9 ^a	NA
SOYBEAN	UNAMENDED (U)	1.9 ^b	3.2 ^{ab}	3 ^{ab}	43.8 ^a	NA
SUIDEAN	OMAFRA(1X)	1.9 ^b	3.3 ^{ab}	3.3 ^{ab}	4.6 ^a	NA
	2X OMAFRA(2X)	1.9 ^c	3.3 ^b	4.1 ^{ab}	5.2 ^a	NA
OAT	UNAMENDED (U)	4.9 ^b	17.3 ^a	18.8^{a}	14.1 ^a	NA
UAI	OMAFRA(1X)	7.5°	13.1 ^b	20.9 ^a	18 ^a	NA
	2X OMAFRA(2X)	5.6 ^b	17.9 ^a	18.2 ^a	21.3 ^a	NA

NA - No soil collected at this CoC impact level

(a, b, or c) - indicates statistically differences (95% confidence level) within rows (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

Table GH-14

Average Copper Concentrations (mg/kg) in Plant Tissue compared between Soil Amendment Lev	vels
A. CLAY SOIL	

	Impact Level	Control	Low	Medium	High	Very High
	Soil Copper (mg/kg)	25	42	100	400	900
CORN	UNAMENDED (U)	3 ^a	3 ^a	6.2 ^b	8.6 ^a	33 ^a
	OMAFRA(1X)	3.4 ^a	2.5 ^a	7.6 ^b	12.8 ^a	13 ^b
	2X OMAFRA(2X)	2.8 ^a	2.7 ^a	17.6 ^a	10.3 ^a	19 ^b
SOYBEAN	UNAMENDED (U)	3.6 ^a	3.8 ^a	4.2 ^b	5.9 ^a	6^{a}
SUIDEAN	OMAFRA(1X)	4 ^a	3.6 ^a	5.4 ^b	6.5 ^a	7 ^a
	2X OMAFRA(2X)	2.9 ^a	2.9 ^a	6.9 ^a	6.8 ^a	7.4 ^a
OAT	UNAMENDED (U)	6.8 ^a	8.6 ^a	7.5 ^a	6 ^b	7.4 ^b
UAI	OMAFRA(1X)	7.1 ^a	9.3 ^a	10.2 ^a	17 ^a	24.7 ^a
	2X OMAFRA(2X)	7.2 ^a	9 ^a	7.5 ^ª	17.5 ^ª	22.1 ^a

(a, b, or c) - indicates statistically differences (95% confidence level) within columns for each plant type (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

Table GH-14 continued...

Average Copper Concentrations (mg/kg) in Plant Tissue compared between Soil Amendment Levels
B. ORGANIC SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil Copper (mg/kg)	16	100	200	500	600
CORN	UNAMENDED (U)	2.6 ^a	2.7 ^a	3.9 ^a	7.8 ^a	9.2 ^a
	OMAFRA(1X)	2.3 ^a	2.1 ^a	3.9 ^a	6.5 ^a	8.5 ^a
	2X OMAFRA(2X)	2.8 ^a	2.9 ^a	3.3 ^a	8^{a}	5.9 ^b
CORN II	UNAMENDED (U)	3.3 ^a	1.9 ^a	2.4 ^a	5.3 ^a	12.5 ^a
CORNI	OMAFRA(1X)	2.4 ^b	1.9 ^a	3.8 ^a	6.1 ^a	11.9 ^a
	2X OMAFRA(2X)	2.4 ^b	2.5 ^a	3.2 ^a	6.1 ^a	11.8 ^a
SOYBEAN	UNAMENDED (U)	< 0.05	2.6 ^a	2.8 ^a	2.9 ^a	3.7 ^a
SOTDEAN	OMAFRA(1X)	< 0.05	3.6 ^a	2.7 ^a	3.1 ^a	4.8 ^a
	2X OMAFRA(2X)	< 0.05	3.3 ^a	2.5 ^a	3.4 ^a	4.4 ^a
OAT	UNAMENDED (U)	2.4 ^a	1.7 ^b	3.9 ^a	6 ^a	9.8 ^a
UAI	OMAFRA(1X)	3 ^a	1.6 ^b	3.3 ^a	7 ^a	8.9 ^a
	2X OMAFRA(2X)	2.1 ^a	2.8 ^a	3 ^a	6.6 ^a	9.9 ^a

(a, b, or c) - indicates statistically differences (95% confidence level) within columns for each plant type (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - value is less than detection limit for analytical method (0.05 mg Cu/kg)

Table GH-14 continued...

Average Copper Concentrations (mg/kg) in Plant Tissue compared between Soil Amendment Levels C. SAND SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil Copper (mg/kg)	ND	39	71	150	NA
CORN	UNAMENDED (U)	2.2 ^a	6 ^a	15 ^a	20^{a}	NA
	OMAFRA(1X)	2.2 ^a	7.7 ^a	15.1 ^a	15.8 ^a	NA
	2X OMAFRA(2X)	2.3 ^a	8.8 ^a	14.8 ^a	17.9 ^a	NA
SOYBEAN	UNAMENDED (U)	< 0.05	3 ^a	3.3 ^a	7.8^{a}	NA
SOTDEAN	OMAFRA(1X)	< 0.05	7.7 ^a	3 ^a	4.6^{a}	NA
	2X OMAFRA(2X)	< 0.05	3.3 ^a	3.3 ^a	5.2 ^a	NA
OAT	UNAMENDED (U)	4.9 ^a	17.3 ^a	17.3 ^a	14 ^c	NA
UAI	OMAFRA(1X)	7.5 ^ª	13.1 ^a	13.1 ^a	18 ^b	NA
	2X OMAFRA(2X)	5.6 ^a	17.3 ^a	17.9 ^a	21.3 ^a	NA

NA - No soil collected at this CoC impact level

(a, b, or c) - indicates statistically differences (95% confidence level) within columns for each plant type (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - value is less than detection limit for analytical method (0.05 mg Cu/kg)

Table GH-15a

Average Cobalt Concentrations (mg/kg) in Plant Tissue Compared Between Soil Amendment Le	vels
A. CLAY SOIL	

	Impact Level	Control	Low	Medium	High	Very High
	Soil Cobalt (mg/kg)	ND	8	13	49	100
CORN	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	1.4
	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SOYBEAN	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	1.5	1.4
SUIDEAN	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	0.8	< 0.01
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	0.8	< 0.01
ΟΑΤ	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
UAI	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

< - value is less than detection limit for analytical method (0.01 mg Co/kg)

Table GH-15a continued...

Average Cobalt Concentrations (mg/kg) in Plant Tissue Compared Between Soil Amendment Levels B. ORGANIC SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil Cobalt (mg/kg)	<0.01	8	15	37	100
CORN	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
CORN II	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	1.4
CORVI	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	0.7
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	0.6
SOYBEAN	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SUIDEAN	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
ОЛТ	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
OAT	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

< - value is less than detection limit for analytical method (0.01 mg Co/kg)</p>

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Table GH-15a continued...

Average Cobalt Concentrations (mg/kg) in Plant Tissue Compared Between Soil Amendment Levels C. SAND SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil Cobalt (mg/kg)	<0.01	6	7	28	NA
CORN	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	NA
	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	NA
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	NA
SOYBEAN	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	0.7	NA
SUIDEAN	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	0.5	NA
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	0.8	NA
ΟΑΤ	UNAMENDED (U)	< 0.01	< 0.01	< 0.01	< 0.01	NA
UAI	OMAFRA(1X)	< 0.01	< 0.01	< 0.01	< 0.01	NA
	2X OMAFRA(2X)	< 0.01	< 0.01	< 0.01	< 0.01	NA

NA - No soil collected at this CoC impact level

< - value is less than detection limit for analytical method (0.01 mg Co/kg)

Table GH-15b

Average Nickel Concentration in Plant Tissue (mg/kg) Compared Between Soil Amendment Levels A. CLAY SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CORN	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	73 ^a	112 ^a
	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	6.7 ^b	8.5 ^b
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	2.7 ^b	5.4 ^b
SOY	UNAMENDED (U)	< 0.1	< 0.1	11.1 ^a	227 ^a	186 ^a
	OMAFRA(1X)	< 0.1	< 0.1	8.1 ^a	62.4 ^b	73.2 ^b
	2X OMAFRA(2X)	< 0.1	< 0.1	7.7 ^a	32.4 ^c	32.9°
OATS	UNAMENDED (U)	< 0.1	4.8 ^a	21.9 ^a	223 ^a	164 ^a
	OMAFRA(1X)	< 0.1	8.5 ^a	16.7 ^b	80.2 ^b	148 ^a
	2X OMAFRA(2X)	< 0.1	9.9 ^a	15.8 ^b	61.2 ^b	102 ^a

NA - No soil Collected at this CoC impact level

(a, b, or c) indicates statistical differences (95% confidence level) between treatments at each soil CoC concentration (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Table GH-15b continued...

Average Nickel Concentration in Plant Tissue (mg/kg) Compared Between Soil Amendment Levels B. ORGANIC SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	33	200	1200	3200	5550
CORN	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	2.8 ^a	11.6 ^a
	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	7.9 ^a	9.1 ^a
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	3.5 ^a	10.9 ^a
CORN II	UNAMENDED (U)	< 0.1	< 0.1	< 0.1		19 ^a
	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	2.7^{a}	16 ^a
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	3.1 ^a	4.6 ^a
SOY	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	35.6 ^a	38.3 ^a
	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	28.3 ^{ab}	30.5 ^a
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	17.1 ^b	39.3 ^a
OATS	UNAMENDED (U)	< 0.1	< 0.1	8.9 ^a	47 ^a	80.4 ^a
	OMAFRA(1X)	< 0.1	< 0.1	11 ^a	36.3 ^a	83.1 ^a
	2X OMAFRA(2X)	<0.1	<0.1	9.9 ^a	38.9 ^a	85 ^a

NA - No soil Collected at this CoC impact level

(a, b, or c) indicates statistical differences (95% confidence level) between treatments at each soil CoC concentration (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Table GH-15b continued...

Average Nickel Concentration in Plant Tissue (mg/kg) Compared Between Soil Amendment Levels C. SAND SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	5	300	500	1350	NA
CORN	UNAMENDED (U)	< 0.1	< 0.1	< 0.1	< 0.1	
	OMAFRA(1X)	< 0.1	< 0.1	< 0.1	< 0.1	
	2X OMAFRA(2X)	< 0.1	< 0.1	< 0.1	< 0.1	
SOY	UNAMENDED (U)	< 0.1	< 0.1	8.6 ^a	54.6 ^a	
	OMAFRA(1X)	< 0.1	< 0.1	5.6 ^a	40.6 ^a	
	2X OMAFRA(2X)	< 0.1	< 0.1	11.3 ^a	37.3 ^a	
OATS	UNAMENDED (U)	< 0.1	37.5 ^a	48.4 ^a	116 ^a	
	OMAFRA(1X)	< 0.1	37.4 ^a	59.7 ^a	103 ^a	
	2X OMAFRA(2X)	< 0.1	50.7 ^a	60.5 ^a	123 ^a	

NA - No soil Collected at this CoC impact level

(a, b, or c) indicates statistical differences (95% confidence level) between treatments at each soil CoC concentration (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Table GH-15c Average Plant Biomass (g/pot) Compared Between Soil Amendment Levels

A. CLAY SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	34	200	500	3450	8300
CORN	UNAMENDED (U)	22.8 ^a	8.8 ^a	9.3 ^a	2.0 ^b	2.7°
	OMAFRA(1X)	17.6 ^a	12.6 ^a	5.9 ^a	9.7 ^a	6.4 ^b
	2X OMAFRA(2X)	22.0 ^a	7.9 ^a	8.1 ^a	10.3 ^a	8.6 ^a
SOY	UNAMENDED (U)	10.8 ^a	13.3 ^a	8.5 ^a	1.1 ^b	1.0 ^b
	OMAFRA(1X)	9.0 ^a	15.4 ^a	7.0 ^a	6.5 ^a	5.6 ^a
	2X OMAFRA(2X)	12.4 ^a	8.3 ^b	7.4 ^a	6.9 ^a	6.4 ^a
OATS	UNAMENDED (U)	1.0 ^a	1.1 ^a	0.8 ^a	0.4 ^a	0.5 ^a
	OMAFRA(1X)	1.2 ^a	1.3 ^a	0.6 ^a	0.8 ^a	0.6 ^a
	2X OMAFRA(2X)	0.85 ^a	0.7 ^b	0.6 ^a	0.7 ^a	0.6 ^a

NA - No soil Collected at this CoC impact level

(a, b, or c) indicates statistical differences (95% confidence level) between treatments at each soil CoC concentration (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Table GH-15c continued... Average Plant Biomass (g/pot) Compared Between Soil Amendment Levels

B. ORGANIC SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	33	200	1200	3200	5550
CORN	UNAMENDED (U)	7.16 ^a	6.6 ^a	3.4 ^a	8.5 ^a	1.2 ^a
CORN	OMAFRA(1X)	7.09 ^a	4.7 ^b	3.6 ^a	8.3 ^a	1.2 ^a
	2X OMAFRA(2X)	5.92 ^a	5.4 ^b	2.5 ^a	6.2 ^b	0.9 ^a
CORN II	UNAMENDED (U)	9.97 ^a	7.3 ^a	3.2 ^a	5.9 ^a	2.2 ^a
CORN II	OMAFRA(1X)	7.66 ^a	5 ^b	3.5 ^a	4.8 ^{ab}	2.1 ^a
	2X OMAFRA(2X)	8.69 ^a	5.9 ^b	2.6 ^a	3.8 ^b	2.5 ^a
SOY	UNAMENDED (U)	7.8 ^a	11.6 ^a	13 ^a	9.5 ^a	3.9 ^a
501	OMAFRA(1X)	7.4 ^a	10.3 ^a	12.5 ^a	10.0 ^a	3.6 ^a
	2X OMAFRA(2X)	7.4 ^a	10.1 ^a	11.5 ^a	11.2 ^a	3.9 ^a
						-
OATS	UNAMENDED (U)	2.7 ^a	2.6 ^a	0.6 ^a	5.1 ^a	0.5 ^a
	OMAFRA(1X)	2.4 ^a	3.9 ^a	1.1 ^a	2.0 ^b	0.6 ^a
	2X OMAFRA(2X)	0.9 ^b	2.9 ^a	0.9 ^a	1.1 ^b	0.5 ^a

NA - No soil Collected at this CoC impact level

(a, b, or c) indicates statistical differences (95% confidence level) between treatments at each soil CoC concentration (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Table GH-15c continued... Average Plant Biomass (g/pot) Compared Between Soil Amendment Levels

C. SAND SOIL

	Impact Level	Control	Low	Medium	High	Very High
	Soil nickel (mg/kg)	5	300	500	1350	NA
CORN	UNAMENDED (U)	14.6^{ab}	10.8 ^a	6.2 ^a	6.4 ^b	
	OMAFRA(1X)	17.2 ^a	12.4 ^a	8.3 ^a	13.3 ^a	
	2X OMAFRA(2X)	10.7 ^b	12.3 ^a	6.7 ^a	11.2 ^a	
SOY	UNAMENDED (U)	16.4 ^a	11.7 ^a	8.6 ^a	6.1 ^b	
	OMAFRA(1X)	12.0 ^b	11.3 ^a	8.6 ^a	9.2 ^a	
	2X OMAFRA(2X)	7.8 [°]	10.0 ^a	8.1 ^a	9.6 ^a	
OATS	UNAMENDED (U)	2.40^{a}	1.3 ^a	1.0 ^a	0.4^{a}	
	OMAFRA(1X)	0.74 ^b	1.5 ^a	0.6 ^b	0.5 ^a	
	2X OMAFRA(2X)	0.28 ^b	1.0 ^a	0.8^{ab}	0.6 ^a	

NA - No soil Collected at this CoC impact level

(a, b, or c) indicates statistical differences (95% confidence level) between treatments at each soil CoC concentration (based on Student Neuman Keuls (SNK) Multiple Comparison of Means)

< - Below analytical detection limit for Nickel, (0.1 mg Ni/kg DW)

APPENDIX GH-1B YEAR 2001 DATA TABLES

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

		Tota	al Metals (mg	g/kg)			Total	Total	Total Inorganic	Soil	Soil
	Co	Cs		-		6	Organic Carbon	Carbon (as C)	Carbon	CEC	Conductivity
Ni	Cu	Со	As	Fe Mn	Р	(%)	(4 5 C) (%)	(as C) (%)	(meq100)	(mS/cm)	
*2	1	2	0.2	50	1	20	0.05	0.05	0.05	0.01	0.01
46.2	14	1.7	2.5	5230	118	1110	2.44	3.08	0.64	2.4	0.35
227	35	5.3	4.3	5830	128	965	2.20	2.92	0.72	2.1	0.39
370	58	9.0	5.7	7290	147	953	2.36	2.84	0.48	2.1	0.35
530	72	12	7.2	8210	153	868	2.16	3.12	0.96	2.5	0.36
756	93	17	9.0	12700	195	845	1.90	2.66	0.76	2.0	0.33
1630	190	34	18	21700	280	692	2.48	3.72	1.24	2.0	0.35
2310	270	49	24	27600	333	561	3.12	3.88	0.76	1.9	0.35

 Table GH-16

 Soil Properties for Unamended Sand Blends used in Year 2001 Greenhouse Trials

Note:

* - indicates estimated limit of quantification (EQL) for analytical method

Soil CoC values are calculated from data specific to the Greenhouse experiments, therefore reported values may differ from those reported in the Soil Collection and Characterizations Report (Part 2).

		Unamended		Amended				
[Ni] Soil mg/kg	Initial Soil	After H	Iarvest	Initial Soil	After I	Iarvest		
mg/kg	pН	pH (H ₂ O)	pH (CaCl ₂)	pН	pH (H ₂ O)	pH (CaCl ₂)		
46.2	7.34	$7.16 \pm 0.13^{a^*}$	6.77 ± 0.09^{a}	7.27	$7.37 \pm 0.07^{c*}$	7.19 ± 0.05^{e}		
227	7.29	7.16 ± 0.09^{a}	6.83 ± 0.07^{a}	7.28	$7.31 \pm 0.02^{b,c}$	7.13 ± 0.03^{d}		
370	7.38	7.31 ± 0.05^{b}	$6.82\pm0.06^{\rm a}$	7.26	$7.31 \pm 0.04^{b,c}$	$7.10\pm0.04^{c,d}$		
530	7.38	7.11 ± 0.03^{a}	6.74 ± 0.06^{a}	7.21	$7.28 \pm 0.10^{b,c}$	$7.05 \pm 0.05^{b,c}$		
756	7.21	7.15 ± 0.03^{a}	6.76 ± 0.03^{a}	7.14	$7.17\pm0.05^{\rm a}$	$6.95\pm0.06^{\rm a}$		
1630	7.14	7.18 ± 0.06^{a}	6.73 ± 0.06^{a}	7.19	7.18 ± 0.03^{a}	$7.01 \pm 0.02^{a,b}$		
2310	7.28	7.16 ± 0.03^{a}	$6.80\pm0.03^{\rm a}$	7.13	$7.23 \pm 0.03^{a,b}$	$7.00\pm0.03^{a,b}$		

 Table GH-17

 Soil pH before and after harvest for Oat grown on Sand

* SNK (Student Newman-Keuls) multiple range test (P<0.05), n=5 - Means within column followed by the same letter are not significantly different.

 Table GH-18a

 Concentration of CoCs and nutrients in Biomass (tissue) of Oat grown on Sand (Unamended)

Soil Ni		Co	oCs					Nutrients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
8/8						mg/kg DW					
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5
46.2	$5.9\pm0.5^{\rm \ a}$	9.69 ± 0.76^{a}	0.02 ± 0.01 ^a	$0.59 \pm 0.02^{\text{ a}}$	7114 ± 393^{a}	53 ± 5^{a}	46870 ± 1336^{a}	2510 ± 274^{a}	$19.5\pm3.5^{\rm a}$	9039 ± 901^{a}	75 ± 8.3^{a}
227	$18\pm1.0^{\rm b}$	12.8 ± 0.55 ^b	0.04 ± 0.01^{a}	0.78 ± 0.08^{a}	7522 ± 288^{ab}	61 ± 4^{b}	$67220 \pm 3395^{\circ}$	2770 ± 117^{a}	$18.3\pm1.0^{\rm a}$	8358 ± 769^{ab}	87 ± 5.8^{ab}
370	$32 \pm 1.8^{\circ}$	$14.6 \pm 0.52^{\circ}$	$0.07\pm0.01~^{\rm a}$	1.1 ± 0.11 ^b	7004 ± 258^{a}	54 ± 4^{a}	48880 ± 1186^{a}	2580 ± 174^{a}	$17.9\pm3.3^{\rm a}$	$7936\pm398^{\mathrm{b}}$	$100 \pm 8.0^{\text{b}}$
530	36 ± 3.7^{cd}	$14.4 \pm 0.70^{\circ}$	0.07 ± 0.02^{a}	1.1 ± 0.04^{b}	6869 ± 476^{a}	$63\pm6^{\mathrm{b}}$	65750 ± 4314 ^{b c}	2610 ± 220^{a}	19.1 ± 4.2^{a}	$7626\pm346^{\mathrm{b}}$	$97\pm4.3^{\rm b}$
756	40 ± 3.2^{d}	$14.9 \pm 0.99^{\circ}$	0.06 ± 0.01^{a}	$1.4 \pm 0.17^{\text{ b}}$	7040 ± 408^{a}	48 ± 2^{a}	48320 ± 2889^{a}	$2670\pm136^{\mathrm{a}}$	$23.7\pm4.6^{\mathrm{a}}$	$7426\pm438^{\mathrm{b}}$	$100 \pm 2.6^{\mathrm{b}}$
1630	89 ± 4.8^{e}	16.1 ± 0.86^{d}	$0.24\pm0.04^{\mathrm{b}}$	$2.1\pm0.13^{\rm ~d}$	7892 ± 325 ^b	54 ± 2^{a}	62940 ± 1976 ^b	$3250\pm166^{\mathrm{b}}$	$22.9\pm3.9^{\rm a}$	$6434 \pm 454^{\circ}$	$120 \pm 8.8^{\circ}$
2310	$130\pm1.4^{\rm f}$	12.9 ± 1.1 ^b	$0.42 \pm 0.10^{\circ}$	$2.4 \pm 0.33^{\mathrm{e}}$	7717 ± 296 ^b	47 ± 3^{a}	47990 ± 2437^{a}	$3180 \pm 162^{\text{b}}$	$20.2\pm4.0^{\rm a}$	$6175\pm374^{\mathrm{c}}$	82 ± 12^{a}

Table GH-18b Concentration of CoCs and nutrients in Biomass (tissue) of Oat grown on Sand (Amended)

G. IL NI		Co	Cs					Nutrients				
Soil Ni mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn	
mg/ Ng		mg/kg DW										
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5	
46.2	5.7±0.3	12.1 ± 0.57^{a}	0.02 ± 0.00^{a}	0.26 ± 0.05 ^a	4706 ± 305^{a}	56.6 ± 5.68^{a}	63420 ±5190 ^a	$2190\pm116^{\rm a}$	$23.2\pm5.1^{\rm \ ab}$	$8224 \pm 290^{\mathrm{b}}$	$122\pm7.5^{\rm a}$	
227	18 ± 0.5 $^{\rm b}$	$14.7 \pm 0.57^{\text{b}}$	$0.04\pm0.01^{\rm \ ab}$	$0.44 \pm 0.05^{\text{b}}$	4762 ± 126^{a}	$46.8 \pm 2.39^{\mathrm{abc}}$	46500 ±2154 °	2248 ± 94^{a}	18.1 ± 3.3^{a}	$8148 \pm 382^{\text{b}}$	131 ± 6.2^{ab}	
436	$32 \pm 1.5^{\circ}$	15.8 ± 0.34 °	0.09 ± 0.02^{ab}	0.62 ± 0.08 °	4706 ± 364^{a}	49.7 ± 1.99^{ab}	59090 ±3336 ^{ab}	2218 ± 103^{a}	26.4 ± 6.0^{b}	7400 ± 177^{a}	133 ± 8.6^{ab}	
530	39 ± 5.2 ^d	16.7 ± 0.78^{cd}	0.10 ± 0.03^{ab}	0.68 ± 0.04 °	5272 ± 568 ^b	37.0 ± 5.29 ^{cd}	49440 ±1415°	2376 ± 181^{ab}	26.5 ± 3.9 ^b	$7948\pm103^{\mathrm{b}}$	139±0.3 ^b	
756	$53 \pm 2.6^{\text{e}}$	$17.3 \pm 0.73^{\mathrm{e}}$	$0.14\pm0.04^{\text{ b}}$	$0.67\pm0.10^{\mathrm{c}}$	$5284 \pm 115^{\rm ab}$	$43.4\pm1.95^{\rmbc}$	56380 ±2582 ^b	2540 ± 99^{b}	$40.1\pm5.4~^{\rm c}$	$7747\pm381^{\ ab}$	$167 \pm 8.8^{\circ}$	
1630	$103\pm2.3^{\rm \ f}$	$19.2 \pm 0.27^{\rm \ f}$	$0.46\pm0.05^{\mathrm{c}}$	$1.34\pm0.11^{\rm ~d}$	$5460\pm395^{\mathrm{b}}$	25.7 ± 14.39 °	50540 ±2427 °	$3072\pm118^{\mathrm{c}}$	$29.0\pm3.8^{\mathrm{b}}$	$7956\pm214^{\mathrm{b}}$	180 ± 3.8 ^c	
2310	$144 \pm 10^{\text{g}}$	$18.7\pm1.5^{\rm ~f}$	$0.70\pm0.13^{\rm d}$	$2.10\pm0.10^{\mathrm{e}}$	$6689 \pm 179^{\circ}$	$30.8\pm3.11^{\rm ~de}$	60280 ± 2248^{ab}	3679 ± 241^{d}	$42.7\pm5.3^{\mathrm{c}}$	$9086 \pm 328^{\circ}$	$148\pm8.5^{\text{ b}}$	

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Soil [Ni]	46.2	227	370	530	756	1630	2310
Extractable Fe	2738	4075	3450	6920	8870	16200	19150
% of total* Fe	52.3	69.9	47.3	84.3	69.6	74.7	69.3
Extractable Mn	83	77	60	100	113	163	185
% of total* Mn	70.5	60.2	40.8	65.4	57.9	58.2	55.6

Table GH-19aExtractable iron and manganese oxides in sand (mg/kg and %)

*see Table GH-16 for total soil metal concentrations

Table GH-19b

Correlations for total and extractable nickel in Sand soil blends

Pearson Correlation	Ni Aqueous Extract (mg/kg)	Ni DTPA Extraction (mg/kg)	Ni Oxalate Extraction (mg/kg)	Ni Sr Nitrate Extraction (mg/kg)
Ni (Biomass)	0.939*	0.986*	0.980*	0.100

* Correlation is significant at the 0.01 level (2-tailed).

Table GH-20

Biomass Produced by Oat grown on Unamended and Amended Sand Soil Blends (dry weight per pot measured in grams)

[Ni] Soil mg/kg	Unamended	Amended
46.2	$2.75 \pm 0.3^{ab*}$	2.84 ± 0.3^{a}
227	3.12 ± 0.4^{a}	$2.73\pm0.6^{\rm a}$
370/436	$2.68\pm0.4^{\rm ab}$	2.83 ± 0.4 ^a
530	2.51 ± 0.2^{b}	2.27 ± 0.6 ^{ab}
756	$2.70\pm0.3^{\rm ab}$	2.24 ± 0.3^{ab}
1630	$1.69 \pm 0.2^{\circ}$	1.73 ± 0.2^{b}
2310	0.65 ± 0.1^{d}	1.01 ± 0.3 ^c

* SNK (Student Newman-Keuls's) multiple range test (P<0.05), n=5. Means within column followed by the same letter are not significantly different

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

		Tota	al Metals (mg	g/kg)			Total	Total	Total Inorganic	Soil	Soil
		CoCs Fe		Mn	Р	Organic Carbon	Carbon (as C)	Carbon (as C)	CEC (meq100)	Conductivity (mS/cm)	
Ni	Cu	Со	As				(%)	(%)	(%)	0.01	· · · ·
*2	1	2	0.2	50	1	20	0.05	0.05	0.05	0.01	0.01
89.5	46	6.0	6.0	15560	250	1150	30.6	31.2	0.60	13.2	1.48
283	71	8.6	7.8	15260	245	1120	31.4	31.4	0.03	13.9	1.44
239	65	7.7	7.9	15660	246	1130	30.8	32.2	1.4	13.1	1.38
596	120	12	9.6	15160	245	1110	35.4	35.4	0.03	14.5	1.36
683	120	13	10	14820	245	1100	37.0	37.0	0.03	14.8	1.27
1300	210	21	14	14780	254	1110	34.8	34.8	0.03	14.8	1.28
1640	230	37	15	15460	256	1120	33.2	34.0	0.80	14.2	1.24
2400	360	36	18	15080	265	1130	32.4	32.4	0.03	16.0	1.26

 Table GH-21

 Soil properties for unamended Organic blends used in Year 2001 Greenhouse Trials

Note:

* - indicates estimated limit of quantification (EQL) for analytical method

Soil CoC values are calculated from data specific to the Greenhouse experiments, therefore reported values may differ from those reported in the Soil Collection and Characterizations Report (Part 2).

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

		Unamended			Amended		
[Ni] Soil mg/kg	Initial Soil	After H	Iarvest	Initial Soil	After Harvest		
mg/Kg	pН	pH (H ₂ O)	pH (CaCl ₂)	pН	pH (H ₂ O)	pH (CaCl ₂)	
89.5	5.81	6.05 ± 0.04 ^{b=}	5.84 ± 0.03 ^c	6.08	$6.45 \pm 0.03^{\text{ b,c=}}$	6.21 ± 0.03 ^b	
283	5.85	6.06 ± 0.01 ^b	5.86 ± 0.02 ^c	6.09	$6.39 \pm 0.06^{a,b,c}$	6.20 ± 0.05 ^b	
239	5.86	$6.04 \pm 0.02^{a,b}$	5.86 ± 0.02 ^c	6.10	$6.39 \pm 0.04^{a,b,c}$	6.21 ± 0.01 ^b	
596/719	5.84	$5.93 \pm 0.05^{a,b}$	5.74 ± 0.03 ^b	6.13	6.51 ± 0.24 ^c	6.18 ± 0.03 ^b	
683/835	5.90	5.92 ± 0.04^{a}	5.64 ± 0.01^{a}	6.07	$6.45 \pm 0.06^{b,c}$	6.20 ± 0.02^{b}	
1300/1070	5.91	6.06 ± 0.17^{b}	5.87 ± 0.15 ^c	6.04	6.22 ± 0.03^{a}	6.05 ± 0.01 ^a	
1640	5.84	$5.97 \pm 0.04^{a,b}$	$5.77 \pm 0.02^{b,c}$	6.13	$6.29 \pm 0.15^{a,b}$	6.08 ± 0.14^{a}	
2400	5.65	$5.96 \pm 0.03^{a,b}$	$5.76 \pm 0.03^{b,c}$	5.99	$6.35 \pm 0.07^{a,b,c}$	$6.12 \pm 0.03^{a,b}$	

 Table GH-22

 Soil pH before and after harvest for Oat grown on Organic Soil (Unamended)

* SNK (Student Newman-Keuls) multiple range test (P<0.05), n=5 - Means within column followed by the same letter are not significantly different.

		Co	oCs					Nutrients			
[Ni] Soil mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
mg/Kg			•			mg/kg DW					
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5
89.5	0.6 ± 0.2^{a}	6.05 ± 0.62^{a}	>0.01	>0.2	$5160\pm622^{\ a}$	28 ± 3 ^a	27370 ± 2475^{a}	$3280\pm371^{\ a}$	$4.57\pm0.41~^{\rm a}$	$1974\pm308^{\ a}$	30 ± 4.6^{a}
283	3.7 ± 0.7^{a}	7.04 ± 0.73^{ab}	$0.02\pm0.0~^{\rm a}$	>0.2	5518 ± 454^{ab}	32 ± 3^{a}	30840 ± 1429 ab	$3500 \pm 322^{\text{ ab}}$	4.66 ± 0.83^{a}	2342 ± 371^{ab}	35 ± 4.8 abc
239	3.0 ± 0.2^{a}	6.41 ± 0.45^{a}	>0.01	>0.2	5730 ± 799 ^{ab}	30 ± 2^{a}	33020 ± 3205 ab	$3530\pm405^{\rm ab}$	4.42 ± 1.00^{a}	2252 ± 222^{ab}	31 ± 4.2 ^{ab}
596	$9.5\pm2.3^{\rm b}$	7.04 ± 0.52^{a}	$0.026\pm0.01~^{\rm ab}$	>0.2	$6344 \pm 481^{\ ab}$	29 ± 4^{a}	35130 ± 4138^{b}	3750 ± 374^{ab}	4.45 ± 0.48^{a}	$2904\pm334^{\rm b}$	34 ± 5.5 ^{abc}
683	11 ± 2.3^{b}	7.70 ± 0.61 bc	$0.026\pm0.01~^{\rm ab}$	>0.2	$6406\pm820^{\rm ab}$	30 ± 6^{a}	36740 ± 5812^{b}	4080 ± 423^{b}	4.72 ± 1.03^{a}	$2754 \pm 469^{\text{ b}}$	38 ± 4.6 abc
1300	$15 \pm 1.9^{\circ}$	8.20 ± 0.58 bc	0.034 ± 0.01 ^c	$0.24\pm0.05~^{\rm a}$	$6740\pm655^{\rm bc}$	28 ± 2^{a}	38260 ± 6388^{b}	$4130\pm389^{\text{b}}$	4.48 ± 0.72^{a}	$2866 \pm 393^{\text{b}}$	41 ± 3.7 bcd
1640	21 ± 4.5^{d}	8.08 ± 1.20^{bc}	$0.054 \pm 0.01^{\text{d}}$	0.28 ± 0.04^{a}	$6196\pm763^{\rm b}$	28 ± 4^{a}	34410±3561 ab	$3780 \pm 458 ^{ab}$	4.47 ± 0.44^{a}	$2672\pm522^{\rm ab}$	43 ± 8.2 ^{cd}
2400	$35 \pm 4.7^{\mathrm{e}}$	$8.78 \pm 0.45^{\circ}$	$0.098 \pm 0.01^{\mathrm{e}}$	$0.40\pm0.07^{\rm \ a}$	$7286\pm845^{\mathrm{c}}$	31 ± 2^{a}	33300 ± 1463^{a}	$4140\pm354^{\text{b}}$	4.68 ± 1.04^{a}	$2846\pm561^{\mathrm{b}}$	$49\pm4.2^{\rm d}$

 Table GH-23a

 Concentration of CoCs and nutrients in biomass (tissue) of Oat grown on organic soil (Unamended)

		Co	oCs					Nutrients			
[Ni] Soil mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
m ₆ / k ₆						mg/kg DV	V				
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5
89.5	0.68 ± 0.2^{a}	$5.98\pm0.30^{\rm \ a}$	$0.02\pm0.0^{\rm \ a}$	>0.2	$5138\pm346^{\mathrm{a}}$	27 ± 4^{a}	29440 ± 2273^{a}	3612 ± 144^{a}	4.28 ± 0.45 ^a	$2024\pm151^{\rm \ a}$	28 ± 2.4 ^a
283	3.4 ± 0.4^{a}	7.16 ± 0.74^{abc}	0.02 ± 0.0^{a}	>0.2	6193 ± 528^{a}	27 ± 5^{a}	33880 ± 3155^{ab}	3933 ± 326^{a}	4.08 ± 0.79^{a}	2515 ± 250^{ab}	$35 \pm 4.0^{\mathrm{abc}}$
239	$2.9\pm0.6^{\rm a}$	6.69 ± 0.58^{ab}	$0.02\pm0.0^{\rm ~a}$	>0.2	6114 ± 576^{a}	26 ± 2^{a}	35900 ± 4950^{ab}	3904 ± 248^{a}	4.04 ± 0.57^{a}	2398 ± 211^{ab}	33 ± 2.5 ^{ab}
719	10 ± 2.7 ^b	$8.40\pm0.48^{\rm bcd}$	$0.03\pm0.0^{\rm a}$	>0.2	6300 ± 522^{a}	31 ± 2^{a}	43460 ± 2769^{b}	3818 ± 137^{a}	3.74 ± 0.27 ^a	$2944\pm397^{\mathrm{b}}$	43 ± 2.5 ^{bcd}
835	$9.6 \pm 3.6^{\text{b}}$	$7.82\pm2.8^{\rm \ abc}$	0.03 ± 0.01^{ab}	>0.2	5496 ± 1832^{a}	31 ± 1^{a}	37360 ± 11484^{ab}	3246 ± 1124^{a}	3.39 ± 1.04^{a}	2765 ± 917^{ab}	40 ± 12.0^{bcd}
1070	12 ± 3.2^{b}	$8.46 \pm 1.0^{\rm bcd}$	$0.04\pm0.01^{\text{ b}}$	>0.2	6608 ± 603^{a}	31 ± 2^{a}	38160 ± 3553^{ab}	3716 ± 197^{a}	3.32 ± 0.38^{a}	2574 ± 339^{ab}	39 ± 2.8 ^{bc}
1640	$18 \pm 1.8^{\circ}$	9.44 ± 0.54^{cd}	$0.07\pm0.01^{\mathrm{c}}$	>0.2	5998 ± 405^{a}	30 ± 4^{a}	35880 ± 5180^{ab}	3588 ± 245^{a}	3.98 ± 1.16^{a}	2684 ± 234^{ab}	44 ± 4.2^{cd}
2400	29.08 ± 2.92^{d}	$10.42 \pm 0.57^{\rm d}$	0.102 ± 0.01^{d}	0.24 ± 0.09^{a}	6688 ± 519^{a}	32 ± 4^{a}	36500 ± 2348^{ab}	3842 ± 166^{a}	4.24 ± 1.04^{a}	2834 ± 283^{ab}	$50 \pm 3.9^{\text{ d}}$

 Table GH-23b

 Concentration of CoCs and nutrients in biomass (tissue) of Oat grown on organic soil (Amended)

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

					_			
Soil [Ni]	89.5	283	239	596	683	1300	1640	2400
Extractable Fe	15867	16400	15600	15300	15200	16900	16800	16750
% of total* Fe	100	100	100	100	100	100	100	100
Extractable Mn	251	285	256	256	247	285	259	286
% of total* Mn	100	100	100	100	100	100	100	100

Table GH-24a Extractable Iron and Manganese Oxides in Organic Soil (mg/kg)

*see Table GH-21 for total soil metal concentrations

Table GH-24b Correlations for total and extractable CoCs in organic soil

Pearson Correlation	Ni Aqueous	Ni DTPA	Ni Oxalate	Ni SR Nitrate
	Extract	Extraction	Extraction	Extraction
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Ni (Biomass)	0.954**	0.958**	0.961**	0.910**

** Correlation is significant at the 0.01 level (2-tailed).

Table GH-25

Tissue biomass produced by oat grown in unamended organic soil (dry weight per pot measured in grams)

[Ni] Soil mg/kg	Unamended	Amended
89.5	12.25 ± 1.11^{a}	$11.92 \pm 1.45 * $ ^c
283	11.70 ± 0.69 ^a	9.94 ± 1.51^{abc}
239	11.42 ± 1.64 ^a	10.83 ± 0.89 bc
596/719	11.57 ± 0.84 ^a	8.30 ± 0.88 ^a
683/835	11.38 ± 1.10^{a}	8.16 ± 1.08 ^a
1300/1070	10.77 ±0.78 ^a	7.93 ± 0.69^{a}
1640	11.50 ± 0.86 ^a	8.63 ± 1.27^{ab}
2400	10.28 ± 1.48 ^a	9.00 ± 1.74 ^{ab}

* - SNK (Student Newman-Keuls's) multiple range test (P<0.05), n=5. Means within column followed by the same letter are not significantly different.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

		Tota	l Metals (mg	g/kg)			Total	Total	Total	G - 11
	Co	Cs		_		_	Organic Carbon	Carbon	Inorganic Carbon	Soil CEC
Ni	Cu	Со	As	Fe	Mn	Р	(%)	(as C) (%)	(as C) (%)	(meq100)
*2	1	2	0.2	50	1	20	0.05	0.05	0.05	0.01
45.3	18.2	4.8	2.2	12170	159	682	5.49	6.32	0.83	4.50
188	34.0	7.0	3.0	12680	165	699	5.84	6.00	0.16	4.70
347	53.5	8.6	3.4	12540	164	708	5.76	5.76	0.03	4.50
498	70.5	11	4.1	12840	165	725	5.44	5.44	0.03	5.90
673	81.3	13	4.6	13160	170	744	5.60	5.60	0.03	4.80
956	121	17	5.8	13760	170	762	6.40	6.40	0.03	5.50
1130	147	19	7.0	13500	168	808	6.24	6.24	0.03	6.70
1900	240	29	10	13500	171	878	7.2	7.20	0.03	6.20

 Table GH-26

 Soil Properties for Unamended Welland Clay blends used in Year 2001 Greenhouse Trials

Note:

* - indicates estimated limit of quantification (EQL) for analytical method

Soil CoC values are calculated from data specific to the Greenhouse experiments, therefore reported values may differ from those reported in the Soil Collection and Characterizations Report (Part 2).

[Ni]		Unamended			Amended				
Soil	Initial Soil	After H	Iarvest	Initial Soil	After I	Harvest			
mg/kg	pН	pH (H ₂ 0)	pH (CaCl ₂)	pH	pH (H ₂ 0)	pH (CaCl ₂)			
45.3	6.35	$6.36 \pm 0.10 * a$	6.05 ± 0.12 ^a	6.81	$6.67 \pm 0.02 * {}^{a,b}$	6.38 ± 0.04 ^a			
188/248	6.38	6.41 ± 0.06^{a}	6.07 ± 0.05 ^a	6.55	$6.67 \pm 0.04^{a,b}$	$6.40 \pm 0.04^{a,b}$			
347	6.37	6.32 ± 0.03^{a}	6.01 ± 0.04 ^a	6.67	6.65 ± 0.06^{a}	6.37 ± 0.06^{a}			
498	6.26	6.35 ± 0.05 ^a	6.05 ± 0.03 ^a	6.65	6.74 ± 0.04 ^b	6.48 ± 0.01 ^c			
673/497	6.21	6.32 ± 0.04 ^a	6.02 ± 0.02 ^a	6.51	$6.70 \pm 0.05^{a,b}$	$6.42 \pm 0.03^{\text{ a,b,c}}$			
956	6.05	6.31 ± 0.04 ^a	6.04 ± 0.02^{a}	6.51	6.74 ± 0.02^{b}	$6.46 \pm 0.02^{b,c}$			
1130	6.07	6.29 ± 0.09^{a}	6.01 ± 0.04 ^a	6.54	$6.73 \pm 0.05^{a,b}$	$6.44 \pm 0.05^{a,b,c}$			
1900	5.86	6.34 ± 0.04^{a}	6.03 ± 0.02^{a}	6.30	$6.71 \pm 0.04^{a,b}$	$6.44 \pm 0.02^{a,b,c}$			

 Table GH-27

 Soil pH before and after harvest for Oat grown on Welland Clay (Unamended)

* SNK (Student Newman-Keuls's) multiple range test (P<0.05), n=5. Means within column followed by the same letter are not significantly different

		Co	Cs					Nutrients			
[Ni] Soil mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
8						mg/kg DV	V				
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5
45.3	$2.4 \pm 0.2^{*a}$	2.99 ± 0.45^{a}	$0.02\pm0.01^{\rm \ ab}$	<0.2	5002 ± 383^{a}	40 ± 6^{ab}	43860 ± 2298^{a}	3050 ± 137^{ab}	27.7 ± 1.1 °	$2518\pm201~^{\rm a}$	$27\pm1.1~^{\rm a}$
188	$6.8\pm0.7^{\rm b}$	4.65 ± 0.60^{b}	$0.02\pm0.01^{\rm \ ab}$	<0.2	5614 ± 699^{ab}	43 ± 7^{b}	47550 ± 3506^{a}	3240 ± 326^{ab}	$19.6\pm1.6^{\rm d}$	2902 ± 345^{ab}	28 ± 2.4^{a}
347	$11\pm0.8^{\rm b}$	4.75 ± 0.66 ^b	0.01 ± 0.01 ^a	<0.2	4774 ± 1075^{a}	33 ± 6^{ab}	44580 ± 6624^{a}	2850 ± 478^{a}	$17.2 \pm 2.5^{\rm bc}$	2352 ± 547^{a}	26 ± 5.2^{a}
498	$17\pm0.9^{\circ}$	$5.04 \pm 0.54^{\rm \ bc}$	$0.03\pm0.0^{\rmbc}$	<0.2	5212 ± 689^{ab}	40 ± 4^{ab}	42540 ± 4780^{a}	3360 ± 383^{ab}	15.3 ± 1.9 °	$3838\pm585^{\mathrm{bc}}$	$29\pm3.6^{\rm a}$
673	170±1.5°	$5.30\pm0.33^{\rm \ bcd}$	$0.02\pm0.0^{\rmab}$	<0.2	5347 ± 612^{ab}	37 ± 6^{ab}	48040 ± 3793^{a}	3130 ± 206^{ab}	$11.4 \pm 0.4^{\text{b}}$	$2580\pm300^{\mathrm{a}}$	27 ± 1.8^{a}
956	26 ± 0.9^{d}	5.93 ± 0.27^{cd}	$0.03 \pm 0.01_{abc}$	<0.2	4620 ± 245^{a}	29 ± 2^{a}	40440 ± 2085^{a}	$2950\pm257^{\rm a}$	$9.9 \pm 1.9^{\text{b}}$	2950 ± 840^{ab}	28 ± 3.0^{a}
1130	$30 \pm 1.8^{\mathrm{e}}$	6.12 ± 0.45^{d}	0.04 ± 0.01 °	<0.2	4946 ± 518^{a}	32 ± 4^{a}	40280 ± 4487^{a}	3090 ± 316^{ab}	9.5 ± 1.4^{ab}	$3220\pm700^{\rm abc}$	28 ± 3.5^{a}
1900	$52 \pm 5.1^{\text{ f}}$	$8.93 \pm 0.28^{\circ}$	$0.1\pm0.01^{\rm ~d}$	0.3 ± 0.0^{a}	6520 ± 565^{ab}	39 ± 4^{ab}	48760 ± 4209^{a}	$3600 \pm 255^{\text{b}}$	6.4 ± 0.5^{a}	$4233\pm385^{\mathrm{c}}$	38 ± 4.3^{a}

Table GH-28a: Concentration of CoCs and nutrients in Biomass (tissue) of Oat grown on Welland Clay (Unamended)

*Means within column followed by the same letter are not significantly different according to Student Newman-Keuls's multiple range test (P<0.05), n=5

[Ni] Soil		Co	Cs					Nutrients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
8,8						mg/kg DW					
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5
45.3	2.6 ± 0.10^{a}	2.54 ± 0.28^{a}	0.03 ± 0.01 $^{\rm a}$	>0.2	4675 ± 112^{a}	$42\pm5.7^{\rm \ a}$	36325 ± 713^{a}	3236 ± 74^{cde}	$41 \pm 3.0^{\mathrm{e}}$	$3168\pm117^{\mathrm{c}}$	26 ± 2.4^{a}
248	$10\pm1.85^{\mathrm{b}}$	$3.72 \pm 0.24^{\text{b}}$	$0.03\pm0.0^{\rm ~a}$	>0.2	5056 ± 585^{a}	42 ± 3.2^{a}	40480 ± 4002^{a}	$3672 \pm 513^{\circ}$	$28\pm3.7^{\ d}$	$3522\pm311^{\mathrm{c}}$	26 ± 2.3^{a}
347	11±1.32 ^b	$4.43 \pm 1.12^{\mathrm{b}}$	0.02 ± 0.01 $^{\rm a}$	>0.2	$4120\pm560^{\rm a}$	$40 \pm 5.4^{\text{a}}$	36140 ± 1961 ª	2772 ± 488^{bcde}	$19 \pm 4.8^{\circ}$	$2450\pm645^{\rmbc}$	24 ± 1.6^{a}
498	12 ± 1.69^{b}	$5.19 \pm 0.24^{\circ}$	$0.02\pm0.0^{\rm ~a}$	>0.2	4934 ± 694^{a}	38 ± 6.3^{a}	42840 ± 4999^{a}	2822 ± 354^{ab}	$15\pm0.7^{\rm \ b}$	$2306\pm341^{\rm a}$	26 ± 2.3^{a}
497	$16 \pm 1.16^{\text{b}}$	$5.47\pm0.85^{\mathrm{c}}$	$0.02\pm0.0^{\rm ~a}$	>0.2	4772 ± 427^{a}	36 ± 1.5^{a}	41040 ± 3215^{a}	2818 ± 223^{abcd}	12 ± 2.9 ^b	2362 ± 180^{ab}	24± 1.2 ^a
956	$21\pm2.31^{\rm ~d}$	6.65 ± 0.61 ^d	0.02 ± 0.01 $^{\rm a}$	>0.2	4521 ± 1004^{a}	34 ± 1.5 ^a	40510 ± 4704^{a}	$2529\pm402^{\mathrm{a}}$	$8.3\pm0.7^{\rm ~a}$	$2228\pm609^{\rm \ a}$	25 ± 2.4^{a}
1130	$27\pm8.02^{\text{ e}}$	8.09 ± 1.54^{d}	$0.05 \pm 0.02^{\text{ a}}$	>0.2	5460 ± 1299^{a}	$40\pm7.4^{\rm a}$	46600 ± 6477^{a}	3088 ± 492^{abc}	7.4 ± 1.3^{a}	$2522\pm494^{\rm ab}$	30 ± 5.2^{a}
1900	$32\pm3.45^{\rm \ f}$	$8.50 \pm 0.69^{\mathrm{e}}$	$0.09 \pm 0.02^{\text{b}}$	0.2 ± 0.1 ^a	$7208 \pm 1233^{\text{b}}$	38 ± 12^{a}	57133 ± 2743 ^b	$3645\pm359^{\rm de}$	6.3 ± 1.9^{a}	$3445\pm478^{\mathrm{c}}$	31 ± 2.5 ^a

Table GH-28b: Concentration of CoCs and nutrients in Biomass (tissue) of Oat grown on Welland Clay (Amended)

*Means within column followed by the same letter are not significantly different according to Student Newman-Keuls's multiple range test (P<0.05), n=5

Soil [Ni]	45.3	188	347	498	673	956	1130	1900
Extractable Fe	7569	7460	8125	7865	8175	8055	8200	8845
% of total* Fe	62	59	65	61	62	59	61	66
Extractable Mn	107	87	99	92	102	122	119	105
% of total* Mn	67	53	60	56	60	72	71	62

 Table GH-29a

 Extractable Iron and Manganese Oxides in Welland Clay (mg/kg)

 Table GH-29b

 Correlation for total and extractable nickel in Welland clay blends

Pearson Correlation	Ni Aqueous	Ni DTPA	Ni Oxalate	Ni SR Nitrate
	Extract	Extraction	Extraction	Extraction
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Ni (Biomass)	0.987**	0.988**	0.991**	0.942**

** Correlation is significant at the 0.01 level (2-tailed).

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

·	1	1
[Ni] Soil mg/kg	Unamended	Amended
45.3	31.41 ± 1.83 ^b	33.34 ± 1.59 °
188/248	26.99 ± 4.42^{ab}	30.01 ± 1.89 bc
347	30.30 ± 5.10^{b}	31.72 ± 2.36 °
498	30.36 ± 2.98 ^b	28.50 ± 3.32 bc
673/497	27.96 ± 3.01^{ab}	29.30 ± 3.17 bc
956	30.41 ± 1.72 ^b	28.10 ± 4.05 bc
1130	31.42 ± 2.55 ^b	22.37 ± 6.12^{b}
1900	22.93 ± 2.17 ^a	15.04 ± 3.17^{a}

 Table GH-30

 Biomass Produced by Oat grown on Unamended and Amended Welland Clay Blends (dry weight per pot measured in grams)

*Means within column followed by the same letter are not significantly different according to Student Newman-Keuls's multiple range test (P<0.05), n=5

[Ni] Soil		CoC	Cs					Nutrients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
45.3	0.9 ± 0.2^{a}	3.36 ± 0.70^{a}	0.06 ± 0.01^{a}	>0.2	35680 ± 4408^{a}	$68.9 \pm 8.8^{\text{a}}$	44790 ± 5536^{a}	$5834\pm593^{\rm a}$	$28.5 \pm 4.2^{\rm C}$	3540 ± 522^{a}	35.09 ± 3.23^{b}
188	$5.7\pm0.8^{\hbox{b}}$	3.58 ± 0.31^{a}	0.08 ± 0.01^{ab}	>0.2	37000 ± 3027^{a}	75.6 ± 25.1^{a}	48440 ± 8540^{a}	6078 ± 343^{a}	$21.0\pm1.8^{\text{b}}$	$3680\pm583^{\rm a}$	$33.58\pm6.18^{\rm ab}$
347	$6.1\pm2.0^{\hbox{b}}$	3.23 ± 0.37^{a}	0.07 ± 0.01^{ab}	>0.2	$41150\pm5289^{\rm a}$	68.2 ± 14.9^{a}	44180 ± 4537^{a}	6450 ± 419^{a}	$19.8 \pm 1.4^{\text{b}}$	2886 ± 797^{a}	33.66 ± 4.49^{ab}
498	$13 \pm 2.1^{\circ}$	5.12 ± 3.17^{ab}	$0.16\pm0.05^{\rm cd}$	>0.2	36440 ± 1083^{a}	63.2 ± 18.6^{a}	43820 ± 8141^{a}	$6036\pm766^{\rm a}$	$24.9 \pm 3.5^{\rm C}$	$3998 \pm 359^{\text{a}}$	35.04 ± 3.39^{b}
673	15 ± 2.2^{c}	3.82 ± 0.19^{a}	$0.14\pm0.03^{\hbox{bc}}$	>0.2	38520 ± 2521^{a}	71.4 ± 13.4^{a}	47780 ± 3935^{a}	$5778\pm370^{\rm a}$	17.3 ± 0.3^{ab}	$3586 \pm 389^{\rm a}$	31.88 ± 1.56^{ab}
956	19 ± 2.1^{d}	4.10 ± 0.24^{a}	$0.17\pm0.01^{\rm cd}$	>0.2	$39540\pm3082^{\rm a}$	$74.0\pm5.2^{\rm a}$	43040 ± 4870^{a}	$6420\pm415^{\rm a}$	17.2 ± 2.8^{ab}	3370 ± 492^{a}	27.86 ± 0.43^{a}
1130	25 ± 4.7^{e}	4.32 ± 0.46^{ab}	$0.22\pm0.04^{\rm d}$	>0.2	38540 ± 1369^{a}	$65.0\pm3.7^{\rm a}$	40400 ± 3803^{a}	$6314\pm1005^{\rm a}$	16.8 ± 3.8^{ab}	$3592\pm504^{\rm a}$	$31.90\pm0.76^{\rm ab}$
1900	$45\pm5.8^{\hbox{f}}$	$6.25 \pm 1.14^{\text{b}}$	$0.52 \pm 0.10^{\text{e}}$	>0.2	37960 ± 1812^{a}	$59.6\pm6.8^{\rm a}$	39640 ± 4342^{a}	5898 ± 1159^{a}	14.0 ± 3.0^{a}	$3750 \pm 498^{\text{a}}$	31.30 ± 3.04^{ab}

 Table GH-31a – Concentration of CoCs and nutrients in Biomass (All Leaves) of Radish grown on Welland Clay (Unamended)

Table GH-31b – Concentration of CoCs and nutrients in Biomass (All Leaves) of Radish grown on Welland Clay (Amended)

[Ni] Soil		CoC	Cs					Nutrients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
45.3	1.1 ± 0.3^{a}	$4.00\pm0.88^{\rm a}$	$0.16\pm0.01^{\rm a}$	>0.2	39120 ± 4376^{a}	$70.0\pm2.9^{\rm a}$	46540 ± 6540^{a}	$6923\pm726^{\rm a}$	$46.4\pm8.1^{\hbox{\scriptsize d}}$	$4198\pm475^{\rm a}$	32.47 ± 3.52^{a}
248	$5.2\pm0.7^{\hbox{b}}$	3.67 ± 0.44^{a}	$0.15\pm0.03^{\rm a}$	>0.2	37560 ± 2622^{a}	$62.5\pm6.7^{\rm a}$	42740 ± 4036^{a}	$6777 \pm 435^{\mathrm{a}}$	$29.3 \pm 5.3^{\circ}$	$3902\pm513^{\rm a}$	32.47 ± 5.61^{a}
347	$8.1 \pm 1.5^{\rm C}$	$3.72\pm0.41^{\rm a}$	$0.25\pm0.08^{\hbox{b}}$	>0.2	38960 ± 2713^{a}	68.8 ± 12.3 ^a	44390 ± 5487^{a}	$6873\pm576^{\rm a}$	$33.3 \pm 2.6^{\circ}$	3645 ± 411^{a}	30.33 ± 2.28^{a}
498	$9.8\pm0.5^{\rm C}$	$3.96\pm0.38^{\rm a}$	$0.13\pm0.01^{\rm a}$	>0.2	38725 ± 2718^{a}	66.3 ± 9.1^{a}	48000 ± 4297^{a}	6610 ± 437^{a}	$19.2\pm1.5^{\text{b}}$	$3378\pm316^{\rm a}$	$31.28 \pm 1.54^{\text{a}}$
497	$9.5\pm1.5^{\rm C}$	$3.46\pm0.25^{\rm a}$	$0.14\pm0.01^{\rm a}$	>0.2	38320 ± 4069^{a}	69.4 ± 12.6^{a}	47100 ± 3526^{a}	$6273\pm297^{\rm a}$	15.9 ± 1.3^{ab}	$3331\pm516^{\rm a}$	$30.71 \pm 4.14^{\text{a}}$
956	$15\pm1.7^{\hbox{d}}$	$3.91\pm0.26^{\rm a}$	0.18 ± 0.04^{ab}	>0.2	39980 ± 1843^{a}	$63.6\pm7.6^{\rm a}$	44940 ± 4332^{a}	6446 ± 497^{a}	14.6 ± 1.4^{ab}	$3322\pm440^{\rm a}$	$28.28 \pm 1.19^{\text{a}}$
1130	18 ± 2.5^{e}	4.34 ± 0.49^{a}	$0.25\pm0.04^{\hbox{b}}$	>0.2	38600 ± 2310^{a}	67.0 ± 7.1^{a}	44560 ± 3320^{a}	$6440\pm527^{\rm a}$	14.2 ± 0.5^{ab}	$3530\pm535^{\rm a}$	$28.84 \pm 2.76^{\text{a}}$
1900	$29\pm3.0^{\rm f}$	$5.39\pm0.81^{\text{b}}$	$0.48\pm0.10^{\rm C}$	>0.2	38540 ± 4060^{a}	$68.4\pm5.7^{\rm a}$	45580 ± 6906^{a}	$6130\pm691^{\rm a}$	11.3 ± 1.2^{a}	$3656\pm680^{\rm a}$	27.40 ± 3.25^{a}

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

[Ni] Soil		CoC	Cs					Nutrients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
45.3	0.5 ± 0.3^{a}	$2.61\pm0.28^{\rm a}$	0.05 ± 0.01^{a}	>0.2	50610 ± 2975^{a}	65 ± 17^{a}	47650 ± 4701^{ab}	$7299 \pm 538^{\rm a}$	$33.0 \pm 4.0^{\mathrm{d}}$	$2291 \pm 165^{\mathrm{a}}$	$31.9 \pm 1.6^{\rm a}$
188	2.5 ± 0.5^{ab}	2.86 ± 0.21^{a}	0.06 ± 0.01^{ab}	>0.2	50940 ± 5965^{a}	63 ± 13^{a}	46530 ± 5421^{ab}	$7679\pm563^{\rm a}$	$22.8 \pm 4.2^{\text{bc}}$	$2332\pm234^{\rm a}$	$30.8\pm6.7^{\rm a}$
347	3.9 ± 1.8^{abc}	$2.78\pm0.42^{\rm a}$	0.06 ± 0.01^{ab}	>0.2	47740 ± 7102^{a}	54 ± 4^{a}	45020 ± 4926^{ab}	7246 ± 1073^{a}	18.4 ± 2.6^{ab}	$2304\pm387^{\rm a}$	$29.9 \pm 3.9^{\text{a}}$
498	$6.3 \pm 1.1^{\text{bc}}$	$2.69\pm0.30^{\rm a}$	$0.12\pm0.05^{\rm cd}$	>0.2	49540 ± 2628^{a}	47 ± 14^{a}	43860 ± 7964^{ab}	$7316\pm 619^{\rm a}$	$25.0\pm5.7^{\rm C}$	$2434 \pm 452^{\text{a}}$	$29.5\pm1.8^{\rm a}$
673	7.6 ± 2.2^{cd}	$2.91\pm0.32^{\rm a}$	0.10 ± 0.03^{abcd}	>0.2	54490 ± 7169^{a}	55 ± 21^{a}	$52870\pm8956^{\hbox{b}}$	$7136\pm757^{\rm a}$	15.7 ± 1.7^{a}	$2403\pm805^{\rm a}$	30.8 ± 6.4^{a}
956	$10\pm1.0^{\rm d}$	$2.92\pm0.25^{\rm a}$	$0.11 \pm 0.02^{\text{bcd}}$	>0.2	62360 ± 9922^{a}	55 ± 15^{a}	$38880\pm5705^{\hbox{d}}$	$8736\pm936^{\rm a}$	15.7 ± 3.7^{a}	$1950\pm362^{\rm a}$	24.2 ± 3.1^{a}
1130	$15 \pm 3.6^{\text{e}}$	$2.97\pm0.30^{\rm a}$	0.15 ± 0.04^{d}	>0.2	$55300\pm7512^{\rm a}$	53 ± 15^{a}	$40100\pm5825^{\rm a}$	$7914\pm699^{\rm a}$	14.3 ± 4.2^{a}	2004 ± 424^{a}	$28.9\pm5.0^{\rm a}$
1900	$32\pm5.3^{\hbox{f}}$	$4.99\pm0.29^{\text{b}}$	$0.42 \pm 0.06^{\text{e}}$	0.2± 0.1 ^a	$51920\pm7381^{\rm a}$	53 ± 9^{a}	38200 ± 4551^{a}	$7002 \pm 1370^{\text{a}}$	12.3 ± 3.3^{a}	2352 ± 408^{a}	$28.9 \pm 4.2^{\text{a}}$

Table GH-32a – Concentration of CoCs in Biomass (Basal Leaves) of Radish grown on Welland Clay (Unamended)

Table GH-32b – Concentration of CoCs in Biomass (Basal Leaves) of Radish grown on Welland Clay (Amended)

[Ni] Soil		CoC	Cs					Nurients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
45.3	0.4 ± 0.2^{a}	2.81 ± 0.54^{ab}	$0.12\pm0.04^{\rm abc}$	>0.2	52680 ± 9936^{a}	52 ± 8^{a}	44940 ± 6488^{a}	8634 ± 1320^{ab}	$53.6\pm6.9^{\texttt{e}}$	2880 ± 449^{a}	27.1 ± 3.4^{a}
248	2.0 ± 0.4^{ab}	$2.59\pm0.10^{\rm a}$	$0.12\pm0.03^{\rm abc}$	>0.2	54360 ± 4433^{a}	55 ± 7^{a}	41880 ± 7351^{a}	8756 ± 741^{ab}	$34.3\pm8.7^{\rm C}$	2466 ± 416^{a}	$27.8\pm3.9^{\rm a}$
347	3.7 ± 1.3^{bc}	3.18 ± 0.39^{ab}	$0.19\pm0.06^{\rm d}$	>0.2	58760 ± 4606^{a}	57 ± 12^{a}	41060 ± 4325^{a}	$9244\pm988^{\hbox{b}}$	$43.8\pm6.2^{\hbox{d}}$	$2122\pm540^{\rm a}$	$26.1\pm5.1^{\rm a}$
498	$4.2 \pm 1.0^{\circ}$	2.79 ± 0.28^{ab}	$0.09\pm0.01^{\rm a}$	>0.2	55700 ± 2550^{a}	61 ± 8^{a}	44800 ± 5932^{a}	8448 ± 267^{ab}	17.9 ± 2.1^{b}	$2113\pm 380^{\rm a}$	26.3 ± 3.9^{a}
497	$4.8 \pm 1.5^{\rm C}$	2.95 ± 0.32^{ab}	$0.10\pm0.01^{\rm ab}$	>0.2	52400 ± 7715^{a}	63 ± 16^{a}	44770 ± 4523^{a}	$7683\pm996^{\rm ab}$	$15.6\pm2.1^{\rm ab}$	$2365\pm430^{\rm a}$	$29.2\pm5.3^{\rm a}$
956	$7.3\pm0.5^{\hbox{d}}$	3.44 ± 1.51^{ab}	$0.14\pm0.02^{\rm abc}$	>0.2	$54120\pm4605^{\rm a}$	56 ± 21^{a}	43240 ± 4127^{a}	8110 ± 677^{ab}	$13.7\pm0.9^{\rm ab}$	2162 ± 74^{a}	$25.2\pm1.4^{\rm a}$
1130	9.7 ± 1.4^{e}	3.32 ± 0.16^{ab}	$0.18\pm0.04^{\rm cd}$	>0.2	54940 ± 2735^{a}	66 ± 12^{a}	45220 ± 4365^{a}	7990 ± 501^{ab}	$13.0\pm0.5^{\rm ab}$	2286 ± 234^{a}	$26.1\pm3.9^{\rm a}$
1900	$16 \pm 2.9^{\mathrm{f}}$	$4.06\pm0.50^{\text{b}}$	$0.33\pm0.07^{\rm d}$	>0.2	$51780\pm3854^{\rm a}$	58 ± 6^{a}	46040 ± 6633^{a}	$7404 \pm 446^{\mathrm{a}}$	$9.1\pm0.6^{\rm a}$	$2382\pm375^{\rm a}$	$23.8\pm2.3^{\rm a}$

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

[Ni] Soil		CoC	Ċs		Nutrients							
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn	
45.3	1.3 ± 0.1^{a}	$2.53\pm0.45^{\rm a}$	0.06 ± 0.01^{a}	>0.2	$6374\pm940^{\rm a}$	48 ± 6^{ab}	83380 ± 11318^{a}	3246 ± 347^{a}	$5.4\pm0.5^{\hbox{b}}$	3772 ± 220^{a}	34.6 ± 3.0^{a}	
188	$8.7\pm1.1^{\rm b}$	3.80 ± 2.30^{a}	0.09 ± 0.01^{ab}	>0.2	7333 ± 1353^{a}	54 ± 10^{b}	82050 ± 13403^{a}	3417 ± 227^{a}	5.0 ± 0.4^{ab}	3784 ± 777^{a}	$34.7 \pm 4.6^{\mathrm{a}}$	
347	$10\pm0.7^{\hbox{b}}$	$2.37\pm0.18^{\rm a}$	0.08 ± 0.01^{ab}	>0.2	$6315\pm880^{\rm a}$	50 ± 9^{ab}	74790 ± 7845^{a}	3125 ± 450^{a}	4.8 ± 0.4^{ab}	$3293\pm270^{\rm a}$	$32.0\pm4.5^{\rm a}$	
498	$18 \pm 2.1^{\circ}$	2.62 ± 0.43^{a}	0.17 ± 0.03^{bcd}	>0.2	6600 ± 259^{a}	42 ± 5^{ab}	77700 ± 11720^{a}	3286 ± 474^{a}	$5.4\pm0.3^{\hbox{b}}$	3998 ± 466^{a}	33.5 ± 2.4^{a}	
673	$18 \pm 2.5^{\circ}$	$2.55\pm0.16^{\rm a}$	$0.14\pm0.02^{\rm abc}$	>0.2	7560 ± 1159^{a}	45 ± 7^{ab}	80680 ± 10927^{a}	$3476\pm527^{\rm a}$	4.3 ± 0.6^{ab}	3206 ± 472^{a}	33.3 ± 2.7^{a}	
956	26 ± 2.8^{d}	$2.98\pm0.18^{\rm a}$	$0.19\pm0.02^{\rm cd}$	>0.2	$8170\pm1785^{\rm a}$	39 ± 3^{a}	63760 ± 30390^{a}	$3788\pm630^{\rm a}$	4.1 ± 0.6^{a}	$3322\pm307^{\rm a}$	32.7 ± 3.3^{a}	
1130	32 ± 5.2^{e}	3.06 ± 0.26^{a}	$0.25\pm0.05^{\hbox{d}}$	>0.2	$7228 \pm 327^{\rm a}$	44 ± 6^{ab}	$76420\pm8201^{\rm a}$	$3748 \pm 755^{\rm a}$	4.4 ± 1.0^{ab}	$3616\pm765^{\rm a}$	33.1 ± 3.1^{a}	
1900	$54\pm5.8^{\hbox{f}}$	$5.30\pm0.84^{\text{b}}$	$0.57 \pm 0.4^{\text{e}}$	>0.2	7162 ± 1064^{a}	37 ± 4^{a}	71900 ± 7346^{a}	3340 ± 767^{a}	4.0 ± 0.3^{a}	3762 ± 575^{a}	32.8 ± 3.5^{a}	

Table GH-33a – Concentration of CoCs in Biomass (Globes) of Radish grown on Welland Clay (Unamended)

 Table GH-33b – Concentration of CoCs in Biomass (Globes) of Radish grown on Welland Clay (Amended)

[Ni] Soil		CoC	Cs			Nutrients							
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn		
45.3	1.3 ± 0.2^{a}	$2.40\pm0.56^{\rm a}$	0.18 ± 0.03^{ab}	>0.2	7492 ± 1186^{a}	50 ± 7^{a}	$87510\pm8063^{\rm a}$	$3928\pm 612^{\rm a}$	$7.7\pm0.8^{\hbox{d}}$	$3962\pm430^{\text{b}}$	33.7 ± 5.7 ^{ab}		
248	7.2 ± 0.6^{b}	$2.72\pm0.32^{\rm a}$	0.17 ± 0.05^{ab}	>0.2	7600 ± 1328^{a}	46 ± 7^{a}	$82200\pm7492^{\rm a}$	$3914\pm850^{\rm a}$	$6.5 \pm 1.2^{\rm C}$	$3964\pm413^{\rm b}$	35.7 ± 3.2^{b}		
347	$10 \pm 1.2^{\text{C}}$	$2.52\pm0.48^{\rm a}$	$0.26\pm0.09^{\text{b}}$	>0.2	7426 ± 1403^{a}	42 ± 8^{a}	81860 ± 6253^{a}	$3520\pm509^{\rm a}$	$5.6\pm0.5^{\hbox{b}}$	3486 ± 201^{ab}	33.8 ± 0.6^{ab}		
498	$14\pm0.8^{ m d}$	$2.85\pm0.09^{\rm a}$	$0.14\pm0.02^{\rm a}$	>0.2	8365 ± 611^{a}	51 ± 11^{a}	62600 ± 35222^{a}	$3930\pm478^{\rm a}$	$4.8\pm0.4^{\rm a}$	3055 ± 161^{a}	32.5 ± 1.6^{ab}		
497	12 ± 2.3^{d}	$2.61\pm0.30^{\rm a}$	$0.15\pm0.02^{\rm a}$	>0.2	7642 ± 1335^{a}	43 ± 8^{a}	$85120\pm6974^{\rm a}$	$3580\pm404^{\rm a}$	4.2 ± 0.3^{a}	3266 ± 358^{a}	33.2 ± 6.1^{ab}		
956	19 ± 1.1^{e}	$2.86\pm0.26^{\rm a}$	0.20 ± 0.03^{ab}	>0.2	$7850\pm313^{\rm a}$	42 ± 4^{a}	71840 ± 15142^{a}	$3530\pm263^{\rm a}$	4.0 ± 0.4^{a}	3082 ± 296^{a}	27.4 ± 1.4^{a}		
1130	$21\pm2.5^{\mathrm{f}}$	$3.19\pm0.53^{\rm a}$	$0.25\pm0.04^{\text{b}}$	>0.2	7659 ± 1331^{a}	42 ± 5^{a}	80880 ± 8049^{a}	$3589 \pm 267^{\rm a}$	4.0 ± 0.2^{a}	3186 ± 396^{a}	26.7 ± 3.1^{a}		
1900	$34 \pm 1.1^{\text{g}}$	$4.19\pm0.36^{\text{b}}$	$0.53 \pm 0.08^{\circ}$	>0.2	8890 ± 821^{a}	52 ± 15^{a}	79900 ± 13326^{a}	3888 ± 310^{a}	3.7 ± 0.1^{a}	3286 ± 274^{a}	29.2 ± 2.3^{ab}		

* SNK (Student Newman-Keuls's) multiple range test (P<0.05), n=5. Means within column followed by the same letter are not significantly different

Table Gl Tissue biomass produced by Radish grov (dry weight per pot me	vn on unamended Welland Clay soil						
Unamended Amended							

[Ni] Soil		Unamended			Amended	
mg/kg	DW Biomass	DW Basal Leaves	DW Globes	DW Biomass	DW Basal Leaves	DW Globes
45.3	2.977 ± 0.525^{a}	1.183 ± 0.291^{a}	2.228 ± 0.426^{a}	4.089 ± 0.621 ab	1.895 ± 0.533^{ab}	$2.989\pm0.777\mathrm{ab}$
188/248	3.301 ± 0.567^{a}	1.814 ± 0.624^{a}	2.351 ± 0.525^{a}	4.257 ± 0.360^{ab}	2.065 ± 0.424^{b}	3.394 ± 0.254^{b}
347	3.689 ± 0.273^{ab}	1.583 ± 0.270^{a}	2.993 ± 0.411 ab	4.881 ± 0.945^{b}	1.544 ± 0.156^{ab}	3.544 ± 1.108^{b}
498	3.398 ± 0.345^{a}	1.648 ± 0.214^{a}	$2.907 \pm 0.599 \mathrm{ab}$	3.276 ± 0.770^{a}	1.356 ± 0.048^{a}	1.921 ± 0.043^{a}
673/497	3.459 ± 0.814^{a}	1.464 ± 0.335^{a}	2.366 ± 0.474^{a}	$3.936 \pm 0.607 ab$	1.595 ± 0.236^{ab}	2.868 ± 0.650^{ab}
956	3.882 ± 0.959^{ab}	1.462 ± 0.294^{a}	3.418 ± 0.869^{ab}	3.669 ± 0.811 ab	1.831 ± 0.433^{ab}	2.708 ± 0.701^{ab}
1130	$4.669\pm0.469^{\hbox{b}}$	1.774 ± 0.378^{a}	$4.010\pm0.730^{\text{b}}$	3.063 ± 0.796^{a}	1.639 ± 0.301^{ab}	$2.634 \pm 0.605 ab$
1900	$3.998 \pm 0.685 ab$	1.734 ± 0.565^{a}	$3.227 \pm 1.134^{\text{b}}$	2.867 ± 0.495^{a}	1.474 ± 0.204^{ab}	1.834 ± 0.348^{a}

		Tota	al Metals (mg	g/kg)			Total Organic	Total Carbon	Total Inorganic	Soil
Ni	Co Cu	Cs Co	As	Fe	Mn	Р	Carbon (%)	(as C) (%)	Carbon (as C)	CEC (meq100)
*2	1	2	0.2	50	1	20	0.05	0.05	(%) 0.05	0.01
51.0	17	7	4.4	20730	952	1415	3.36	3.96	1.28	5.00
145	29	9	4.9	21940	958	978	3.92	4.08	0.16	5.10
262	43	10	5.5	22100	929	980	4.00	4.00	0.03	4.10
438	68	13	6.3	22970	894	1016	4.64	4.64	0.03	4.10
554	81	15	6.8	23260	885	1038	4.44	4.44	0.03	5.00
947	131	22	8.5	24280	778	1092	7.04	7.84	0.80	6.30
1380	185	29	10	25450	691	1147	9.16	9.16	0.03	7.15
2540	338	47	16	28750	388	1312	13.4	14.5	2.16	9.50

 Table GH-35

 Soil properties for unamended Till Clay blends used in Year 2001 Greenhouse Trials

Note:

* - indicates estimated limit of quantification (EQL) for analytical method

Soil CoC values are calculated from data specific to the Greenhouse experiments therefore reported values may differ from those reported in the Soil Collection and Characterizations Report (Part 2).

[Ni] Soil	Initial Soil	Unamende	d After Harvest	Amended Af	fter Harvest
mg/kg	рН	pH (H ₂ 0)	pH (CaCl ₂)	pH (H ₂ 0)	pH (CaCl ₂)
51.0	5.49	6.19 ± 0.06^{a}	5.55 ± 0.05 ^a	6.70 ± 0.04 ^a	6.09 ± 0.04^{a}
145	5.59	6.27 ± 0.03^{b}	5.65 ± 0.03^{b}	$6.74 \pm 0.04^{a,b}$	6.14 ± 0.04^{a}
262	5.61	6.36 ± 0.04 ^c	5.76 ± 0.03 °	$6.80 \pm 0.03^{b,c}$	6.20 ± 0.04 ^b
438	5.73	6.43 ± 0.02^{d}	$5.83\pm0.01^{\text{ d}}$	6.82 ± 0.01 ^c	6.27 ± 0.02 ^c
554	5.76	6.46 ± 0.03^{d}	$5.89 \pm 0.02^{\mathrm{e}}$	6.91 ± 0.08^{d}	6.34 ± 0.03^{d}
947	6.48	6.54 ± 0.02^{e}	$5.98 \pm 0.02^{\rm \ f}$	7.00 ± 0.07^{e}	$6.40 \pm 0.09^{d,e}$
1380	5.96	$6.63 \pm 0.02^{\rm f}$	$6.06 \pm 0.02^{\text{g}}$	7.00 ± 0.05^{e}	6.45 ± 0.04^{e}
2540	6.13	$6.59 \pm 0.04^{ m f}$	6.15 ± 0.01 ^h	$6.97 \pm 0.04^{d,e}$	$6.57 \pm 0.02^{\rm \ f}$

Table GH-36Soil pH before and after harvest for Oat grown on Till Clay Soil

* SNK (Student Newman-Keuls) multiple range test (P<0.05), n=5 - Means within column followed by the same letter are not significantly different.

[Ni] Soil		Co	Cs					Nutrients			
mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn
						mg/kg DV	N				
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5
51.0	$2.5 \pm 0.3 *^{a}$	$2.68\pm0.21\stackrel{\rm a}{}$	$0.01\pm0.0~^{\rm a}$	>0.2	4482 ± 233^{a}	$29\pm2.7~^{\rm a}$	$21920\pm954~^{\rm a}$	$2060\pm76^{\rm b}$	54.5 ± 4.8^{e}	2241 ± 379 ^a	$19\pm1.1^{\ a}$
145	6.5 ± 0.3^{b}	3.88 ± 0.25^{b}	0.01 ± 0.0 ^a	>0.2	4064 ± 166^{a}	$27 \pm 4.0^{\text{a}}$	24900 ± 1120^{ab}	$1780 \pm 120^{\text{ a}}$	48.2 ± 3.1^{e}	2330 ± 375^{a}	19 ± 1.0^{a}
262	$9.4 \pm 1^{\circ}$	4.34 ± 0.22 bc	$0.02\pm0.0^{\ a}$	>0.2	3878 ± 213 ^a	33 ± 17^{a}	$26800 \pm 2586^{\text{bc}}$	1720 ± 82^{a}	$38.8 \pm 4.0^{\text{d}}$	$2272\pm455^{\text{a}}$	18 ± 0.8 ^a
438	11 ± 0.6 cd	5.10 ± 0.53 cd	0.01 ± 0.0 ^a	>0.2	4006 ± 118^{a}	23 ± 1.9^{ab}	29560 ± 1426 cd	1910 ± 88 ^{ab}	$37.4 \pm 3.1^{\text{d}}$	2863 ± 418^{a}	19 ± 1.0^{ab}
554	14 ± 1^{d}	5.48 ± 0.29^{d}	$0.01\pm0.0\ ^{\rm a}$	>0.2	$4002\pm89^{\ a}$	$25\pm2.0^{\ a}$	$31960 \pm 1356^{\text{de}}$	1900 ± 31^{ab}	$28.2\pm3.8^{\rm c}$	$2976\pm412^{\ a}$	20 ± 0.4 abc
947	17 ± 1^{e}	$6.01 \pm 0.30^{\text{de}}$	$0.01\pm0.01\stackrel{\rm a}{}$	>0.2	3844 ± 268^{a}	$28\pm 4.0^{\rm a}$	$32500 \pm 1719^{\text{de}}$	$1750 \pm 130^{\text{a}}$	$25.1 \pm 3.3^{\circ}$	$2864 \pm 301 ^{\text{a}}$	22 ± 1.5^{bc}
1380	18 ± 2^{e}	6.77 ± 0.43^{e}	$0.01\pm0.0^{\ a}$	>0.2	3890 ± 169^{a}	26 ± 2.6^{a}	34030 ± 1515^{e}	$1810\pm67^{\ a}$	14.8 ± 2.0^{b}	2874 ± 412^{a}	$22 \pm 1.9^{\text{ c}}$
2540	$25\pm 2^{\text{f}}$	$11.56 \pm 1.22^{\text{ f}}$	$0.03\pm0.0~^{\rm a}$	0.5 ± 0.07 b	$8540 \pm 959^{\text{b}}$	$45\pm10^{\rm b}$	$59170 \pm 2167^{\text{f}}$	$3100 \pm 180^{\circ}$	6.23 ± 0.4^{a}	$5952 \pm 1208 ^{\text{b}}$	36 ± 2.0^{d}

 Table GH-37a:

 Concentration of CoCs and nutrients in biomass (tissue) of Oat grown on Till Clay soil (Unamended)

		Co	Cs					Nutrients				
[Ni] Soil mg/kg	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn	Р	Zn	
0.0		mg/kg DW										
EQL	0.1	0.05	0.01	0.2	50	5	10	5	0.5	5	0.5	
51.0	$2.0 \pm 0.3 *$ ^a	$2.45\pm0.26^{\ a}$	$0.02\pm0.02\stackrel{\rm a}{=}$	>0.2	4744 ± 482^{b}	25 ± 2^{a}	$25760\pm2000^{\ a}$	2660 ± 187^{d}	$22\pm2.2^{\rm f}$	$3260\pm581^{\rm a}$	$17\pm1.0^{\ a}$	
145	4.2 ± 0.5^{ab}	3.76 ± 0.55^{b}	0.01 ± 0.0 ^a	>0.2	4306 ± 212^{ab}	27 ± 6^{a}	$28320\pm909^{\rm ab}$	$2320\pm93^{\rm C}$	$22 \pm 1.2^{\text{f}}$	3184 ± 232^{a}	18 ± 1.0^{ab}	
262	6.7 ± 1.0^{bc}	4.43 ± 0.46 bc	$0.03\pm0.06~^{a}$	>0.2	4156±196 ^{ab}	25 ± 3^{a}	31220 ± 756^{bc}	$2250 \pm 131^{\circ}$	17 ± 0.4^{e}	$3379 \pm 189 \\ ^{a}$	18 ± 1.4 ^{ab}	
438	8.4 ± 0.8 cd	$4.63 \pm 0.21^{\circ}$	$0.02\pm0.03~^{\rm a}$	>0.2	4056 ± 247^{a}	25 ± 4^{a}	31300 ± 1870 ^c	$2180 \pm 131^{\text{bc}}$	$16 \pm 1.0^{\text{de}}$	2974 ± 361^{a}	17 ± 1.3^{a}	
554	9.6 ± 0.9^{d}	$5.19\pm0.29^{\text{ c}}$	0.01 ± 0.0 ^a	>0.2	3996 ± 140^{a}	29 ± 8^{a}	$34620 \pm 1960^{\circ}$	2040 ± 87 abc	14 ± 1.7 cd	3344 ± 476^{a}	19 ± 2.1 abc	
947	13 ± 1.0^{e}	6.22 ± 0.16^{d}	$0.01\pm0.01~^{\rm a}$	>0.2	3783 ± 273^{a}	28 ± 4^{a}	$33960\pm2200^{\ \mathrm{c}}$	1900 ± 144^{ab}	12 ± 0.7 bc	$2886\pm363^{\ a}$	$22\pm2.6^{\rm c}$	
1380	16 ± 2.0^{e}	$6.39 \pm 0.45^{\text{d}}$	0.01 ± 0.0 ^a	>0.2	3764 ± 245^{a}	31 ± 2^{a}	$35040 \pm 4060^{\circ}$	1800 ± 128^{a}	10 ± 1.2^{b}	$2850\pm496^{\ a}$	21 ± 2.0 abc	
2540	$23 \pm 2.4^{\text{f}}$	10.84± 0.60 ^e	0.04 ± 0.01^{a}	0.34 ± 0.05^{b}	$8146 \pm 451^{\text{c}}$	44 ± 2^{a}	62020± 2320 ^d	3640 ± 183^{e}	$5.6 \pm 1.0^{\ a}$	5490±1309 ^a	32 ± 2.2^{d}	

 Table GH-37b:

 Concentration of CoCs and nutrients in biomass (tissue) of Oat grown on Till Clay soil (Amended)

* SNK (Student Newman-Keuls's) multiple range test (P<0.05), n=5. Means within column followed by the same letter are not significantly different

Soil [Ni]	51.0	145	262	438	554	947	1380	2540
Extractable Fe	17450	17100	18300	18100	18400	19200	19250	20100
% of Total	84	78	83	79	79	79	76	70
Extractable Mn	1030	841	880	939	748	669	637	283
% of Total	108	88	95	105	85	86	92	73

Table GH-38aExtractable Iron and Manganese on Till Clay (mg/kg)

Table GH-38bCorrelation for total and extractable CoCs on Till Clay soil

Pearson Correlation	Ni Aqueous	Ni DTPA	Ni Oxalate	Ni Sr Nitrate
	Extract	Extraction	Extraction	Extraction
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Ni (Biomass)	0.251	0.851**	0.797**	0.795**

** Correlation is significant at the 0.01 level (2-tailed).

Table GH-39

Tissue and seed biomass produced by oat grown on unamended Till Clay soil (dry weight per pot measured in grams)

[Ni] Soil	Unam	ended	Ame	nded
mg/kg	DW Biomass	DW Seed and Hull	DW Biomass	DW Seed and Hull
51.0	22.93 ± 0.86	4.46 ± 0.79	20.84 ± 0.78 ^a	3.06 ± 0.57
145	23.93 ± 2.25^{a}	3.91 ± 0.57	23.13 ± 3.30^{a}	3.69 ± 0.83
262	23.70 ± 2.64 ^a	4.66 ± 1.32	21.91 ± 0.89^{a}	3.64 ± 0.30
438	24.60 ± 2.08 ^a	3.74 ± 0.64	23.25 ± 2.23^{a}	4.60 ± 0.61
554	$22.91 \pm 1.5 \ ^{a}0$	4.67 ± 0.38	23.46 ± 2.52^{a}	4.18 ± 0.71
947	24.13 ± 2.05^{a}	4.61 ± 1.51	23.87 ± 0.79^{a}	3.84 ± 0.74
1380	22.21 ± 0.52 ^a	4.29 ± 1.12	23.27 ± 2.79^{a}	3.97 ± 1.07
2540	6.55 ± 1.63 ^b	Insufficient Sample	8.13 ± 2.68^{b}	4.05 ± 0.20

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

[Ni] Soil mg/kg	Treat	pH H ₂ 0 (after)	pH CaCl ₂ (after)	[Ni] Soil mg/kg	Treat	pH H ₂ 0 (after)	pH CaCl ₂ (after)
Bckg	pHT1	4.83 ± 0.11^{a}	4.67 ± 0.07^{a}	1900	T1	$5.78\pm0.27^{\text{ b}}$	5.64 ± 0.25^{b}
Bckg	pHT2	5.36 ± 0.04^{b}	5.11 ± 0.02^{ab}	1900	T2	5.26 ± 0.07 ^a	5.14 ± 0.04^{a}
Bckg	pHT3	5.78 ± 0.24 ^{bc}	$5.54\pm0.24^{\text{ bc}}$	1900	Т3	6.13 ± 0.02 ^c	5.96 ± 0.01 ^c
Bckg	pHT4	6.20 ± 0.38 ^c	$5.97 \pm 0.39^{\circ}$	1900	T4	6.56 ± 0.18^{d}	6.37 ± 0.16^{d}
Bckg	pHT5	6.88 ± 0.35^{d}	6.66 ± 0.36^{d}	1900	T5	7.11 ± 0.11^{e}	6.93 ± 0.10^{e}

Table GH-40Background and impacted Welland Clay soil pH following pH adjustment

Note – Tukey's HSD test used to generate rank

Table GH-41
Oat biomass production on pH adjusted background and impacted Welland Clay soil

[Ni] Soil mg/kg	Treat	Sample Dry Weight (g)	[Ni] Soil mg/kg	Treat	Sample Dry Weight (g)
Bckg	pHT1	0.675 ± 0.182 ^a	1900	T1	0.128 ± 0.015 ^a
Bckg	pHT2	0.736 ± 0.092 ^a	1900	T2	0.096 ± 0.016 ^a
Bckg	pHT3	0.684 ± 0.169^{a}	1900	T3	0.176 ± 0.027 ^a
Bckg	pHT4	0.655 ± 0.073 ^a	1900	T4	0.323 ± 0.110^{b}
Bckg	pHT5	$0.576 \pm 0.097~^{\rm a}$	1900	T5	0.334 ± 0.017 ^b

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Treat*		CoC	Cs		Nutrients					
IIcat	Ni	Cu	Co	As	Ca	Fe	K	Mg	Mn	
PHT1	$3.3\pm0.3^{\text{b}}$	$8.77 \pm 0.36^{\circ}$	0.14 ± 0.04 ^b	>0.2	$4283\pm505^{\rm \ a}$	76 ± 7^{a}	61367 ± 1945 ^a	$3512\pm350^{\mathrm{a}}$	$233\pm55.4^{\mathrm{c}}$	
PHT2	$3.0\pm0.1^{\text{ b}}$	$7.98 \pm 0.19^{\rm bc}$	$0.11\pm0.01^{\rm \ ab}$	>0.2	4577 ± 273^{ab}	85 ± 5^{a}	$75300 \pm 3718^{\mathrm{b}}$	3710 ± 129^{a}	184 ± 12.4 ^{bc}	
PHT3	$2.2\pm0.2^{\rm \ a}$	$7.71\pm0.80^{\rm ab}$	0.08 ± 0.03^{a}	>0.2	4464 ± 261^{ab}	80 ± 9^{a}	73000 ± 1247^{b}	$3502\pm176^{\mathrm{a}}$	138 ± 73.9^{ab}	
PHT4	$2.2\pm0.2^{\rm a}$	7.16 ± 0.35^{a}	$0.10\pm0.03^{\rm \ ab}$	>0.2	$4824\pm369^{\rmbc}$	87 ± 5^{a}	$72640 \pm 1537^{\mathrm{b}}$	3482 ± 87^{a}	88.3 ± 23.1^{a}	
PHT5	$1.9\pm0.3^{\rm a}$	6.87 ± 0.16^{a}	$0.11\pm0.02^{\rm ab}$	>0.2	5168 ± 172 °	85 ± 2^{a}	$73050 \pm 1640^{\mathrm{b}}$	3475 ± 104^{a}	77.1 ± 5.2^{a}	

 Table GH-42a

 Tissue CoCs and nutrients concentrations in oat on pH adjusted background Welland Clay soil

* - pH value for soil pH designation is located in Table GH-42

 Table GH-42b

 Tissue CoCs and nutrients concentrations in oat on pH adjusted impacted Welland Clay soil

Treat		Co	Cs		Nutrients						
*	Ni	Cu	Со	As	Ca	Fe	K	Mg	Mn		
T1	170 ± 23.5^{b}	6.33 ± 1.00^{a}	1.01 ± 0.24^{a}	$0.5\pm0.1^{\rm \ b}$	11280 ± 1402^{a}	36 ± 3^{ab}	24680 ± 7638^{ab}	3044 ± 651^{ab}	$21.8\pm3.9^{\mathrm{c}}$		
T2	$241\pm12.6^{\mathrm{c}}$	5.04 ± 0.35^{a}	1.36 ± 0.11 ^b	$0.2\pm0.0^{\rm \ a}$	7990 ± 660^{a}	40 ± 5^{bc}	8454 ± 923^{a}	2144 ± 144^{a}	$29.8\pm1.5^{\rm ~d}$		
Т3	$149\pm7.0^{\mathrm{b}}$	7.04 ± 0.11^{a}	0.95 ± 0.07^{a}	$0.3\pm0.1^{\ ab}$	9702 ± 4791^{a}	29 ± 4^{a}	$29158 \pm 14883^{\mathrm{b}}$	2747 ± 1342^{a}	17.3 ± 1.3^{b}		
T4	$122\pm11.3^{\rm a}$	12.84 ± 3.17 ^b	$0.89\pm0.14^{\rm a}$	0.3 ± 0.1 ^{ab}	9876 ± 1666^{a}	$40 \pm 10^{\mathrm{bc}}$	$53300 \pm 9448^{\circ}$	3278 ± 289^{ab}	12.1 ± 2.9^{a}		
Т5	$115\pm2.7^{\rm a}$	$21.35 \pm 1.30^{\circ}$	$1.38 \pm 0.20^{\text{b}}$	0.3 ± 0.1 ^{ab}	9917 ± 208^{a}	$48 \pm 2^{\circ}$	$60050 \pm 1773^{\circ}$	$4065\pm135^{\rm b}$	$10.4\pm0.6^{\rm a}$		

*- pH value for soil pH designation is located in Table GH-42

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

[Ni] Soil As Ca Co Cu Fe Κ Mg Mn Ni Р Zn mg/kg 45.3 < 0.2 2617 ± 312 0.19 ± 0.06 3.39 ± 0.54 52.8 ± 6.6 21783 ± 2775 1197 ± 165 44.7 ± 7.51 15.7 ± 3.95 1965 ± 398 19.2 ± 3.5 188 < 0.2 2495 ± 138 0.21 ± 0.05 3.49 ± 0.33 53.5 ± 5.43 19717 ± 1981 1082 ± 77 36.8 ± 3.19 20.9 ± 3.11 2332 ± 365 17.6 ± 2.50 347 < 0.2 2583 ± 218 0.18 ± 0.05 4.10 ± 0.48 54.7 ± 8.14 21417 ± 1770 1132 ± 106 33.1 ± 6.04 21.9 ± 5.34 2307 ± 629 19.3 ± 2.81 498 < 0.2 2777 ± 216 0.21 ± 0.06 4.48 ± 0.39 55.3 ± 4.6 23633 ± 1491 1233 ± 98 35.0 ± 4.92 26.1 ± 2.86 2872 ± 830 19.9 ± 2.25 673 < 0.2 0.18 ± 0.02 4.85 ± 0.82 2720 ± 295 58.2 ± 6.53 22540 ± 1853 1296 ± 156 31.3 ± 5.12 25.9 ± 5.76 2606 ± 695 21.7 ± 3.51 956 < 0.2 2633 ± 171 0.23 ± 0.03 4.68 ± 0.62 58 ± 9.57 20917 ± 1597 1167 ± 71 29.1 ± 7.46 27.2 ± 5.77 1920.8 ± 245 18.9 ± 2.08 0.21 ± 0.02 1130 < 0.2 2669 ± 372 4.86 ± 0.68 55.6 ± 8.24 22817 ± 2012 1171 ± 186 27.7 ± 9.90 31.2 ± 8.56 1940 ± 462 18.4 ± 2.70 1900 < 0.2 3243 ± 278 0.28 ± 0.04 6.88 ± 0.84 71.1 ± 10.2 25808 ± 3274 1423 ± 144 16.1 ± 5.40 56.1 ± 12.29 3264 ± 678 27.2 ± 4.03

 Table GH-43a

 Tissue CoC Concentration in Oat Tissue: OAT on Unamended Engineered Welland Clay Soil

 Table GH-43b

 Tissue CoC Concentration in Oat Tissue: OAT on Amended Engineered Welland Clay Soil

[Ni] Soil mg/kg	As	Ca	Со	Cu	Fe	K	Mg	Mn	Ni	Р	Zn
45.3	<0.2	2385 ± 221	0.18 ± 0.04	2.99 ± 0.45	57.5 ± 7.66	20983 ± 2325	1136 ± 108	37.2 ± 2.07	16.5 ± 4.80	2171.7 ± 870	18.99 ± 3.10
248	<0.2	2295 ± 243	0.19 ± 0.05	3.38 ± 0.39	52.9 ± 6.39	20633 ± 2228	1102 ± 123	35.5 ± 6.27	19.1 ± 3.87	1806.7 ± 491	18.7 ± 2.67
347	<0.2	2344 ± 179	0.21 ± 0.05	4.06 ± 1.29	56.2 ± 7.85	19820 ± 1491	1099 ± 131	35.0 ± 8.26	21.2 ± 4.78	1912 ± 412	16.92 ± 2.40
498	<0.2	2358 ± 111	0.18 ± 0.02	3.87 ± 0.60	54.4 ± 7.79	19242 ± 3303	1130 ± 145	28.2 ± 6.89	22.5 ± 5.12	2044.2 ± 525	17.8 ± 3.79
497	<0.2	2422 ± 134	0.18 ± 0.01	3.94 ± 0.33	60.2 ± 21.64	19680 ± 2210	1161 ± 114	24.1 ± 2.79	25.7 ± 4.13	2360 ± 651	17.92 ± 1.77
956	<0.2	2426 ± 197	0.17 ± 0.03	4.87 ± 0.10	56.4 ± 2.88	21760 ± 2862	1194 ± 56	19.9 ± 5.43	24.8 ± 3.41	1674 ± 160	18.64 ± 1.54
1130	<0.2	2278 ± 189	0.21 ± 0.02	4.12 ± 0.56	53.3 ± 5.57	19050 ± 2727	1019 ± 126	23.8 ± 6.99	25.5 ± 4.31	1515 ± 307	14.9 ± 2.35
1900	<0.2	2548 ± 221.5	0.25 ± 0.03	4.93 ± 1.01	55.6 ± 17.85	21100 ± 2582	1096 ± 171	21.1 ± 6.73	32.6 ± 3.45	1842 ± 450	16.9 ± 3.76

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

[Ni] Soil mg/kg	Biomass Dry Weight (g)	DW Seeds and Hulls (g)	DW Hull (g)	DW Seeds (g)
45.3	43.558 ± 4.799	2.400 ± 1.135	2.250 ± 1.056	No Seeds
188	44.453 ± 5.582	3.066 ± 1.437	2.799 ± 1.296	No Seeds
347	38.511 ± 7.365	2.432 ± 1.048	2.296 ± 0.997	No Seeds
498	39.066 ± 3.994	1.133 ± 0.714	1.060 ± 0.672	No Seeds
673	42.315 ± 4.150	2.533 ± 1.697	2.361 ± 1.602	No Seeds
956	42.310 ± 5.945	2.639 ± 0.936	2.403 ± 0.889	No Seeds
1130	31.922 ± 6.087	1.747 ± 0.806	1.633 ± 0.712	No Seeds
1900	26.806 ± 6.778	1.997 ± 1.093	1.843 ± 1.017	No Seeds

 Table GH-44a – Biomass Yield: OAT on Unamended Engineered Welland Clay Soil

Table GH-44b – Biomass Yield: OAT on Amended Engineered Welland Clay Soil

[Ni] Soil mg/kg	Biomass Dry Weight (g)	DW Seeds and Hulls (g)	DW Hull (g)	DW Seeds (g)
45.3	41.164 ± 6.492	4.066 ± 1.414	3.706 ± 1.254	No Seeds
248	38.994 ± 5.732	4.436 ± 0.839	4.074 ± 0.774	No Seeds
347	41.983 ± 3.990	4.054 ± 0.869	3.716 ± 0.800	No Seeds
498	40.439 ± 6.426	4.222 ± 1.050	3.842 ± 0.937	No Seeds
497	41.161 ± 10.206	3.810 ± 1.182	3.517 ± 1.163	No Seeds
956	39.335 ± 7.199	4.148 ± 0.768	3.888 ± 0.710	No Seeds
1130	38.408 ± 2.634	4.294 ± 0.894	3.941 ± 0.748	No Seeds
1900	31.286 ± 1.90	3.196 ± 0.503	2.956 ± 0.467	No Seeds

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-2A PHOTO PLATES - YEAR 2000

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

PHOTO PLATES 2000

Plate 1	Corn on unamended clay soil at five CoC concentrations (left to right: Control; Low; Medium; High; Very High). Photo dated Aug 18, 2000.		
Plate 2	Corn on High CoC clay soil amended at OMAFRA (1X) recommended lime levels. Photo dated Aug 18, 2000.		
Plate 3	Corn on unamended organic soil at four CoC concentrations (left to right: Low; Medium; High; Very High). Photo dated Aug 18, 2000.		
Plate 4	Corn on unamended (left column of pots), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC organic soil. Photo dated Aug 18, 2000.		
Plate 5	Corn on unamended sand soil at four CoC concentrations (left to right: Control; Low; Medium; High). Photo dated Aug 18, 2000.		
Plate 6	Corn on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on High CoC sand soil. Photo dated Aug 18, 2000.		
Plate 7	Soybean on unamended clay soil at five CoC concentrations (left to right: Control; Low; Medium; High; Very High). Photo dated Aug 18, 2000.		
Plate 8	Soybean on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC clay soil. Photo dated Aug 18, 2000.		
Plate 9	Soybean on unamended organic soil at four CoC concentrations (left to right: Low; Medium; High; Very High). Photo dated Aug 18, 2000.		
Plate 10	Soybean on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC organic soil. Photo dated Aug 18, 2000.		
Plate 11	Soybean on unamended sand soil at four CoC concentrations (left to right: Control; Low; Medium; High). Photo dated Aug 18, 2000.		
Plate 12	Oat on clay soil amended with 1X OMAFRA recommended lime levels at five CoC concentrations (left to right: Very High; High; Medium; Low; Control). Photo dated Jul 24, 2000.		
Plate 13	Oat on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very HighCoC clay soil. Photo dated Jul 24, 2000.		
Plate 14	Oat on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC organic soil. Photo dated Aug 18, 2000.		
Plate 15	Oat on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Low CoC sand soil. Photo dated Jul 31, 2000.		
Plate 16	Oat on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Medium CoC sand soil. Photo dated Jul 31, 2000.		

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

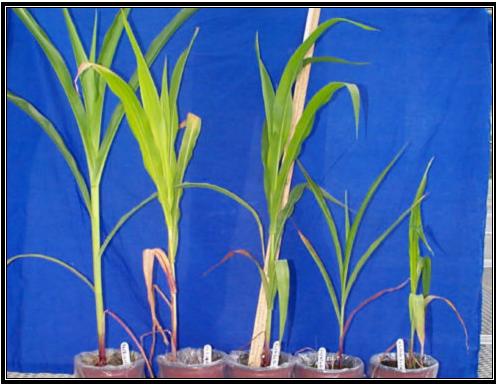


Plate 1: Corn on un-amended clay soil at five CoC concentrations (left to right: Control; Low; Medium; High; Very High). Photo dated Aug 18, 2000.

Plate 2: Corn on High CoC clay soil amended at OMAFRA (1X) recommended lime levels. Photo dated Aug 18, 2000.

Plate 3: Corn on un-amended organic soil at four CoC concentrations (left to right: Low; Medium; High; Very High). Photo dated Aug 18, 2000.

Plate 4: Corn on unamended (left column of pots), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC organic soil. Photo dated Aug 18, 2000.

Plate 5: Corn on un-amended sand soil at four CoC concentrations (left to right: Control; Low; Medium; High). Photo dated Aug 18, 2000.

Plate 6: Corn on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on High CoC sand soil. Photo dated Aug 18, 2000.

Plate 7: Soybean on un-amended clay soil at five CoC concentrations (left to right: Control; Low; Medium; High; Very High). Photo dated Aug 18, 2000.

Plate 8: Soybean on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC clay soil. Photo dated Aug 18, 2000.

Plate 9: Soybean on un-amended organic soil at four CoC concentrations (left to right: Low; Medium; High; Very High). Photo dated Aug 18, 2000.

Plate 10: Soybean on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC organic soil. Photo dated Aug 18, 2000.

Plate 11: Soybean on un-amended sand soil at four CoC concentrations (left to right: Control; Low; Medium; High). Photo dated Aug 18, 2000.

Plate 12: Oat on clay soil amended with 1X OMAFRA recommended lime levels at five CoC concentrations (left to right: Very High; High; Medium; Low; Control). Photo dated Jul 24, 2000.

July. 24,2000 Clay Level warended A2 5

Plate 13: Oat on unamended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very HighCoC clay soil. Photo dated Jul 24, 2000.

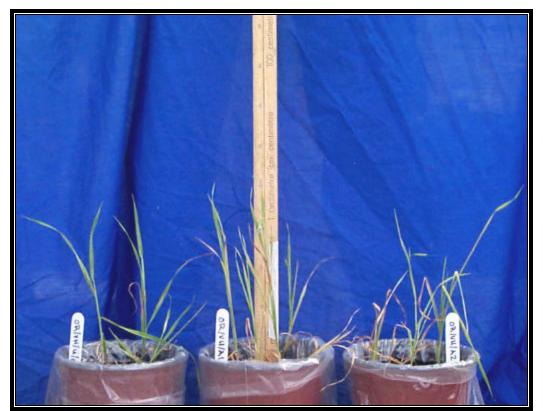


Plate 14: Oat on un-amended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Very High CoC organic soil. Photo dated Aug 18, 2000.

Plate 15: Oat on un-amended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Low CoC sand soil. Photo dated Jul 31, 2000.

Plate 16: Oat on un-amended (left), amended 1X (centre), and 2X (right) OMAFRA recommended lime levels on Medium CoC sand soil. Photo dated Jul 31, 2000.

APPENDIX GH-2B PHOTO PLATES - YEAR 2001

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

PHOTO PLATES 2001

Plate 17	Oat on Unamended Sand soil: Background to 2312 mg Ni /Kg (at harvest)					
Plate 18	Oat on Amended Sand soil: Background to 2312 mg Ni /kg (at harvest)					
Plate 19	Oat on Unamended Organic soil: Background to 2398 mg Ni/kg (at harvest)					
Plate 20	Oat on Amended Organic soil: Background to 2398 mg Ni/kg (at harvest)					
Plate 21	Oat on Unamended Welland Clay soil: Background to 1902 mg Ni/kg (at harvest)					
Plate 22	Oat on Amended Welland Clay soil: Background to 1902 mg Ni/kg (at harvest)					
Plate 23	Radish on Unamended Heavy Clay soil: Background to 1902 mg Ni/kg (at harvest)					
Plate 24	Radish on Amended Heavy Clay soil: Background to 1902 mg Ni/kg (at harvest)					
Plate 25	Oat on Till Clay Unamended soil: Background to 2545 mg Ni/kg (at harvest)					
Plate 26	Oat on Amended Till Clay soil: Background to 2545 mg Ni/kg (at harvest)					

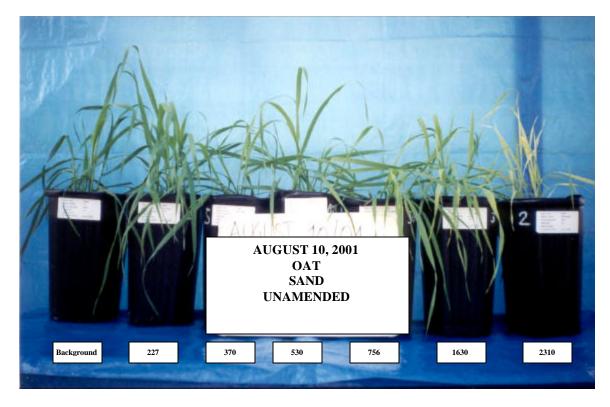


Plate 17: Oat on unamended Sand soil: Background to 2310 mg Ni /kg (at harvest)

Plate 18: Oat on Amended Sand soil: Background to 2310 mg Ni /kg (at harvest)

Plate 19: Oat on unamended organic soil: Background to 2400 mg Ni/kg (at harvest)

Plate 20: Oat on amended organic soil: Background to 2400 mg Ni/kg (at harvest)

Plate 21: Oat on unamended Welland clay soil: Background to 1900 mg Ni/kg (at harvest)



Plate 22: Oat on amended Welland clay soil: Background to 1900 mg Ni/kg (at harvest)

Plate 23: Radish on unamended Welland Clay soil: Background to 1900 mg Ni/kg (at harvest)

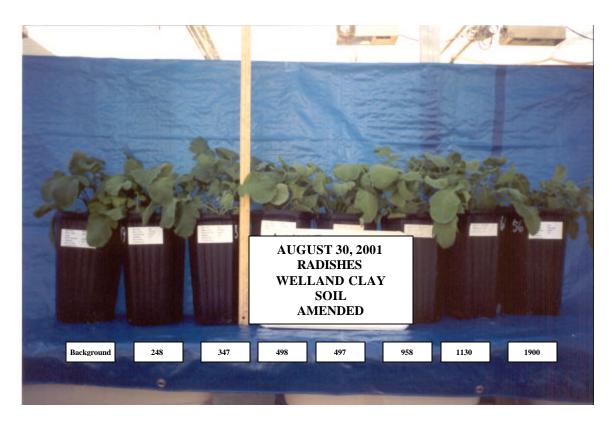


Plate 24: Radish on amended Welland Clay soil: Background to 1900 mg Ni/kg (at harvest)

Plate 25: Oat on unamended Till clay soil: Background to 2540 mg Ni/kg (at harvest)

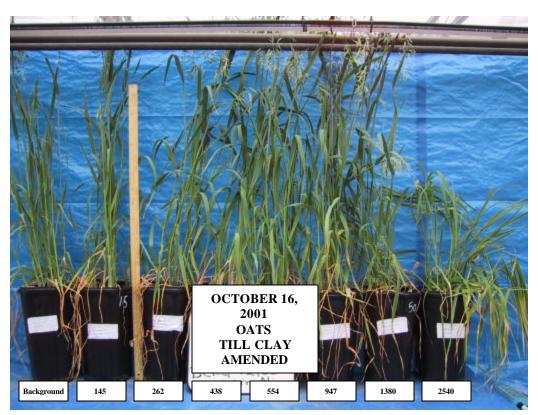


Plate 26: Oat on amended Till clay soil: Background to 2540 mg Ni/kg (at harvest)

APPENDIX GH-3

ANALYSIS OF SOIL PROPERTIES WITH RESPECT TO BLENDING: IMPLICATIONS FOR THE INTERPRETATION OF THE 2001 GREENHOUSE TRIALS DATA

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-3

ANALYSIS OF SOIL PROPERTIES WITH RESPECT TO BLENDING: IMPLICATIONS FOR THE INTERPRETATION OF THE 2001 GREENHOUSE TRIALS DATA

The 2001 Greenhouse Trials used the technique of soil blending to create a range of soil Ni concentrations in which to study growth response of crop species (oat and radish). This method was chosen over the common practice of spiking soil with a soluble metal salt, which would have resulted in soil metal chemistries quite different from that naturally occurring in the field.

The blending process involved the sequential mixing of a high Ni soil and a background Ni soil for each of four soil types (Organic, Sand, Welland Clay and Till Clay) to achieve soil Ni concentrations that would allow construction of dose-response curves based on yield. The objective of the study was to generate specific EC (environmental concentrations for which toxic effects are observed) values for soil Ni and tissue Ni.

The selection of high and low Ni soils for each type was based on overall similarity of a number of soil parameters, including pH, cation exchange capacity (CEC), and concentrations of soil elements other than Ni. Despite the exhaustive search for soils that were comparable, a number of these variables were found to be heterogeneous between the pairs of high and low Ni soils, and this heterogeneity was subsequently carried through the blends.

Correlations between measures of soil variables and soil Ni concentration in the soil blends were determined using SPSS 11.0 software. Pearson r-values that describe the extent of the correlation are reported for individual soil types in Tables 1 to 4. Variables that are significantly correlated (p<0.05) with soil Ni concentration are confounded with this measure and must be taken into account when interpreting dose-response data based on Ni toxicity.

These tables also include percent differences between soil variable background values and the highest (or lowest when the highest value is in the background soil, which results in a negative percentage) values in the blends. For example, in Table 1, the highest As concentration measured in the organic soil is 19 μ g/g; the percent difference between this value and the background value measured is 206.5 percent. This information provides important context for discussing the potential influence of the magnitude of these differences among the blends on plant growth. This influence can be exerted in one or more ways depending on the nature of the soil variable, including direct or indirect toxic or nutritional effects.

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

These tables show that there are large percent differences for a number of soil variables between background soil values and the highest (or lowest) blend values. It is impossible to fully understand the implications of these differences on plant growth, as direct effects cannot necessarily be predicted from soil concentrations or measures, nor can the influence of potential interactions between soil variables on plant response be completely understood.

In terms of magnitude, however, Ni shows the greatest difference, of all soil variables measured, between background soil concentrations and concentrations in the soil blends. And as confounding variables that could potentially exert toxic effects on plant growth are strongly correlated with soil Ni, protection of the environment from high Ni concentrations should provide protection from these by default.

TABLE 1. CORRELATIONS BETWEEN SOIL PROPERTIES FOR ORGANIC SOIL.

Correlations of soil properties with soil Ni (** sig at 0.001; * sig at 0.05)		Percent difference between value of soil property in background soil and the highest (or lowest) value in the blends			
Parameter	Ni	Parameter	% diff	High Value	
Al	534**	Al	-22.5	9927	
As	.948**	As	206.5	19	
Be	579**	Be	-13.9	0.72	
Со	.996**	Со	506.7	36.4	
Cr	095	Cr	11.0	13.0	
Cu	.994**	Cu	671.3	360.2	
Mn	.590**	Mn	8.0	264.6	
Ni	1.00**	Ni	2256	2370	
Pb	.887**	Pb	59.5	47.2	
Se	.923**	Se	266.7	6.6	
V	693**	V	-13.7	26.43	
Zn	.803**	Zn	15.7	129.6	
CEC	.835**	CEC	221	16	
LOI	.902**	LOI	10.0	68.5	
MnO	.517	MnO	6.5	16900	
FeO	.452	FeO	13.5	285	
Totorgan	.375	Totorg	20.9	37.0	
%org	966**	%org	-12.7	44.2	
%sand	958**	%sand	-12.1	5.8	
%silt	966**	%silt	-6.9	53.5	
%clay	.968**	%clay	10.8	45.1	
pH	213	pH	-2.8	5.81	

Correlations of soil properties with soil Ni (** sig at 0.001; * sig at 0.05)		Percent difference between value of soil property in background soil and the highest (or lowest) value in the blends			
Parameter	Ni	Parameter	% diff	High	
				Value	
Al	018	Al	-19.5	3320	
As	.997**	As	858	22.9	
Be	.701**	Be	80.0	0.18	
Со	.998**	Со	2641.2	46.6	
Cr	.896**	Cr	-63.1	64.0	
Cu	.994**	Cu	1735	269.4	
Fe	.981**	Fe	442.5	27620	
Mn	.988**	Mn	185.5	333.2	
Ni	1.00**	Ni	4916	2386	
Р	803**	Р	-49.8	1118	
Pb	.987**	Pb	209.9	66	
Sb	.033	Sb	114	0.3	
Se	.975**	Se	1152.9	4.3	
Ti	.564**	Ti	63.5	246.4	
V	.423**	V	17.7	16.3	
Zn	.794**	Zn	25.0	286.2	
CEC	455	CEC	19.8	2.4	
LOI	.024	LOI	22.4	6.8	
MnO	.950**	MnO	185.5	333.2	
FeO	.984**	FeO	597.2	18900	
Totorgan	.520	Totorg	19.8	2.4	
%org	.935**	%org	11.8	5.7	
% sand	.994**	% sand	3.3	84.9	
%silt	992**	%silt	-20.3	6.4	
%clay	994**	%clay	-34.4	6.4	
pH	319	pН	-2.7	7.4	

Correlations	of soil properties	Percent difference between value of soil			
with soil Ni (** sig at 0.001; * sig at 0.05)		property in background soil and the highest (or			
		lowest) value in the blends			
Parameter	Ni	Parameter	% diff	High	
				Value	
Al	276	Al	12.4	16150	
As	.951**	As	378	10.2	
Ba	.832**	Ba	29.0	104.4	
Be	.778**	Be	32.8	0.7	
Cd	.647**	Cd	138	0.7	
Со	.990**	Со	458.5	27.2	
Cr	.052	Cr	13.8	18.2	
Cu	.988**	Cu	1235	233.6	
Fe	.596**	Fe	12.9	13760	
Mn	.522**	Mn	6.9	170.6	
Ni	1.00**	Ni	4110	1806	
Р	.844**	Р	27.8	878	
Se	.882**	Se	456.5	2.6	
V	148	V	17.7	25.0	
Zn	.854**	Zn	26.4	79	
CEC	.783**	CEC	48.9	6.7	
LOI	.640**	LOI	49	21	
MnO	.182	MnO	16.1	121.5	
FeO	.297	FeO	18.4	8845	
Totorgan	.873**	Totorg	31.1	7.2	
%org	.975**	%org	19.8	13.3	
%sand	986**	%sand	-12.4	12.1	
%silt	.987**	%silt	1.6	38.2	
%clay	.981**	%clay	-3.3	39.2	
pН	781**	pH	7.6	6.4	

TABLE 3. CORRELATIONS BETWEEN SOIL PROPERTIES FOR WELLAND CLAY SOIL.

Correlations of soil properties with soil Ni (** sig at 0.001; *sig at 0.05)		Percent difference between value of soil property in background soil and the highest (or lowest) value in the blends			
Parameter	Ni	Parameter	% diff	High Value	
Al	.732**	Al	26.9	23033	
As	.991**	As	276	16.5	
Ba	.945**	Ba	72.3	144.2	
Be	.973**	Be	85.7	1.3	
Cd	.835**	Cd	241.3	1.3	
Со	.998**	Со	574.3	47.2	
Cr	.655**	Cr	25.9	29.2	
Cu	.997**	Cu	1853	337.8	
Fe	.909**	Fe	38.7	28750	
Mn	984**	Mn	-59.3	952	
Ni	1.00**	Ni	4871	2545	
Pb	.884**	Pb	84.4	44.8	
Sb	.612**	Sb	150	0.23	
Se	.946**	Se	671	5.6	
V	.624**	V	27.1	41.3	
Zn	.967**	Zn	81.8	168.7	
CEC	.946**	CEC	90	9.5	
LOI	.992**	LOI	200	36.5	
MnO	-971**	MnO	72.6	1030	
FeO	.948**	FeO	15.2	20100	
Totorgan	.960**	Totorg	299	13.4	
%org	.982**	%org	79.2	13.8	
%sand	980**	%sand	73.6	23.1	
%silt	983**	%silt	39.7	52.6	
%clay	.983**	%clay	191.6	48.4	
pH	.927**	pН	11.7	6.13	

TABLE 4.CORRELATIONS BETWEEN SOIL PROPERTIES FOR TILL CLAY
SOIL.

APPENDIX GH-4 RADISH EXPERIMENTS ON WELLAND CLAY

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-4: RADISH EXPERIMENTS ON WELLAND CLAY

The Dose-Response testing with Radish consisted of 80 pot tests, involving:

- 1. One Soil: Heavy Clay.
- 2. Eight Concentration Levels of Soil CoCs: background (Control) soil, and blended soils ranging from ~ 250 mg Ni/kg to 3,000 mg Ni/kg.
- 3. One Plant: Radish.
- 4. Unamended soil and soil receiving a calculated quantity of carbonate*.
- 5. Five Replications.

* - amendment application for the radish trial are the same as that listed for Welland Clay in the oat trials

Radish on Welland Clay

Radish was exposed to eight CoC concentrations (blends) in the Welland Clay soil. Nickel concentrations of 45.3 (Background), 188/248, 347, 498, 673/497, 956, 1130 and 1900 mg Ni/kg were used where the nickel concentrations separated by a slash were significantly different for unamended and amended soils respectively. The amended soils received an application of a mixture of reagent grade calcium and magnesium carbonate.

Symptoms Developed

In the greenhouse, 100% of the radish seeds sown in Heavy Clay soil germinated within 24 hrs of planting. Only the Radish plants grown in the 1900 mg Ni/kg pot tests with un-amended Heavy Clay soil exhibited very mild interveinal chlorosis of the older leaves. However, even then the globes appeared well developed and no malformations of the tubers were noticed during harvest.

Plant Yield

Generally, Plant Yield for radish did not change significantly with increasing soil CoC concentrations (Table GH-33a&b). The plant yield (compared to the plants growing in the background soil) remained constant despite increasing soil metal concentration in the plants exposed up to 1900 mg Ni/kg soil. The application of carbonate amendments was not observed to significantly affect the plant yield.

The Effective Concentration $_{25}$ (EC₂₅) was not determined for radish. Relatively low nickel concentrations in radish tissue across all soil CoC concentrations did not indicate that there was any nickel induced biomass effects for radish. The EC₂₅ values applied to radish will be adopted based on those determined for the oat grown on Welland Clay as oat is more sensitive to nickel.

Welland Clay Soil Characteristics

Soils in which radish were planted were from the same bulk sample as those used for oat therefore, soil information applicable to radish is contained in Tables GH-27, GH-18, and GH-20 (Oat on Welland Clay soil characterization data) in Appendix GH-1B of this section.

Elemental Composition of Plants

Nickel concentrations measured in all radish tissues increased with increasing soil nickel levels (Tables GH-31a, GH-32d and GH-33a). In the "all leaves" samples, tissue nickel concentrations ranged from <1 mg/kg in the radish grown on unamended background soils up to 45 mg/kg in the highest nickel impacted soils (1900 mg/kg). Similarly for the basal leaves and the globes, tissue nickel concentrations ranged from 0.5 to 32 and 1.3 to 54 mg/kg respectively.

The application of the calcium and magnesium carbonates reduce tissue concentrations of nickel in all radish tissue types at the higher soil nickel concentrations. At the highest nickel concentrations, carbonate amendment resulted in reductions in tissue nickel from 45 to 29 mg/kg in "all leaves" samples; from 32 to 16 mg/kg in basal leaves; and from 54 to 34 mg/kg in radish globes (Tables GH-32 vs. b, GH-32a vs. b, and GH-33a vs. b,). These changes represent reduced metal uptake of approximately 50%. Similar decreases were observed between amended and unamended radish at lower soil CoC levels.

In all three tissue types, significant increases in tissue copper concentrations were observed only at the highest soil copper concentrations (Table GH-31a, GH-32a, and GH-33a). The application of the carbonate amendments did not change these trends (Table GH-31a, GH-32b, and GH-33b), however where significant increases in tissue copper were observed, application of carbonates significantly decreased uptake in all three tissues (amended vs. Un-amended at highest soil CoC concentrations). Overall, copper accumulation in the "all leaves" samples were significantly higher than that in the globes and basal leaves, however all concentrations were low in the normal range for copper in plant tissues (4-30 mg/kg) (Raven et al, 1992). Tissue concentrations ranged from 2.37 to 6.25 mg/kg. The highest concentration of tissue copper was found in plants exposed to highest soil CoC concentrations (1900 mg Ni/kg).

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

Cobalt accumulation in the radish increased significantly in all tissues as soil cobalt concentration increased (Table GH-31a, GH-32a, and GH-33a). This trend did not change with application of the carbonate mixture ((Table GH-31b, GH-32b, and GH-33b). Cobalt concentration did not exceed 0.57 mg/kg in any tissue or treatment. Generally, cobalt concentrations in radish were found to be limited in all treatments (close to the detection limits). Cobalt is indicated (Raven et al, 1992) as being necessary in trace amounts in plants. Even at the highest observed concentrations in radish, the cobalt levels observed here are not out of the normal range for plant tissues.

In the case of arsenic, accumulation in radish did not increase significantly across the various soil CoCs concentrations. Additionally, arsenic concentrations remained extremely low (all cases at or below the analytical detection limit). Application of the carbonate amendments had no obvious effect on As accumulation.

In all radish tissue, magnesium was observed to decline significantly with increasing soil CoC concentration while manganese was observed to increase. In the case of manganese, the increasing concentrations fall within the normal range of plant tissue concentrations, however, for magnesium, the concentrations observed are quite low compared to normal (0.1 - 0.8%) (Raven et al 1992) and could contribute substantially to deficiency symptoms (where observed). The CoC accumulation in the radish was elevated relative to that observed in oat.

Conclusion

Radish was chosen an alternative crop species in the 2001 Greenhouse trials to provide context for the EC25 values based on relative oat yield. However, results showed that radish yield was not adversely affected by increasing soil CoC concentrations in the Welland Clay blends, thereby making calculation of EC_{25} s impossible and limiting the resulting comparison value of the data.

APPENDIX GH-5: pH EXPERIMENT ON WELLAND CLAY

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-5: PH EXPERIMENT ON WELLAND CLAY

The pH Testing with Oat consisted of 50 tests, involving:

- 1. One Soil: Heavy Clay.
- 2. Two Concentration Levels of Soil CoCs: background (Control) soil and a blended soil with ~1900 mg Ni/kg.
- 3. Five pH Levels: 5.0, 5.5, 6.0, 6.5, and 7.0
- 4. One Plant: Oat.
- 5. Unamended soil (No amendments applied).
- 6. Five Replications.

pH Experiment

Application of reagent grade calcium carbonate (CaCO₃) and magnesium carbonate (MgCO₃) were used to create an incremental pH range in background and highly CoC impacted (~ 1900 mg Ni/kg) Welland clay soil. Following alteration, pH ranged from 4.83 (acidic) to 6.88 (near-neutral) in background soil, and from 5.78 to 7.11 in the impacted soil (Table GH-40). Reported pH measurements were obtained from soil/water slurries.

In oat grown on Welland clay soil containing background CoC levels, biomass (0.675 to 0.576 g/pot) did not change significantly through the range of increased pH observed. In contrast, plant biomass in the contaminated soil was observed to increase significantly with increased carbonate applications (as pH was raised above 6.2)(Table GH-41). Biomass produced on the impacted soil was noticeably lower than that of the background soil. However, biomass on the impacted soils was observed to double with higher carbonate application.

Although nickel and copper concentrations in shoot tissue of oat were relatively low in those plants grown on the background soils (Table GH-42a) a significant decrease for both metals was observed at higher pH levels. Very little difference was observed in cobalt uptake while arsenic levels were not detected in tissue samples. Manganese concentrations in oat tissue decreased significantly at higher pH levels while calcium uptake appeared to increase with pH.

In the highly impacted soil, nickel levels measured in oat tissue was markedly higher than that of the background soil (Table GH-42b), however, increased pH resulted in significant decline in tissue nickel concentrations. At near neutral pH levels, nickel uptake was almost cut in half relative to that observed in the oat growing on more acidic soil. Although copper levels in plant tissue remained low, a significant increase was observed as the soil pH was adjusted towards neutral levels. This increase was observed in both background and impacted soils but were more pronounced in the impacted soil with Cu tissue levels increasing from 6to 21mg/kg. Clear trends were not observed in cobalt and arsenic uptake.

Similarly to that observed in the background soil, manganese tissue concentrations were observed to decline significantly at the higher pH levels, indicating that carbonate amendments may interfere with Mn uptake.

From this brief experiment, it appears that carbonate application to impacted Welland clay soils results in soil pH increase and in the case of nickel a certain degree of protection to plants. The protection is likely due to the binding of nickel to carbonates at near neutral pH levels.

APPENDIX GH-6: RELATIONSHIP BETWEEN SOIL EXTRACTABLE METALS AND PLANT METALS

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-6: RELATIONSHIP BETWEEN SOIL EXTRACTABLE METALS AND Plant Metals

Oat on Sand

Metals are extracted from soils by various methods as a means of predicting the amount of a metal contaminant that may be available to a plant and thereby determine if that contaminant is present in an adequate quantity to be potentially toxic. These methods may indicate the fraction of the soil contaminant that must be addressed when selecting treatments for phytotoxicity. Extraction methods have a predictive value if there is a correlation between the extractable pool of metal in a soil and the uptake of metal by a plant. Ideally, such a relationship should be linear, meaning that plant uptake is proportional to the extractable pool of metal in the soil. This is not usually the case under conditions of extreme metal toxicity. In extreme conditions, plant physiological processes are strongly affected, leading to an exponential increase in plant tissue contaminant concentration and an abnormal uptake of other essential and nonessential elements. In our study, water-based extractions along with three other extraction methods (based on quite different extraction principles) were used to examine potentially available metals in the various soils. The methods used the following extractants:

- 1. Water (Aqueous extraction)
- 2. Acid Ammonium Oxalate (Oxalate extraction)
- 3. DTPA
- 4. $Sr(NO_3)_2$

Each method was applied to a separate sub-sample of the soils, therefore the concentrations of CoCs extracted by each method will extract CoCs from similar fractions of the soil samples, with the weaker extractants affecting the more mobile/bioavailable fractions, and the stronger extractants affecting both the mobile/bioavailable and more strongly adsorbed CoC's. In effect, there will be an overlap in the fraction of total metals that are extracted by the different methods. In this regard, a range of available fractions can be observed for correlation to the varying accessibility of the different plant species.

The Geologic Survey of Canada (GSC) uses sodium acetate (NaOAc) extractions to indicate exchangeable/adsorbed metal fractions in soil (Hall and Pelchat, 1999). The water-based extraction used in this work is weaker than the GSC's sodium acetate method and as a result, the water extraction is expected to indicate only the easily soluble and/or immediately available metal in soil pore water (unbound metals that are essentially rinsed from the soil).

Total and Extractable nickel, copper, and cobalt in each of the greenhouse blends for each soil type are listed in Tables GH-18 to GH-20 of the Soil Selection and Characterization Report (Part 2). As previously indicated, the soil CoC values reported in the Soil Selection and Characterization report (Part 2) differ slightly from those in this volume as data sets were specific to each report.

In the sand soil, the concentrations of immediately available nickel extracted by the aqueous method was very low (in most cases <0.2% of the total metal concentration). In this type of extraction, severe nickel toxicity has been observed (in previous studies) in oat even at low (3.25 ppm) soil solution Ni concentrations.

The DTPA method has previously been used to assess availability in soils contaminated with nickel (Brown et al. 1989; Sauerbeck and Hein, 1991; Sheets et al. 1982) and is considered to be indicative of soil plant available nickel for soils within a small pH range. In the sand soil, the percentage of total nickel extracted with DTPA decreased with increasing soil metal concentration. At low soil CoC concentrations (up to 215 mg Ni/kg) DTPA extractions resulted in removal of up to 22% of the total soil nickel. Although the concentration of extractable nickel increased at the higher CoC concentrations, the percentage of DTPA extractable nickel decreased and remained low (9 and 8% at 1658 and 2386 mg Ni/kg respectively), possibly indicating that once deposited, substantial percentages of the metals become strongly bound within the soil. Decreased DTPA-extractable nickel may also have resulted from changes in nickel species in the soil. Nickel speciation will continually shift to maintain equilibrium and thereby provide a constant supply of DTPA extractable nickel species relative to soil concentration.

Acid ammonium oxalate, as the strongest treatment, extracted up to 53 % of the total nickel in the 215 mg Ni/kg soil blend. A similar decline in extraction % was observed for acid ammonium oxalate at higher CoC concentrations as was seen in the DTPA extractions.

Absolute concentrations of nickel extracted by the strontium nitrate extraction were low at all soil CoC concentrations. No extraction was measured to exceed 1% and in most cases, nickel concentrations in the extract were at or near the non-detection limit for the analytical method used.

With the exception of copper in the highest sand blend (269 mg/kg), neither copper nor cobalt concentrations exceed MOE Table A guidelines. As a result, extractable copper and cobalt have not been closely examined for the sand soil. Generally, the copper and cobalt concentrations in the soil are much lower than that of nickel. Previous statistical analysis has indicated that the deposition ratios for nickel, copper, and cobalt in soils collected from the Port Colborne Area (approximately 66: 8: 1 for the more impacted soils) shows a high correlation coefficient ($\mathbb{R}^2 > 0.9$) (MOE 2000b).

There was no correlation between $Sr(NO_3)_2$ -extractable soil nickel and its concentration in oat shoots because of the low extraction levels (at the detection limits for all the soil blends). Aqueous, DTPA, and acid ammonium oxalate extractable nickel were relatively well correlated with metal concentrations in plant (Table GH-19b shoots).

Oat on Organic

Aqueous extractable nickel percentage in the organic soil was generally low with only the lowest CoC blend exceeding 1 %, thus indicating a small pool of unbound nickel.

Stronger extractants (i.e., DTPA) resulted in a higher percentage of available nickel throughout the observed range of CoC concentrations. The percentage of total nickel extracted with DTPA increased with increasing soil nickel concentration. Up to 38 % of total nickel was extracted from middle CoC range blends (e.g., 687 mg/kg), while at the highest blend (2370 mg/kg) this extractable percentage dropped slightly to 31%. Although percentage extracted remained similar, larger absolute nickel quantities were extracted from the high blend compared to the intermediate blends. The decline in extraction percentage at the highest CoC concentration may result from the DTPA solution becoming saturated (with a variety of different metal ions), and thereby becoming ineffective in continued extraction. A more likely scenario is that (as indicated in the sand soil) nickel speciation shifts resulting in a normal percentage of the total nickel being available to DTPA at any given time.

acid ammonium oxalate, as the strongest treatment, extracted up to 39 % of the total nickel in the 227 mg/kg soil blend. A similar decline in % extraction was seen for acid ammonium oxalate as was seen in the DTPA extractions, likely for the same reasons.

Strontium nitrate, similar to the aqueous extractions did not result in significant amounts of the total nickel being extracted from the organic soil.

Aqueous, DTPA, and oxalate and strontium nitrate extractable nickel were relatively well correlated with tissue metal concentrations in oat shoots (Table GH-24b)

Oat on Welland Clay

Aqueous extraction in the Welland Clay soil did not exceed 2 %, indicating an extremely small pool of unbound nickel.

A stronger extractant (DTPA) resulted in extractions to a maximum of 21 % of the total nickel from any of the soil blends ($0 = 18 \pm 1\%$).

Acid ammonium oxalate extracted up to 33 % of the total nickel in the highest soil blend. The acid ammonium oxalate extraction percentages were similar ($0 = 31 \pm 1\%$) through all Welland Clay blends.

The lower nickel totals extracted from the Welland Clay soils with the stronger extractants (as compared to the Sand and Organic soils), is likely due to a greater capacity of the clay soil (relative to sand and organic soil) for binding metals.

Immediately available (aqueous extractable) copper was extremely low in the Welland Clay Soil.

DTPA extractions resulted ranged from 43 to 58 % of total copper being extracted from the soil $(0 = 51 \pm 5\%)$.

acid ammonium oxalate proved to be the most efficient treatment for copper extraction in the Welland Clay soil. The mean recovery percentage was $75 \pm 4\%$. This extraction also proved to extract the maximum copper concentration (193 mg/kg) from the highest Welland Clay blend.

Generally, cobalt was present in very low concentrations in the Welland Clay soil and as a result, very low absolute levels of cobalt were extracted by the various extraction methods. Immediately available (aqueous extractable) and strontium nitrate extractable cobalt was extremely low and although DTPA and Oxalate extraction percentages reached 19 and 44% respectively, absolute extractions did not exceed 12 mg Co/kg.

Aqueous, DTPA, oxalate and strontium nitrate extractable nickel and were all highly correlated with metal concentrations in plant shoots (Table GH-29b).

Oat on Till Clay

The nickel percentage considered to be immediately available (aqueous extraction) in the Till Clay soil did not exceed 1 %, indicating an extremely small pool of unbound nickel in this soil type.

A stronger extractant (DTPA) removed up to 17 % of the total nickel from any Till Clay soil blend, unlike in sand and organic soils. Extractable percentage also showed a slight decline with increasing CoC concentration.

Acid ammonium oxalate, as the strongest treatment, extracted up to 23% of the total nickel in the 262 mg/kg soil blend. The mean extraction was slightly lower ($0 = 20 \pm 3$). The lower total nickel extracted from the Till Clay with the stronger extractants (as compared to the Sand and Organic soils), may result from the nature of the clay soil. Fine particle size and the resulting increase in soil surface area will provide more binding sites for metal ion, thus reducing the total metal available for extraction regardless of soil metal loading. Essentially, the capacity of clay to bind metals results in a competition between the extractant and the clay particles for the metal ions which ultimately decreases the amount of the metal ions extracted.

A greater quantity of the total copper and cobalt metal loads was extracted by the DTPA and acid ammonium oxalate methods relative to the other methods. Copper extractions reached 76% (acid ammonium oxalate) and cobalt reached 60 % (both with acid ammonium oxalate) however; the actual concentrations extracted (100 and 6 mg/kg respectively) were very low relative to the nickel extractions. The maximum total copper and cobalt extracted from the Till Clay soils was 224 and 16 mg/kg respectively in the highest CoC blends.

Aqueous extractable nickel was not correlated with the amount of Ni found in the plant shoots, because all the concentrations measured were at very low levels (detection limits). DTPA, and oxalate and strontium nitrate extractable Ni and were relatively well correlated with metal concentrations in plant shoots (Table GH-38b)

APPENDIX GH-7: DESCRIPTION OF SOIL CHARACTERISTICS AND PLANT ELEMENTAL COMPOSITION

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-7: DESCRIPTION OF SOIL CHARACTERISTICS AND PLANT ELEMENTAL COMPOSITION

Oat On Sand

Sand Soil Characteristics

The properties of the Sand soils used in this study are listed in Table GH-16 (Appendix GH-1B) and the pH of the soils prior to planting and after harvest in Table GH-17. As indicated in these tables CEC ranged from 1.9 to 2.5 meq/100 (mean = 2.1 ± 0.2), TOC ranged from 1.9 to 3.12 % (mean = 2.38 ± 0.38), and conductivity ranged from 0.33 to 0.39 mS/cm (mean = 0.35 ± 0.02). Sand pH measured in distilled water at harvest ranged from 7.11 to 7.31 (mean = 7.18 ± 0.06). Sand pH values had generally declined from that measured at the outset of the experiment.

Small value ranges and standard deviations for these parameters in sand blends indicate that a similar soil matrix (with the exception of the four CoCs) was achieved . Further, these characteristics did not co-vary with soil CoC concentration.

The concentrations of the CoC's in soil co-vary. Nickel concentrations in blends ranged from 46.2 mg/kg in the background soil, to 2310 mg/kg in the highest sand blend. Copper, cobalt, and arsenic also increased with background to high blend ranges of 14 to 270 mg Cu/kg, 1.7 to 49 mg Co/kg), and 2.5 to 24 mg As/kg.

Iron, (Fe), Manganese (Mn) and Phosphorus (P) are specifically addressed because they function as essential plant nutrients (Raven et. al, 1992), and they appear to co-vary with soil CoC concentration. Co variance is a result of the blending process and the fact that these soil characteristics differed between the raw background and High CoC soils. As a result, the blending process created a range of Fe, Mn, and P in the experimental blends. In the sand soils, iron and manganese concentrations were observed to increase substantially with CoC concentration while phosphorus was generally observed to decline (Table GH-16) (mean_{Fe} = 12660 ± 8718 ; mean_{Mn} = 193 ± 82 ; mean_P = 857 ± 183). Iron increased five-fold in concentration from 5230 to 27600 mg/kg from the low to the high CoC blend, while manganese more then doubled (118 to 333 mg/kg). Across the soil blends, phosphorus concentrations were reduced by 50% (1110 to 561 mg/kg). Despite the variation in concentration ranges, these nutrients were found in amounts adequate for plant growth.

The observed tissue concentrations for the essential metals (i.e., Fe, Mn, P) were neither deficient nor phytotoxic in oat growing on unamended sand (unamended sand : $mean_{Fe} = 54 \pm 6$; $mean_{Mn} = 20 \pm 2$; $mean_P = 7571 \pm 1014$) (Table GH-18a). (Raven et. al, 1992).

Copper concentrations in oat shoot tissue increased significantly with increased soil Cu concentrations when compared to oat grown on those soils with background CoC concentrations (Table GH-18a). The highest concentration of Cu was found in plants exposed to the high level of CoCs (1630 mg Ni/kg) despite the fact that even higher Cu concentrations were present in the next blend (2310 mg Ni/kg).

Tissue Co concentrations increased as soil Ni concentrations increased, in both amended and unamended soils (Table GH-18a, Table GH-18b). However, these did not reach phytotoxic levels (Anderson et al., 1973; Hunter and Vergnano, 1952)

Arsenic accumulations in oat tissue also increased with soil CoC concentrations. The highest concentration of As found in oat shoots (2.4 mg/kg DW) was measured at the highest soil CoC concentration.

In a comparison of un-amended vs amended soils (Table GH-18a vs GH-18b), no decline in tissue concentrations was observed for any of the four CoCs in oat tissues for plants grown on the amended soils. It could be concluded that mushroom compost did not reduce the bioavailability of Ni to oat plants grown on high Ni soil (Table GH-18b), and therefore may not be an effective means of protecting oat from CoC toxicity in sand soils.

Plant analysis of the other elements in the un-amended treatment (Table GH-18a) and in the amended treatments (Table GH-18b) suggested that neither deficiency nor phytotoxicity would be expected to influence plant yield, thus the EC_{25} established for soil Ni would be independent of these elements.

Oat on Organic Soil

Organic Soil Characteristics

The properties of the organic soils used in this study are listed in Table GH-21 while the pH of the soils before and after harvest are listed in Table GH-22. As indicated in these tables, soil properties such as pH, CEC, and organic matter, are similar across the blends. Soil CEC ranged from 13.2 to 16.0 meq/100 (mean = 14.4 ± 0.8), TOC ranged from 30.6 to 37.0 % (mean = 33.3 ± 2.3), and conductivity ranged from 1.26 to 1.48 mS/cm (0= 1.35 ± 0.10). The pH for unamended Organic soil measured in distilled water at harvest ranged from 5.92 to 6.06 (mean = 6.00 ± 0.06). Organic soil pH values had generally increased from that measured at the outset of the experiment.

Small value ranges and standard deviations indicate that (as was seen in the sand blends) a relatively uniform soil matrix was achieved through blending of organic soils.

Nickel concentrations in blends ranged from 89.5 mg/kg in the background soil, up to 2400 mg/kg in the highest organic blend. Copper, cobalt, and arsenic also increased in background to high blends ranged from 46 to 360, 6 to 36, and 6 to 18 mg/kg respectively.

Iron (Fe), manganese (Mn) and phosphorus (P) concentrations remained relatively constant across blends regardless of CoC concentration (mean_{Fe} = 15222 ± 326 ; mean_{Mn} = 251 ± 7 ; mean_P = 1120 ± 16). At the measured concentrations, Fe, Mn, and P are present in amounts adequate for plant growth (AAFRD, 1998; OMAFRA, 1997).

Elemental Composition of Plants

Although nickel accumulations in oat tissue remained relatively low (<1 - 35 mg/kg DW), concentrations increased significantly with increased soil nickel concentration with the shoots exposed to the highest soil nickel concentrations accumulating 35 mg/kg (Table GH-23a). The application of the calcium and magnesium carbonate as amendments did not significantly reduce the amount of tissue nickel in the plants in soil nickel concentrations, but was correlated with nickel in the plants exposed to high CoC concentrations (Table GH-23b).

The copper critical toxicity level in the leaves for most crop species is above 20-30 mg Cu/kg DW (Robson and Reuter, 1981). The levels of copper measured in the plant shoots were well below these levels (6 - 10 mg/kg DW). However, a statistically significant increase was observed when comparing the copper concentrations found in the plant growing in the background soil with the ones found in the plant exposed to various CoCs levels (Table GH-23a). The highest concentration of copper in plants was found in plants exposed to highest levels of soil CoCs (2400 mg Ni/kg). Amendment application did not reduce the amount of copper accumulated in the plants (Table GH-23b).

Cobalt accumulation in the plant shoots was found to be limited in all the plants and well below the critical toxicity level although accumulation did increase significantly as the soil CoCs concentrations increased (Table GH-23a). The highest cobalt concentration measured in the oat tissue did not exceed 0.1 mg/kg DW in the plant exposed to the highest soil CoCs concentrations. Application of the carbonate amendments was not observed to have an effect on the amount of Co accumulated in the oat tissue (Table GH-23b).

In the case of arsenic, accumulation in the plant shoots did not increase significantly relative to various soil As concentrations, with the exception of the plants growing in the highest soil As concentrations. The highest concentration of arsenic found in the plant shoots was 0.4 mg/kg DW (Table GH-23a).

Plant analysis indicated a severe Mn deficiency (<5 mg/kg Mn DW) despite the attempt in correcting the Mn induced deficiency by foliar spraying with manganese sulfate. Amendment application significantly decreased Mn concentrations in plants. Mn deficiencies have been shown to occur in organic soils following liming (Kukier and Chaney, 2000).

Oat on Welland Clay

Welland Clay Soil Characteristics

The properties of the Welland Clay soils used in this study are described in Table GH-26 and the pH of the soils before and after harvest in Table GH-27. As indicated in these tables, soil properties such as pH, CEC, and organic matter, are similar across the blends. Soil CEC ranged from 4.5 to 6.7 meq/100 (mean = 5.4 ± 0.8), and TOC ranged from 5.4 to 7.2 % (mean = 6.0 ± 0.6). Conductivity was not measured in Welland Clay.

The pH for unamended Welland Clay soil pH measured in distilled water at harvest ranged from ranged from 6.29 to 6.41 (mean = 6.34 ± 0.04). Welland Clay soil pH values generally increased from that measured at the outset of the experiment.

Nickel concentrations in blends ranged from 45.3 mg/kg in the background soil, up 1900 mg/kg in the highest blend. Copper, cobalt, and arsenic also increased with background to high blend ranges from 18.2 to 240, 4.8 to 29, and 2.2 to 10 mg/kg respectively (Table GH-26). The range of metal concentrations in each of the Welland Clay blends increased as originally projected.

From low to high soil CoC concentrations, Fe, Mn and P increase with CoC concentration. The concentrations of iron, manganese and phosphorus in Welland Clay soil were considered adequate for plant growth at the outset of the experiment (AAFRD, 1998; OMAFRA, 1997) and therefore the effects of nutrient toxicity or deficiencies were not expected to influence plant growth.

Elemental Composition of Plants

Nickel accumulation in plant shoots increased significantly as the soil CoCs concentrations increased. The highest Ni concentration measured was 52 mg/kg DW in the shoots exposed to the highest level of nickel in the soil (Table GH-28a). The increase in pH (from 6.34 to 6.71) by the application of calcium and magnesium had a statistically significant effect on the amount of nickel accumulated in the plants. This translated into a reduction in the amount of nickel accumulated by plants from 52 to 32mg/kg DW in the shoots. This decrease was observed in all the plants exposed to all soil CoC levels (Table GH-28b).

A statistically significant increase was observed in the copper concentrations found in the plants exposed to various CoCs levels with the ones found in the plants growing in the background soil (Table GH-28a). The highest concentration of copper in plants was found in plants exposed to highest levels of CoCs in the soil, (1900 mg Ni/kg), but was found to be well below the toxic threshold for this element. Amendment application had no effect on the amount of copper accumulated in the plants (Table 4. 14b).

Cobalt accumulation in the plant shoots was found to be low in all the plants and well below the toxic threshold for this element; accumulation did increase slightly with soil CoC concentrations (Table GH-28a). Although cobalt levels measured in the plant shoots were low across all treatments, a statistically significant increase was observed at the highest soil CoC levels where the plant shoots accumulated 0.04 and 0.1 mg Co/kg DW. No effect on the amount of Co accumulated in the plant shoots was observed by the application of amendment (Table 4. 14b).

In the case of arsenic, accumulation in the plant shoots did not increase significantly with increased soil CoC concentrations. The highest concentration of arsenic found in the plant shoots was 0.3 mg/kg DW (Table 4. 14a), again well below the toxic threshold. Amendment application did not have any observable effect on the amount of arsenic accumulating in the plant shoots (Table 4. 14b).

Oat on Till Clay

Till Clay Soil Characteristics

The properties of the Till Clay soils used in this study are described in Table GH-35 and the pH of the soils before and after harvest in Table GH-36. Unlike the other soils, properties such as pH, CEC, and organic matter varied substantially among blends. Soil CEC nearly doubled from low to high CoC concentrations, ranging from 410 to 9.50 meq/100 (mean = 5.78 ± 1.8). This increase may contribute to increased binding of CoCs in the higher blends and contribute slightly to protecting the plants from CoC impacts. TOC ranged from 3.36 to 13.40 % (mean = 6.25 ± 3.5) This difference may be indicative of variation in soil types used to create the Till Clay blends. The pH for unamended Till Clay soil measured in distilled water at harvest increased significantly from low to high CoC blends. This increase however was slight ranging from 6.19 to 6.63 (mean = 6.43 ± 0.15). Till Clay soil pH values generally increased in all blends from that measured at the outset of the experiment.

Nickel concentrations in blends ranged from 51 mg/kg in the background soil, up 2540 mg/kg in the highest blend. Copper, cobalt, and arsenic also increased with background and high blend ranges from 17 to 338, 7 to 47, and 4.4 to 16 mg/kg respectively.

Iron (mean = 23685 ± 2509 mg/kg) and phosphorus (mean = 809 ± 193 mg/kg) concentrations were similar (30% analytical acceptability for soil) across CoC concentrations. Manganese on the other hand declined slowly with increasing CoC concentration and was observed to decline drastically in the highest CoC concentration. Fe, Mn, and P were considered to be present in amounts adequate for plant growth (AAFRD, 1998; OMAFRA, 1997) at the outset of the experiment.

Elemental Composition of Plants

Nickel accumulation in plant shoots increased significantly with soil CoC concentrations (Table GH-37a). However total tissue concentrations were relatively low overall with the highest tissue concentration reaching only 25 mg Ni/kg DW in the shoots exposed at the highest level of soil nickel. The application of the calcium and magnesium carbonates (pH increase from 6.59 to 6.97) did not affect the accumulation of nickel in oat tissue (Table GH-37b).

Copper accumulation in the plant shoots increased significantly with soil CoC concentration. Tissue concentrations ranged from 2.68 to 11.56 mg/kg (Table GH-37a). The highest concentration of tissue copper was found in plants exposed to highest soil CoC concentrations (2540 mg Ni/kg). Carbonate application had no effect copper accumulation in oat (Table GH-37b).

Cobalt accumulation in the oat shoots was found to be limited in all blends (close to the detection limits). Increase in tissue cobalt was not statistically significant with increased soil CoC concentrations (Table GH-37a). Oat shoots accumulations of Co were not affected by the application of carbonates (Table GH-37b).

In the case of arsenic, accumulation in the plant shoots did not increase significantly across the various soil CoCs concentrations, with the exception of plants exposed to the highest levels of CoCs in the soil. The highest concentration of As found in the plant shoots was 0.5 mg/kg DW (Table GH-37a). Application of the carbonate amendments had no effect on the amount of As accumulated in the plant shoot tissue (Table GH-37b).

Oat plants grown in the blends with the highest CoC content demonstrated a statistically significant increase in tissue calcium, iron, magnesium and zinc concentrations, while manganese content decreased significantly.

APPENDIX GH-8 SOIL BLENDING SENSITIVITY ANALYSIS DATA TABLE

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA – Crop Studies Volume 1 - Part 3 – Appendices - Greenhouse Trials

APPENDIX GH-8:

Soil Blending Sensitivity Analysis Data Table: Total, DTPA- and H₂0extractable Ni concentrations in Unblended Clay, Blended Welland Clay and Blended Till Clay

Unblended clay ³			Blend	Blended Welland Clay ²			Blended Till Clay ¹	
Total Ni (mg /g)	DTPA-Ni (ng /g)	H ₂ O-Ni (ng /g)	Total Ni (ng /g)	DTPA-Ni (mg /g)	H ₂ O-Ni (mg /g)	Total Ni (ng /g)	DTPA-Ni (ng /g)	H ₂ O-Ni (mg /g)
34	4	0	45	8	0.3	51	9	0.3
194	27	0.5	188	34	0.8	145	23	0.3
517	70	1.7	347	60	1.1	262	38	0.8
636	50	1.2	498	90	1.4	438	49	0.8
1040	66	4.2	650	118	1.9	553	70	1.2
1350	232	6.6	957	176	2.7	947	147	2.7
3110	528	19.8	1129	189	3.2	1375	176	2.7
3430	408	8.6	1902	378	6.0	2545	309	5.1
5920	817	28.9	-	-	-	-	-	-

Notes:

1. Data from yr 2001 greenhouse Till Clay blends

2. Data from yr 2001 greenhouse Welland Clay blends

3. Data accumulated from unblended clay soils in 2001 field work, yr 2000 greenhouse trials and yrs 2000 and 2001 field trials; unblended soils include both Till Clay and Welland Clay soil types

FIELD TRIALS 2000 & 2001

VOLUME I - PART 4 - APPENDICES

DECEMBER, 2004

LSIT OF APPENDICES

VOLUME I – PART 4 - APPENDICES

APPENDIX F-1	Tissue CoC Concentrations for Crops Grown During 2001 Field Trials
APPENDIX F-2	Data from Fields Trials
APPENDIX F-3	Field Application Rates of Agricultural Limestone for Test Sites
APPENDIX F-4A	Representative Photographs of Field Trials 2000
APPENDIX F-4B	Representative Photographs of Field Trials 2001
APPENDIX F-5	Layouts of Field Test Sites 2000 and 2001
APPENDIX F-6	Extractable Nickel, Copper and Cobalt of the Preliminary Field Trials (2000) and Field Trials (2001)

APPENDIX F-1 TISSUE CoC CONCENTRATIONS FOR CROPS GROWN DURING 2001 FIELD TRIALS

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

ONT34663 December, 2004 Page F1-1

Test			Nickel			Copper			Cobalt		Arsenic			
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	
	UN	4950	2.6 ^a	<1	596	6.40	1	75	0.12 ^a	<1	28.8	nd ⁴		
	UN	± 1200	± 0.5	<1	±126	± 5.74	1	±13	± 0.05	<1	± 3.8	nu	-	
	1X	4730	2.3 ^a	<1	584	5.08	1	72	0.12 ^a	<1	28.2	nd		
C2	IΛ	±930	± 0.7	<1	± 94	± 0.84	1	± 10	± 0.05	<1	±3.3	nu	-	
C2	γv	5030	2.5 ^a	<1	596	5.08	1	76	0.13 ^a	<1	28.9	nd		
	2X	± 1490	± 0.8	<1	± 128	± 0.58	1	±18	± 0.04	<1	±5.1	nu	-	
	Cal	4020	1.2 ^b	<1	490	3.98	1	64	0.17 ^b	<1	25.3	0.2	1	
	Cal	± 830	± 0.3	<1	± 87	± 0.50	1	± 10	± 0.04	<1	± 5.0	± 0.1	1	
	LINI	3210 ^a	19.6 ^a	1	388	5.19	1	48 ^a	0.38 ^a	1	17.7	nd		
	UN	± 350	± 6.1	1	±39	± 0.90	1	± 5	± 0.15	1	± 2.1	nu	-	
C3	1X	3110 ^{ab}	6.1 ^b	<1	380	5.37	1	47 ^{ab}	0.19 ^b	<1	17.5	nd		
CS	IЛ	± 410	± 0.8	<1	±46	± 0.74	1	± 6	± 0.03	<1	±3.7	na	-	
	Cal	2980 ^b	3.8 ^b	<1	369	6.68	2	45 ^b	0.15 ^b	<1	17.4	nd		
	Cal	± 270	± 1.0	<1	±36	± 5.05	2	± 4	± 0.03	<1	± 2.2	nu	-	
Notes	totes ¹ Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments													
	within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.													
	2 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = Calcareous.													
3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.														
	4 nd = not detected. Ratios were not calculated for these values.													

Table 1Uptake Of CoCs into Agronomic Corn Tissue at C2 And C3 Test Sites During
2001.1

Test			Nickel			Copper			Cobalt		Arsenic		
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	UN	4950	7.2	<1	596	5.41 ^{ab}	1	75	0.33 ^a	<1	28.8	0.8 ^{ab}	3
	UN	± 1200	±1.7	<1 	±126	± 0.85	1	±13	± 0.06	<1 	± 3.8	± 0.3	5
	1X	4730	8.4	<1	584	6.34 ^a	1	72	0.42 ^b	1	28.2	1.1 °	4
C2	1	±930	±4.5	<1	±94	± 1.94	1	± 10	± 0.11	1	±3.3	± 0.3	4
C2	av	5030	7.3	-1	596	5.64 ^{ab}	1	76	0.34 ^a	~1	28.9	0.9 ^{bc}	3
	2X	± 1490	± 3.0	<1	±128	± 1.16	1	± 18	± 0.06	<1	±5.1	± 0.3	3
	Cal	4020	5.1	<1	490	4.73 ^b	1	64	0.36 ^{ab}	1	25.3	0.6 ^a	2
	Cal	± 830	±4.7	<1	±87	± 1.3	1	± 10	± 0.10	1	± 5.0	± 0.3	2
	UN	3210 ^a	55.4 ^a	2	388	6.13	2	48 ^a	0.70 ^a	1	17.7	0.5	3
	UN	± 350	± 14.1	Z	±39	± 1.23	Z	± 5	± 0.18	1	± 2.1	± 0.1	5
C3	1X	3110 ^{ab}	16.4 ^b	1	380	6.23	2	47 ^{ab}	0.39 ^b	1	17.5	0.4	2
CS	1	± 410	± 3.8	1	±46	±1.13	Z	± 6	± 0.11	1	±3.7	± 0.1	2
	Cal	2980 ^b	10.0 ^b	<1	369	6.66	2	45 ^b	0.40 ^{ab}	1	17.4	0.3	2
	Cal	± 270	± 2.7	<1	±36	± 1.98	2	± 4	± 0.15	1	± 2.2	± 0.1	2
Notes	Notes 1 Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.												
	2 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = Calcareous.												
	3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.												

Table 2 Uptake of CoCs into Toxicological Corn Tissue at C2 and C3 Test Sites During 2001.¹

Table 5 Uplake of CoCs into Corn Crop Yield Hissue at C2 Test Site During 200	Table 3	Uptake of CoCs into Corn Crop Yield Tissue at C2 Test Site During	2001. ¹
---	---------	---	---------------------------

Test			Nickel			Copper			Cobalt			Arsenic	
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	LINI	4950	2.6 ^a	<i>z</i> 1	596	1.42 ^a	-1	75	0.03 ^b	~1	28.8	nd ⁴	
	UN	± 1200	± 0.6	<1	±126	± 0.14	<1	±13	± 0.01	<1	± 3.8	na	-
	1 V	4730	2.6 ^a	-1	584	1.43 ^a	-1	72	0.03 ^a	~1	28.2	nd	
C2	1X	± 930	± 0.6	<1	±94	± 0.15	<1	± 10	± 0.01	<1	±3.3	nd	-
C2	2V	5030	2.8 ^{ab}	-1	596	1.37 ^a	-1	76	0.04 ^c	~1	28.9	nd	
	2X	± 1490	± 0.4	<1	± 128	± 0.10	<1	± 18	± 0.01	<1	± 5.1	nd	-
	0.1	4020	3.2 ^b	-1	490	1.98 ^b	-1	64	0.03 ^a	-1	25.3	te el	
	Cal	± 830	± 1.3	<1	± 87	± 1.16	<1	±10	± 0.00	<1	±5.0	nd	_
Notes	$\frac{1}{1}$ Values presented are means \pm standard deviation. Values in bold type indicate a significant difference was noted between treatments												

within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.

Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = 2 Calcareous. Corn cobs were not harvested from the C3 Test Site.

Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer. 3

Test			Nickel			Copper	1		Cobalt			Arsenic	
Site	Amend. ²		Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	
	LINI	4950	71.1 ^a	1	596	12.8 ^a	2	75	1.5 ^a	2	28.8	0.4 ^a	1
	UN	± 1200	± 36.8	1	±126	± 3.6	2	±13	± 0.6	2	± 3.8	± 0.2	1
	1X	4730	71.5 ^a	2	584	14.7 ^a	3	72	1.6 ^a	2	28.2	0.5 ^a	2
C2	1	±930	± 36.1	2	±94	± 3.2	5	±10	± 0.6	2	±3.3	± 0.2	2
C2	2X	5030	64.4 ^a	1	596	13.3 ^a	2	76	1.6 ^a	n	28.9	0.5 ^a	2
	2Λ	± 1490	± 37.9	1	± 128	± 4.2	2	±18	± 0.7	2	± 5.1	± 0.3	2
	Cal	4020	122 ^b	2	490	24.7 ^b	5	64	2.5 ^b	4	25.3	0.7 ^b	3
	Cal	± 830	± 63	3	± 87	± 7.5	5	± 10	± 1.0	4	± 5.0	± 0.4	3
Notes ¹ Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.													

Uptake of CoCs into Agronomic Radish at C2 Test Site During 2001.¹ Table 4

Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = 2 Calcareous.

3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

Table 5	Uptake of CoCs into Toxicological Radish Tissue at C2 Test Site During 2001. ¹

Test			Nickel			Copper	1		Cobalt		Arsenic		
Site	Amend. ²	Boll	Tissue (mg/kg)	Ratio ³ (as %)		Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	LINI	4950	54.7 ^a	1	596	11.2 ^a	2	75	1.1 ^a	2	28.8	0.6 ^a	2
	UN	± 1200	± 16.1	1	±126	± 2.9	2	±13	± 0.3	Z	± 3.8	± 0.1	2
	1X	4730	55.1 ^a	1	584	12.3 ^a	2	72	1.2 ^a	2	28.2	0.6 ^a	2
C2	17	± 930	± 18.7	1	±94	± 2.7	2	± 10	± 0.3	2	± 3.3	± 0.2	2
C2	2V	5030	52.4 ^a	1	596	11.8 ^a	2	76	1.2 ^a	2	28.9	0.6 ^a	2
	2X	± 1490	± 26.0	1	± 128	± 4.4	2	± 18	± 0.5	2	± 5.1	± 0.2	Z
	Cal	4020	128 ^b	2	490	25.9 ^b	5	64	2.7 ^b	4	25.3	1.0 ^b	4
	Cal	± 830	± 39	3	±87	±5.4	5	± 10	± 0.6	4	± 5.0	± 0.2	4
Notes ¹ Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.													

Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = 2 Calcareous.

3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

Test			Nickel			Copper	1		Cobalt			Arsenic	
Site	Amend. ²		Tissue (mg/kg)		Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	UN	4950	42.5 ^b	1	596	8.2 ^a	1	75	1.0 ^{ab}	1	28.8	0.3 ^a	1
	UN	± 1200	± 10.9	1	± 126	± 1.7	1	±13	± 0.2	1	±3.8	± 0.1	1
	1X	4730	32.0 ^a	1	584	7.7 ^a	1	72	0.9 ^a	1	28.2	0.3 ^a	1
C2	1	±930	± 9.4	1	± 94	± 1.4	1	± 10	± 0.2	1	±3.3	± 0.1	1
C2	2V	5030	34.8 ^a	1	596	7.9 ^a	1	76	1.1 ^{bc}	1	28.9	0.3 ^a	1
	2X	± 1490	± 14.3	1	± 128	± 2.2	1	± 18	± 0.4	1	±5.1	± 0.2	1
	Cal	4020	43.2 ^b	1	490	10.0 ^b	2	64	1.2 ^c	2	25.3	0.6 ^b	2
	Cal	± 830	± 10.2	1	±87	± 1.8	2	± 10	± 0.2	Z	± 5.0	± 0.1	Z
Notes 1 Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.													

Table 6 Uptake of CoCs into Radish Globes (Crop Yield Tissue) at C2 Test Site During 2001.¹

2 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal =

Calcareous.

3

Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

Uptake of CoCs into Agronomic Oat Tissue at C2 And C3 Test Sites During 2001.¹ Table 7

Test			Nickel			Copper			Cobalt			Arsenic	
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	LINI	4950	21.8 ^a	<1	596	9.97 ^a	2	75	0.32 ^a	~1	28.8	1.3 ^a	5
	UN	± 1200	± 6.4	<1	±126	± 0.65	Z	±13	± 0.04	<1	± 3.8	± 0.4	3
	1X	4730	12.2 ^b	<1	584	10.28 ^a	2	72	0.29 ^a	<1	28.2	1.0 ^b	4
C2	IЛ	±930	± 4.9	<1	±94	± 0.86	2	± 10	± 0.04	<1	±3.3	± 0.2	4
C2	2X	5030	13.4 ^b	<1	596	9.79 ^a	2	76	0.32 ^a	<1	28.9	0.8 ^b	3
	$\Delta \Lambda$	± 1490	± 4.1	<1	± 128	± 0.65	2	± 18	± 0.08	<1	±5.1	± 0.1	5
	Cal	4020	14.9 ^b	<1	490	8.98 ^b	2	64	0.15 ^b	<1	25.3	0.6 °	2
	Cal	± 830	± 3.3	<1	±87	± 0.70	2	± 10	± 0.04	<1	± 5.0	± 0.4	2
	UN	3210 ^a	135 ^a	4	388	6.06 ^a	2	48 ^a	0.69 ^a	1	17.7	0.2	1
		± 350	± 15	Ŧ	±39	± 1.30	2	± 5	± 0.06	1	± 2.1	± 0.1	1
C3	1X	3110 ^{ab}	78.1 ^b	3	380	8.32 ^b	2	47 ^{ab}	0.44 ^b	1	17.5	0.3	2
CJ	IЛ	± 410	± 10.2	5	±46	± 1.58	2	± 6	± 0.06	1	±3.7	± 0.1	2
	Cal	2980 ^b	62.4 ^c	2	369	8.99 ^b	2	45 ^b	0.41 ^b	1	17.4	0.3	2
	Cal	± 270	± 8.8	2	±36	± 1.10	2	± 4	± 0.04	1	± 2.2	± 0.1	2
Notes	 Notes 1 Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test. 2 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = 												

Calcareous.

3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

Test			Nickel			Copper			Cobalt			Arsenic	
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)		Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	LINI	4950	20.0 ^a	<1	596	9.53	2	75	0.34 ^a	<1	28.8	1.7 ^a	6
	UN	± 1200	± 7.3	<1	± 126	± 0.71	Z	±13	± 0.12	<1	± 3.8	± 0.5	0
	1X	4730	10.9 ^b	<1	584	9.47	2	72	0.29 ^a	<1	28.2	1.2 ^b	4
C2	IΛ	± 930	± 3.7	<1	± 94	± 1.40	2	± 10	± 0.05	<1	±3.3	± 0.2	4
C2	2X	5030	13.7 ^b	<1	596	9.46	2	76	0.35 ^a	<1	28.9	1.1 bc	4
	2Λ	± 1490	± 6.8	<1	± 128	± 0.80	Z	± 18	± 0.18	<1	± 5.1	± 0.2	4
	Cal	4020	13.2 ^b	~1	490	9.43	2	64	0.20 ^b	~1	25.3	0.9 ^c	4
	Cal	± 830	± 2.5	<1	± 87	± 0.74	Z	± 10	± 0.06	<1	± 5.0	± 0.3	4
	UN	3210 ^a	114 ^a	4	388	6.97 ^a	2	48 ^a	0.75 ^a	2	17.7	0.4 ^a	2
		± 350	± 22	4	±39	± 1.55	2	± 5	± 0.15	2	± 2.1	± 0.1	2
C3	1X	3110 ^{ab}	74.2 ^b	2	380	8.75 ^b	2	47 ^{ab}	0.48 ^b	1	17.5	0.3 ^{ab}	2
C5		± 410	± 13.1	2	±46	± 1.49	2	± 6	± 0.06	1	±3.7	± 0.1	2
	Cal	2980 ^b	61.6 °	2	369	9.52 °	3	45 ^b	0.44 ^b	1	17.4	0.3 ^b	2
	Cal	± 270	± 13.2	2	±36	± 1.19	5	± 4	± 0.05	1	± 2.2	± 0.1	2
Notes	Notes 1 Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test. 2 Amordment treatments as described in Section 2.2. UN UN<												

Uptake of CoCs into Toxicological Oat Tissue at C2 and C3 Test Sites During 2001.¹ Table 8

2 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = Calcareous.

3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

Table 9	Uptake of CoCs into Oat Crop Yield Tissue at C2 Test Site During 2001. ¹

Test			Nickel		Copper				Cobalt		Arsenic		
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)			Tissue (mg/kg)			Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	
	UN	4950	58.1 ^a	1	596	6.58 ^a	1	75	0.22 ^a	~1	28.8	nd ⁴	
	UN	± 1200	± 10.7	1	±126	± 0.48	1	±13	± 0.03	<1	± 3.8	na	-
	1X	4730	41.6 ^b	1	584	6.56 ^a	1	72	0.16 ^b	~1	28.2	nd	
C2	1	±930	± 12.3	1	± 94	± 0.52	1	± 10	± 0.04	<1	±3.3	nd	-
C2	2X	5030	45.5 ^b	1	596	6.84 ^a	1	76	0.18 ^c	-1	28.9	nd	
	2Λ	± 1490	± 11.7	1	± 128	± 0.73	1	± 18	± 0.04	<1	±5.1	nd	-
	Cal	4020	34.0 ^c	1	490	5.91 ^b	1	64	0.09 ^d	~1	25.3	nd	
	Cal	± 830	± 4.5	1	±87	± 0.32	1	± 10	± 0.03	<1	± 5.0	nd	-
Notes	Notes ¹ Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments									ments			

within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.

Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = 2 Calcareous. Corn cobs were not harvested from the C3 Test Site.

3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

Test			Nickel			Copper			Cobalt		Arsenic		
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	TIN	4950	52.2 ^a	1	596	9.99	2	75	1.08 ^a	1	28.8	0.31 ^a	1
	UN	± 1200	± 17.5	1	±126	± 2.63	2	±13	± 0.59	1	±3.8	± 0.29	1
	1 V	4730	41.0 ^b	1	584	9.19	2	72	0.75 ^b	1	28.2	0.16 ^b	1
C2	1X	± 930	± 7.4	1	± 94	± 1.41	2	± 10	± 0.22	1	±3.3	± 0.10	1
C2	2X	5030	37.0 ^{bc}	1	596	9.16	2	76	0.76 ^b	1	28.9	0.16 ^b	1
		± 1490	± 3.9	1	± 128	± 1.05	2	±18	± 0.17	1	±5.1	± 0.08	1
	Cal	4020	29.5 °	1	490	9.50	2	64	0.31 ^c	<1	25.3	0.10 ^b	<1
	Cal	± 830	± 4.4	1	±87	± 2.54	2	±10	± 0.07	<1	± 5.0	± 0.00	<1
	UN	3210 ^a	158 ^a	5	388	6.92 ^a	2	48 ^a	2.61 ^a	5	17.7	0.23	1
		± 350	± 40	5	±39	± 0.64	2	± 5	± 0.89	5	± 2.1	± 0.08	1
C3	1X	3110 ^{ab}	56.7 ^b	2	380	5.97 ^b	2	47 ^{ab}	0.81 ^b	2	17.5	nd ⁴	
CJ		± 410	± 9.3	2	±46	± 0.73	2	± 6	± 0.14	2	±3.7	IIG	-
	Cal	2980 ^b	33.5 ^c	1	369	5.21 ^c	1	45 ^b	0.50 ^b	1	17.4	nd	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Notes 1 Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test. 2 Amendment treatments, as described in Section 2.3 UN = Unamended 1X = 1X OMAERA levels, 2X = 2X OMAERA levels, Cal =													

Uptake of CoCs into Agronomic Soybean Tissue at C2 and C3 Test Sites During Table 10 2001.¹

Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = 2

Calcareous. Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer. 3

Test			Nickel			Copper	1		Cobalt			Arsenic		
Site	Amend. ²	Soil (mg/kg)	Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	
	UN	4950	66.2	1	596	14.5	2	75	2.00	3	28.8	1.19	4	
	UN	± 1200	± 21.6	1	±126	± 3.5	2	±13	± 0.67	3	± 3.8	± 0.48	4	
	1X	4730	65.0	1	584	14.6	3	72	1.95	3	28.2	1.08	4	
C2	IЛ	±930	± 28.4	1	±94	± 3.2	3	± 10	± 0.68	3	±3.3	± 0.36	4	
C2	2X	5030	63.7	1	596	16.4	3	76	1.90	3	28.9	1.14	4	
	$\Delta \Lambda$	± 1490	± 26.3	1	± 128	±6.6	5	± 18	± 0.77	3	± 5.1	± 0.45	4	
	Cal	4020	66.3	2	490	17.0	3	64	1.55	2	25.3	0.89	4	
	Cal	± 830	± 34.8	2	±87	±5.4	5	± 10	± 0.84	2	± 5.0	± 0.34	4	
	UN	3210 ^a	162 ^a	5	388	8.24	2	48 ^a	2.64 ^a	6	17.7	0.23	1	
		± 350	± 24	5	±39	±1.31	2	± 5	± 0.47	0	± 2.1	± 0.05	1	
C3	1X	3110 ^{ab}	93.9 ^b	3	380	8.56	2	47 ^{ab}	1.95 ^a	4	17.5	0.19	1	
CJ	IЛ	± 410	± 23.7	5	±46	±1.89	2	± 6	± 0.42	Ť	±3.7	± 0.12	1	
	Cal	2980 ^b	46.7 °	2	369	7.35	2	45 ^b	1.45 ^b	3	17.4	0.17	1	
Cal ± 270 ± 7.3 2 ± 36 ± 0.87 2 ± 4 ± 0.23 3 ± 2.2 ± 0.11 1											1			
Notes ¹ Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.														
 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = Calcareous. Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer. 														

Table 11Uptake of CoCs into Toxicological Soybean Tissue at C2 and C3 Test Sites During
2001.1

Table 12	Uptake of CoCs into Soybean Crop Yield Tissue at	C2 Test Site During 2001. ¹
	eptune of ever monopy seun erop richa rissue ut	

Test			Nickel			Copper			Cobalt		Arsenic		
Site	Amend. ²		Tissue (mg/kg)	Ratio ³ (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)	Soil (mg/kg)	Tissue (mg/kg)	Ratio (as %)
	UNI	4950	37.4 ^a	1	596	9.78 ^a	2	75	0.59 ^a	1	28.8	nd ⁴	
	UN	± 1200	± 5.8	1	±126	± 0.72	2	±13	± 0.09	1	± 3.8	na	-
	1 V	4730	36.1 ^{ab}	1	584	11.03 ^b	2	72	0.51 ^b	1	28.2	nd	
C 2	1X	± 930	± 4.9	1	±94	± 1.52		± 10	± 0.09	1	± 3.3	nd	-
C2	2V	5030	32.8 ^b	1	596	10.07 ^{ab}	2	76	0.51 ^b	1	28.9	nd	
	2X	± 1490	± 4.7	1	±128	± 0.59	2	± 18	± 0.09	1	± 5.1	nd	-
	Cal	4020	34.7 ^{ab}	1	490	12.20 °	2	64	0.31 °	~1	25.3	nd	
	Cal	± 830	± 6.4	1	±87	± 2.81	2	± 10	± 0.05	<1	±5.0	nd	-
Notes	1 Value	Values in l	bold type ir	ndicate a sig	gnificant di	fference wa	as noted be	tween treat	ments				

Values presented are means ± standard deviation. Values in bold type indicate a significant difference was noted between treatments within a site. Superscript letters indicate grouping, based on Tukey's Posthoc test.

2 Amendment treatments, as described in Section 2.3. UN = Unamended, 1X = 1X OMAFRA levels, 2X = 2X OMAFRA levels, Cal = Calcareous. Corn cobs were not harvested from the C3 Test Site.

3 Ratios are percentage of total CoC concentration found in plant tissue, to the nearest integer.

APPENDIX F-2

DATA FROM FIELD TRIALS

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

ONT34663 December, 2004 Page F2-1

Preliminary Field Trials 2000 Soil and Plant Data

Plant Tissue

С	Corn
0	Oat
R	Radish (below ground)
RL	Radish leaves
S	Soybean

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

ONT34663 December, 2004 Page F2-2

Preliminary Field Trials 2000 Soil Data

0-15 cm Soil Samples			B: AMEND	NDED SOIL ED SOIL (1X O ED SOIL (2X O			nd: parameter	not detecte	d		
		Total organic C %	Soil Nickel (mg/kg)	Aqueous Nickel (mg/kg)	DTPA Nickel (mg/kg)	Soil Copper (mg/kg)	Aqueous Copper (mg/kg)	DTPA Copper (mg/kg)	Soil Cobalt (mg/kg)	Aqueous Cobalt (mg/kg)	DTPA Cobalt (mg/kg)
			(((((8,8)	((((8,8)
Organic Test Site DATE: JULY 24/	2000										-
sample ID	2000										
O 713 P4 A SS 1		35.3	1750	5.32	263	317	nd	6.1	27.6	nd	2.2
O 713 P4 B SS 1		32.7	1780	2.81	288	294	nd	27.4	26.5	nd	3
O 713 P4 C SS 1 DATE: JULY 24/	2000	35.1	1900	3.92	293	324	nd	19.3	28.6	nd	2.9
sample ID	2000										
0 713 P3A SS 1		37.2	1850	4.88	295	321	nd	16.7	29.8	nd	3
O 713 P3 B SS 1		34.4	2020	3.08	315	326	nd	23.7	29.4	nd	3.3
O 713 P3 C SS 1		26	1550	2.74	376	254	nd	35.3	22.7	nd	1.6
DATE: JULY 24/	2000										
sample ID O 713 P2 A SS 1		26.7	7360	13.3	1110	993	1.3	14.7	86	nd	0.5
0 713 P2 A SS 1 0 713 P2 B SS 1		36.3	2800	4.72	499	422	nd	13.9	39	nd	1.7
O 713 P2 C SS 1		30.3	5650	10.1	1080	738	nd	26.5	69.2	nd	1.4
DATE: JULY 24/	2000										
sample ID		00.1	0.410		400	4==			45.0		
O 713 P1 A SS 1 O 713 P1 B SS 1	_	33.1 38.7	3410 2760	7.77 4.16	492 519	475 388	nd nd	9.9 19.5	45.2 37.9	nd nd	0.9
0 713 P1 C SS 1		29.30	2080	3.65	362	306	nd	36.1	29.7	nd	3.5
0710110001		20.00	2000	0.00	002	000	na	00.1	20.1	na	0.0
Clay 2 Test S	ite										
DATE: AUGUST 1	8/2000										
sample ID		1			1			1			1
1804PIA	SS-1	6.20	7140	3.97	237.00	773.00	nd	100.00	100.00	nd	3.60
1804PIB	SS-1	5.6	5550	53.7	3190.0	628.0	nd	119.0	81.8	nd	119.0
I804PIC	SS-1	5.1	4890	nd	2.8	569.0	nd	116.0	71.8	nd	3.0
DATE: AUGUST 24	4 /2000										
1804P2A	SS-1	6	7420	4.87	ns	865	nd	67.40	89.7	nd	3.10
1804P2B 1804P2C	SS-1 SS-1	5.8 6.2	7210 7610	5.5 nd	3.2 286.0	760 785	nd nd	75.1 68.5	81.7 90.7	nd nd	2.3 3.2
		0.2	7010	IN	200.0	100	na	00.0	50.7	nu	0.2
DATE: AUGUST 24	4 /2000										
4004004	00.4	5.0	54.40	0.00	400	507		00.5	00.7		0.4
1804P3A 1804P3B	SS-1 SS-1	5.3 5.8	5140 6890	3.89 4.2	198 212	567 780	nd nd	62.5 78.9	68.7 85.5	nd nd	3.1 3.6
1804P3C	SS-1	6.2	5170	3.29	192	575	nd	83.7	72.6	nd	3.3
DATE: AUGUST 24											
DATE: //000012	+72000										
1804P4A	SS-1	4.7	4620	3.08	129	530	nd	93.2	58	nd	3.4
1804P4B	SS-1	5.1	4260	1.95	151	490	nd	92	60.9	nd	3.7
1804P4C	SS-1	7	5030	3.26	183	599	nd	94.1	71	nd	4.6
Clay 1 Test S	ite				1			1			
DATE: AUGUST 1	1 /2000										
					1						
C727P1A	SS-1	5.72	581	1.21	50.1	86	nd	16.5	15.7	nd	0.7
C727P1B	SS-1	4.4	591	0.99	44.8	85.1	nd	15.3	15.3	nd	0.5
C727P1C	SS-1	6.2	557	0.77	38.4	83.7	nd	14.8	13.8	nd	0.3
DATE: AUGUST 1	1 /2000						+				
C727P2A	SS-1	5	636	1.34	44.6	104	nd	17.4	14.7	nd	0.5
C727P2B	SS-1	8.44	646	0.81	46.1	113	nd	16.3	16.7	nd	0.8
C727P2C	SS-1	4.6	635	1.14	49.1	112	nd	16.9	15	nd	0.7
DATE: AUGUST 14	4 /2000										
C727P3A	SS-1	10.2	693	1.02	51.6	146	nd	16.1	14.4	nd	0.7
C727P3B	SS-1	8.4	713	0.95	49	140	nd	25.3	14.4	nd	0.6
C727P3C	SS-1	8	675	1.02	47.3	128	nd	22.5	13.1	nd	0.6
	. /2022							1		-	
DATE: AUGUST 1											1
DATE: AUGUST 14						05.5			1-		
DATE: AUGUST 14 C727P4A C727P4B	\$\$-1 \$\$-1	5.2 6.08	633 617	1.24 1.01	51.7 46.6	95.9 95.5	nd nd	15.9 17.7	15 14.2	nd nd	0.8

Preliminary Field Trials 2000 Plant Data Organic Test Site

Plot	Amendment	Tissue	Plant Dry Mass	Leaf Dry Mass	Total Dry Mass	Plant Co	Plant Cu	Plant Ni
			(g)	(g)	(g)	mg/kg	mg/kg	mg/kg
1	U	RL	9.933	2.052	11.985	0.9	13.1	127
1	U	R	0.000	2.002	4.866	nd	10	122
1	U	0	2.824		2.824	nd	7.9	86
1	U	C	164.732	1.355	166.087	nd	12.1	19
1	U	S	1.384	0.375	1.759	nd	5	72
1	1X	RL	11.117	1.390	12.507	nd	3.5	45
1	1X	R		1.000	6.263	nd	4.9	43
1	1X	0	8.591		8.591	nd	8.4	20
1	1X	C	45.950	3.117	49.067	nd	8.2	11
1	1X	S	14.673	0.349	15.022	nd	4.6	54
1	2X	RL	7.858	2.980	10.838	nd	5.1	47
1	2X	R	1.000	2.000	5.599	nd	5.4	72
1	2X	0	9.332		9.332	nd	5.7	29
1	2X	C	66.967	2.010	68.977	nd	11	12
1	2X	S	13.713	0.445	14.158	nd	4.6	54
2	U 27	RL	7.512	1.679	9.191	nd	2.4	16
2	U	R	1.012	1.073	6.919	nd	3	32
2	U	R O	10.343		10.343	nd	8	15
2	U	C C	10.343	0.339	10.343	0.9	8 17	39
2	U	S	16.175	0.339	16.514		3.9	39
2	1X	RL	9.560	2.314	17.437	nd		9 18
2	1X 1X	R	9.000	2.314	2.314	nd	2.5 2.5	27
			40.000			nd		
2	1X	0	18.820	0.000	18.820	nd	8.5	14
2	1X	C	16.536	0.882	17.418	0.7	17.3	48
2	1X	S	16.932	0.484	17.416	nd	4.9	19
2	2X	RL	10.228	0.905	11.133	nd	4	19
2	2X	R			9.070	nd	3.6	23
2	2X	0	7.929		7.929	nd	9.9	19
2	2X	C	51.644	2.560	54.204	nd	12.1	9
2	2X	S	19.189	0.517	19.706	nd	3.9	6
3	U	RL	10.460	1.590	12.050	nd	3.2	19
3	U	R	0.050		5.358	nd	6.5	33
3	U	0	8.650	0.000	8.650	nd	7.1	15
3	U	С	7.378	0.229	7.607	nd	10.1	2
3	U	S	14.695	0.603	15.298	nd	4.7	9
3	1X	RL	6.933	1.604	8.537	nd	3.1	12
3	1X	R	11.000		5.854	nd	3.8	21
3	1X	0	11.223		11.223	nd	7	9
3	1X	C	15.139	0.388	15.527	nd	9.3	3
3	1X	S	12.332	0.291	12.623	nd	4.6	10
3	2X	RL	9.196	1.416	10.612	nd	2.8	22
3	2X	R			5.358	nd	2.5	24
3	2X	0	14.819	0 == 0	14.819	nd	4.5	11
3	2X	C	36.414	0.750	37.164	nd	8.3	2
3	2X	S	12.628	0.490	13.118	nd	5.7	12
4	U	RL	8.504	2.985	11.489	nd	3.2	15
4	U	R			4.602	nd	3.5	18
4	U	0	16.897		16.897	nd	9.8	16
4	U	C	63.715	5.339	69.054	nd		
4	U	S	15.405	0.540	15.945	nd	4.2	4
4	1X	RL	12.989	2.825	15.814	nd	3.2	15
4	1X	R			12.358	nd	5.5	20
4	1X	0	17.576		17.576	nd	7.5	12
4	1X	С	50.279	4.768	55.047	nd	8.6	5
4	1X	S	18.884	0.530	19.414	nd	5.7	15
4	2X	RL	16.175	2.881	19.056	nd	4.1	20
4	2X	R			11.382	nd	2.6	15
4	2X	0	9.160		9.160	nd	5.9	5
4	2X	С	35.622	2.847	38.469	nd	5.3	3
4	2X	S	19.003	0.510	19.513	nd	3.8	4

Preliminary Field Trials 2000 Plant Data Clay 2 (Refinery) Test Site

Plot	Amendment	Tissue	Plant Dry Mass	Leaf Dry Mass	Total Dry Mass	Plant Co	Plant Cu	Plant Ni
			(g)	(g)	(g)	(mg/kg)	(mg/kg)	(mg/kg)
1	U	RL	1.878	0.448	2.326	6.1	53.4	280
1	U	R			1.896	2.8	22.6	108
1	U	0	2.446		2.446	nd	6.2	47
1	U	С	5.645	0.62	6.265	3.3	35.2	141
1	1X	RL	2.703	0.724	3.427	2	29.8	136
1	1X	R			4.792	1.4	13.3	45
1	1X	0	1.575		1.575	0.7	12.1	94
1	1X	C	13.341	1.087	14.428	1.7	19.5	64
1	1X	S	5.047	0.804	5.851	1.5	12.6	67
1	2X	RL	3.578	1.523	5.101	0.9	8	43
1	2X	R	0.070	1.020	5.441	2	6.4	54
1	2X	0	5.207		5.207	0.7	6.7	59
1	2X 2X	C	17.619	1.099	18.718	1.5	18.8	49
1	2X	S	5.284	0.329	5.613	1.6	14.7	104
		RL						
2	U		2.782	0.429	3.211	4.9	42.4	241
2	U	R	0.440		4.541	1.6	10.1	77
2	U	0	2.112	0.500	2.112	0.8	10.1	80
2	U	С	18.966	0.569	19.535	1.1	15.6	45
2	1X	RL	3.301	1.542	4.843	1.2	15.4	66
2	1X	R			7.407	2	4	45
2	1X	0	4.906		4.906	0.7	8.9	44
2	1X	С	14.44	0.907	15.347	0.8	21	59
2	1X	S	5.783	0.309	6.092	1.7	15.5	95
2	2X	RL	3.804	1.306	5.11	1.1	11.5	47
2	2X	R			5.753	1.8	7.9	45
2	2X	0	4.84		4.84	nd	14.7	46
2	2X	С	25.239	1.117	26.356	2.6	36.3	128
2	2X	S	5.168	0.306	5.474	2.4	15.1	133
3	U	RL	5.499	0.952	6.451	4.6	47.6	204
3	U	R			4.184	1.1	5	68
3	U	0	2.564		2.564	0.7	11	37
3	U	C	28.892	1.277	30.169	0.9	18.3	34
3	1X	RL	6.782	0.942	7.724	1.9	25.5	92
3	1X	R			5.757	1.2	2.6	25
3	1X	0	4.294		4.294	nd	8.1	30
3	1X	C	18.064	1.45	19.514	0.6	14.9	22
3	1X	S	6.842	0.805	7.647	3.2	32.3	146
3	2X	RL	6.174	1.497	7.671	11.1	117	578
3	2X	R	0.174	1.407	4.606	1.7	12.9	40
3	2X 2X	0	5.407		5.407	nd	12.9	37
3	2X 2X	C C	32.775	1.951	34.726	0.8	15	22
3	2X 2X	S	7.215	1.121	8.336	1.2	15.5	58
3	2X U	RL	4.955	1.121	6.629		15.5	
			4.900	1.074		1.1		52
4	U	R	4 570		6.085	1.6	4.5	45
4	U	0	4.578	0.544	4.578	nd	8.2	33
4	U	C	10.123	0.514	10.637	0.9	11	31
4	1X	RL	4.819	1.39	6.209	1.2	19.5	65
4	1X	R			4.225	1	7.9	26
4	1X	0	5.86		5.86	0.8	6.4	49
4	1X	С	11.507	0.725	12.232	0.7	13.7	20
4	2X	RL	4.256	1.696	5.952	nd	8.6	21
4	2X	R			6.877	0.9	8.2	20
4	2X	0	9.177		9.177	nd	6.5	24
4	2X	С	9.716	1.154	10.87	1	19.2	37
4	2X	S	7.616	0.213	7.829	1.4	14.8	56

Preliminary Field Trials 2000 Plant Data Clay 1 (Rae Farm) Test Site

Plot	Amendment	Tissue	Plant Dry Mass	Leaf Dry Mass	Total Dry Mass	Plant Co	Plant Cu	Plant Ni
			(g)	(g)	(g)	(mg/kg)	(mg/kg)	(mg/kg)
1	U	RL	1.110	0.278	1.388			
1	U	R			0.000			
1	U	0	1.848		0.982			
1	U	S	6.547	0.494	7.041			
1	1X	RL	4.030	1.288	5.318			
1	1X	R			5.297			
1	1X	0	4.989		4.989			
1	1X	S	6.436	0.608	7.044			
1	2X	RL	2.764	1.147	3.911			
1	2X	R			5.166			
1	2X	0	2.996		2.996			
1	2X	S	7.737	0.551	8.288			
2	U	RL	1.908	0.525	2.433			
2	U	R			2.937	nd	4	14
2	U	0	3.840		3.840	nd	5	16
2	U	S	10.861	0.700	11.561			
2	1X	RL	4.314	0.499	4.813	nd	5.1	10
2	1X	R			4.390	nd	4.2	11
2	1X	0	2.332		2.332	nd	7.3	13
2	1X	S	5.106	0.585	5.691	nd	5	nd
2	2X	RL	1.936	0.662	2.598	nd	4.9	8
2	2X	R			2.677	0.8	4.8	8
2	2X	0	3.309		3.309	nd	7.4	16
2	2X	S	6.918	0.523	7.441	nd	5.9	2
3	U	RL	2.299	0.811	3.110	nd	3	6
3	U	R			3.790	nd	3.7	7
3	U	0	4.479		4.479	nd	6.3	6
3	U	S	4.479	0.394	4.873	nd	6.2	3
3	1X	RL	2.364	0.791	3.155	nd	4.2	9
3	1X	R			4.379	nd	2.7	5
3	1X	0	3.402		3.402	nd	6.2	10
3	1X	S	4.064	0.499	4.563	nd	5.5	3
3	2X	RL	1.357	0.405	1.762	nd	3.5	5
3	2X	R			2.418	nd	2.1	3
3	2X	0	4.551		4.551	nd	6.8	8
3	2X	S	3.058	0.392	3.450	nd	6	3
4	U	RL	2.870	0.646	3.516			
4	U	R			3.132			
4	U	0	2.467		2.467			
4	U	С	8.309	0.244	8.553			
4	U	S	5.671	0.304	5.975			
4	1X	RL	4.479	1.006	5.485			
4	1X	R	0.000		3.169			
4	1X	0	2.628	0.450	2.628			
4	1X	S	4.204	0.456	4.660			
4	2X	RL	3.824	0.722	4.546			
4	2X	R	4.000		3.541			
4	2X	0	4.260	0.040	4.260			
4	2X	S	7.587	0.640	8.227			

Preliminary Field Trials 2001 Soil and Plant Data

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

ONT34663 December, 2004 Page F2-3

plot	treat	Sample Dry Weight (g)	As	Co	Cu	NI.	Ca	Fe	Mg	Mn	P	ĸ	Za
	EQL	0.001	0.2	0.01	0.05	0,1	50	5	5	0.5	5	10	0.5
an Andreas	Units	8	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14	UN	3.773	1.3	0.32	9.83	33.1	6660	68	2110	14.6	4680	27300	19.6
IA IA	UN UN	3.205 3.643	1.3 1.1	0.29 0.35	9.41 10.1	19 23.3	8430 6770	70 78	2330 2400	17.8 20.7	4990 3490	27300 29400	22 21
12	UN	3.457	1.3	0.31	9.38	25	8190	76	2290	19.1	4100	26000	16.6
IA IA	ÎX.	1.665	0.8	0.29	9.56	11.5	7740	71	2360	31.2	2330	24900	15.3
14	1X 1X 1X 1X 2X 2X 2X 2X 2X 2X	3.809 2.888	0.8 0.8	0.3 0.26	9.64 9.64	11.95 15.8	7735 8420	72.5 75	2290 2230	22.2 23.1	2900 2770	25100 23200	16.4 17.4
1A 1A	1A X	2.897	0.9	0.24	9.18	11.1	8610	66	2110	23	2310	22100	14
IA .	2X	3.066	0.5	0.21	9.79	17.1	6070	77	2120	23.4	3160	31300	17.5
IA IA	2X	3.586	0.9 0.7	0.28	10 10	13.4 11.2	7820 7430	76 81	2380 2510	20.1 26.7	2580 2850	26000 28400	15.1 16.6
1A 1A	2X	3.958 3.127	0.8	0.31	10.2	15.8	7240	77	2600	23.1	2680	27900	16.1
2A	ÜN	2,010	1.5	0.36	11.4	25.3	7770	79	2490	15.4	3180	25100	18.1
2A 2A	UN	2.754 1.792	1.4 0.8	0.38 0.25	10.5 9.8	21.9 22.6	7370 6460	76 68	2320 1940	15.9 18.1	3100 2870	24900 28800	17.4 16
24	UN UN	1.555	0.8	0.23	9.8	30.3	6950	62	1790	13	3480	23800	16
2A 2A	18	2.437	1	0.29	12	26.5	6500	66	2140	14.5	2510	24400	18.1
.2A	1X 1X 1X	2.844	0.8	0.28	10.8	14.1	6770	76	2160	22.2 22	2980 2750	27800 25100	16.5 15.7
2A 2A	18	2.917 2.575	1.1 1.1	0.32 0.28	10.4 10.4	13.4 10	7260 8040	83 76	2180 2440	20.6	2440	23100 24100	15.7
2A 2A	2X	1.391	0.8	0.35	9.38	16.8	7290	62	2110	15.3	2380	22200	14.9
2A	2X 2X	1.985	0.9	0.37	10	10.3	7850	77	2490	16.1	2610	25400	16.8
2A 2A	2X 2X	3.139 2.038	0.9 1	0.35 0.33	9.76 10.3	10.6 17.4	8010 7000	82 78	2390 2440	20.5 17.9	2430 2910	21400 25300	19,1 20.2
3A	UN	2.319	1.7	0.37	9.99	22.6	6340	65	2100	13.8	3320	24700	19,8
3A	UN	2.284	2.1	0.31	10.3	23.1	6730	66	2190	11.8	4270	24300	18.4
3A 3A	UN UN	1.846 2.320	1.9 1.7	0.33 0.32	9.96 10.2	28.3 22.7	6930 7050	67 71	2210 2410	14.2 11.9	5130 5000	24400 26200	21.4 19.6
3A	IX .	2.046	1.1	0.28	10.2	12.6	5860	63	2510	11.4	6400	27100	19.4
3A	iX	1,921	1.3	0.3	11.6	13.2	6040	73	2550	12	7100	25100	20.6
3 A	ix.	2.208 1.758	1.2 1.1	0.41 0.25	11.5 10.6	14 14.1	6050 5510	68 68	2295 2340	11.4 11.6	6990 6810	23300 25800	20.3 19.6
3A 3A	28	1./58	0.9	0.33	9.3	14.1	5100	67	2130	14.8	7520	25400	18.9
3A -	1X 1X 1X 1X 2X 2X 2X 2X	1.764	1	0.33	11.1	13.5	5430	69	2380	14.7	7600	23800	22.7
3A 3A	2X 2X	0.969	0.8	0.37 0.56	9.51 8.24	14.1 22.8	5540 5630	65 69	2300 1940	14.4 21.5	8260 5480	24800 25100	20.4 18
plot	treat	Sample Dry	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	P	ĸ	Zn
	EOL	Weight (g) 0.001	0.2	. 0.01	0.05	0.1	50	5	5	0.5		10	0.5
	Units	0.001	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	me/kg	mg/kg	mg/kg.	mg/kg
4A	UN	1.541	0.9	0.27	10.96	13.5	6640	85	1880	21.95	2350	24550	19.85
44	UN	2.294	0.9	0.34	9.68	10.2	6160 7020	65	2090 2150	20.6 24.5	2320 2420	25900 24300	17.1 16.3
4A 4A	UN UN	1.857 1.926	1	0.29 0.36	8.72 9.24	14.7 13.2	7320	65 68	2280	24.5	2670	22600	16.5
44	iX IX	3.868	0.8	0.28	9.31	6.9	6380	72	1950	18.6	2630	29400	15.1
44	ix	3.294	0.9	0.29	9.69	6.5 6.2	7430 6470	74 70	2460 1940	26.2 20.7	2330 2130	29100 29400	19 16.9
4Å 4Å	lX IX	3.005 2.824	0.8 1	0.24 0.28	9.46 10.6	7.4	6740	89	2400	20.7	2380	28300	17.7
4A	1X 2X	2.268	0.8	0.19	10.1	13	6620	62	2050	12.5	2590	23500	18.4
44	2X	2.896	0.7	0.28 0.35	9.17 10.5	6.8 9.6	6280 6400	63 77	2090 2180	19 14.8	2490 2320	26900 25600	16.4 17.6
4A 4A	2X 2X	2.807 2.645	0.8 0.8	0.35	9.3	9.6	5730	63	1880	14.8	2810	26200	17.0
18	CAL	8.016	0.4	0.14	9.11	15.1	5100	63	1600	12.5	2450	26700	19.2
1B	CAL	5.491	0.2	0.09	8.38	17.3	3830	56	1340 1600	15.8	2420 2210	25000 28200	19.8 18.9
1B 1B	CAL CAL	5.755 6.503	0.5 0.6	0.1 0.14	8.7 8.62	10.9 12	5200 5600	60 64	1680	11.5 10	2190	29900	18.5
2B	CAL	6,241	0.5	0.11	8.65	11.3	5040	58	1520	10.2	2120	26800	17.9
28	CAL	5.621	0.2	0.1	8.91	22.1	3240	60	1510	18.5	2920	26700	22.8
2B 2B	CAL CAL	8.048 8.355	1.3 0.4	0.23 0.14	9.95 9.52	14.1 17.8	7840 4420	85 69	3170 1790	11.5 19.2	2510 2890	39600 28600	15.4 22.9
30	CAL	5.658	0.4	0.14	9.27	19.3	3280	62	1720	21.7	3470	26700	25.2
3B	CAL	8.602	0.6	0.16	10.3	13.8	4280	72	1800	13.8	2810	25300	26
3B 3B	CAL CAL	3.092 3.406	1.2 1.3	0.18 0.24	9.97 9.21	11.3 11.15	6350 6645	74 80.5	2940 2670	10.4 8.45	3270 2825	38700 33800	22.3 11.55
- 56 4B	CAL	5.569	0.4	0.18	8.44	17	4440	73	1790	14.5	4080	24700	19.9
4 B	CAL	4.975	0.4	0.18	8.25	15.7	4070	67	1700	16.6	3610	24200	20.6
413 413	CAL CAL	7.183 4.025	0.4 0.1	0.18 0.13	8.71 7.73	12.9 17.4	4500 3370	77 57	1770 1520	17.4 18.2	3540 3370	26100 25000	19.9 23.8

plot	treat	Sample Dry Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Ma	P	K	Za
	EQL	0.001	0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
	Units	8	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
lA ···	UN	1.937	2	0.31	10.2	22.5	10900	92	3060	8.9	5650	22700	10.4
1A 1A	UN UN	2.020 2.008	1.3 1.6	0.23 0.23	8.76 9.48	20.4 19.2	6790 7010	66 67	2150 2280	13 13.2	5390 4060	30200 28500	15.3 13.9
iA	UN .	1.881	2.3	0.5	11.4	40.5	9640	135	2920	9.4	5900	22300	11.1
1A	1X 1X	1.665	1.1	0.23	8.63	10.8	8370	74	2640	11.8	2660	26700	10.8
1A 1A		2.156 1.854	1.2 1.1	0.28 0.22	9.29 7.37	16.8 12.3	10700 9640	86 74	3320 2890	8.9 8.1	3080 1840	20300 23100	8.5 10.6
• 1 A •	JX	1.729	0.7	0.24	8.13	9.9	7070	67	2180	14.2	2600	25500	9.2
IA	- 28	1.927	0.9	0.2	9,11	12.9	8430	67.5	2695	12.7	2430	25800	10.95
1A 1A	.2X 2X	2.283 2.466	0.7 0.8	0.26 0.34	9.76 9.89	16.7 14.1	7730 7980	80 82	2700 2630	14.2 13.9	2750 2850	28700 30400	13.2 13.5
1A 1A	2X 2X	2.466	1	0.22	9.5	14.1	7890	73	2630	14.3	2850	27600	13.5
2A	UN	1.434	1.6	0.3	9.17	22.2	9265	76	2720	7.35	4190	22000	11.5
2A 2A 2A 2A	UN	1.482	1.5	0.35	9.57 8.99	31.5	7570 7390	76 67	2230 2170	8.5 9.2	5150 3210	25100 26300	12.8 10.3
2A 2A	UN UN	1.864 1.671	1.2 1.1	0.21 0.67	8.59	17.8 15.8	6920	67	2200	9.2	2750	27500	11.8
2Å	ix.	2.587	1.2	0.34	9.36	11.9	7950	75	2320	12.6	2910	26200	13.1
24	1X 1X	1.538	1.1	0.34	12.4	8.9	8120	107	2570	12.5	2250	29900	13.5
2A 2A	1X 1X	1.411 2.262	1.1 1.3	0.27 0.28	8.88 9.98	11.5 14.9	8030 9920	71 90	2540 3060	10.3 10.5	2330 2340	26500 23600	10.2 9.7
24	2X	2.663	1.5	0.23	9.12	8.5	7190	77	2400	13.6	2270	27900	14.2
2A	2X 2X 2X	1.642	1	0.31	8.25	9.2	9890	139	3040	7.2	2080	23200	16.4
2A.	2X	1.475	0.9	0.26	8.37	10.3	6520	73	2450	10.5	3150	28800	9.8
2A 3A	2X UN	1.471 0.933	1.2 2.6	0.24 0.34	9.59 10.3	10.6 15.9	7660 9010	87 109	2870 2840	9.3 7.9	2900 6330	25800 24400	9.9 10
3A .	UN	1.805	1.9	0.24	9,25	22.5	6300	61	2060	9.2	4970	33000	13.7
3A	UN	0.981	2.6	0.35	9.1	19.2	8410	84	2360	7	6470	24700	10.6
3A.	UN	2.343	1.8	0.29	9.97	20.4	6220	70 89	2050	10.2	4100 8370	32300 30200	12.5 10.8
3A 3A	iX IX	1.412 0.985	1.3 1.8	0.34 0.35	10.3 12.1	13.1 12.1	6460 9050	108	2620 3390	8.3 7.8	10100	23800	9.5
3A	iX IX	1.128	1.3	0.36	10.7	16.4	6290	77	2680	8.7	9390	31000	12.9
3A	. IX	1.254	1.5	0.33	9.83	12.3	8200	109	3040	7.1	9160	26600	9.2
3A 3A -	2X 2X	1.215 1.183	1.1 1	0.33 0.47	10 9.6	12.9 22	6290 5660	90 105	2590 2450	10.4 12.5	9040 8550	31800 31600	11.7 15.2
3A	2X 2X	1.111	1.4	0.59	11.2	19.8	7580	151	3180	11.9	9860	28700	12.1
<u>3A</u>	2X	0.632	1.4	0.91	10.6	33.4	8310	213	2860	17.4	7530	23200	10
plot	treat	Sample Dry Weight (g)	As	Co	Cu	NI	Ca	Fe	Mg	Mn	P	ĸ	Za
	EQL	0.001	0,2	0.01	0.05	0.1	50	5	5	0.5		10	0.5
1	Units	9.00 .	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
4A	UN	1.378	1.6	0.42	9.75	15.1	10700	103	3250	10.9	4230	24500	9
48	UN	2.273	1.8	0.34	9.26	12.1	9830	94	2920	9.8	1960	27800	9.5
4A 4A	UN UN	2.337 2.403	1.4 1.15	0.36 0.29	9.82 8.81	14.5 11.1	7270 6225	93 67.5	2380 2165	16.3 12.45	2430 2355	29900 34650	12.1 12.45
44	ix	3,363	1.3	0.27	8.74	4.3	7850	80	2710	15.9	1740	31900	9.5
44	1X 1X 1X 1X 2X 2X	3.361	1.3	0.31	8.65	7.9	8020	89	2720	8.7	1670	24800	9.5
4A 4A		3.260 4.030	1.2 1.2	0.25 0.28	7.84 9.37	5.4 6.1	9010 7000	94 75	2860 2530	14.9 12	1540 1900	28800 31900	8 11.5
44	žX	2.638	1.3	0.36	9.43	10.5	7850	105	2640	8.2	2310	28200	10.5
4A	2X	3.014	1.2	0.25	8.99	8.3	7840	70	2830	12.8	2750	28900	12.7
4A 4A	2X 2X	2.738 2.631	1 1.3	0.26 0.32	8.25 9.75	6.1 9.6	7470 8030	66 92	2760 2630	10.5 8.4	2410 2440	31100 27700	10.4 9.8
1B	CAL.	3.275	0.8	0.32	8.29	11.5	6420	92 70	2290	8.4	2440	39100	14.6
İB	CAL	4.675	0.9	0.22	8.51	13.1	6890	76	2450	9.7	2760	41000	15.7
18	CAL	5.004	0.7	0.13	8.88	12.2	5440	66	1960	10.8	2420 2280	33100	14.6
1B 2B	CAL CAL	3.518 4.384	0.7 0.7	0.14	9.04 9.8	12.9 14.3	5830 5910	70 63	2060 2220	9.9 10	2280 2600	34300 38300	15.8 18.6
28	CAL	2.765	1.3	0.22	9.8	13.6	7970	83	3210	11.3	2460	39700	15.4
2B	CAL	2.253	1.3	0.265	9.475	16.6	8070	92	3395	10.2	2475	42100	14.3
2B 3B	CAL CAL	3.335 3.952	0.7 1.3	0.17	9.44 11	16.8 14.3	6040 6160	61 79	2360 2730	10.5 14.5	2820 2880	41000 34500	16.9 17.7
3B	CAL	3.650	1.3	0.25	9.99	13.4	6050	93	2920	9.4	2520	34500	13.9
3B	CAL	6.251	0.4	0.14	10.2	17.6	3310	63	1720	16.8	3570	29200	23.1
38	CAL	5.987	0.5	0.14	9.87	14.3	4260	66	1870	17.7	2820 6190	25100	19.4 11.6
4B 4B	CAL CAL	3.390 4.372	1.1	0.31 0.26	10.2 8.85	12.7 9.6	6850 5560	129 87	3070 2430	9.9 13.1	6190 4880	32600 31300	11.6
4 <u>B</u>	CAL	4.372		0.26	8.85	9.6	5560		2430			31300	

i

1

Year 2001 Field Trial Oat Seed Analysis for C2 Site plot treat As Co

	d Trial Oat See									Construction of the second second		
plot	treat UN	As 0.1	Co 0.26	Cu 6.715	NI 72.15	Ca 476	Fe 40.5	Mg 1340	Mn 25.3	P 5460	K 5345	Zn 46.7
1A 1A	UN	0.1	0.23	6.54	71.7	501	37	1420	25.4	5640	5500	46.5
1.4	UN	0.1	0.25	6.68	72.8	464 492	36 40	1270 1260	24.7 34.7	5270 5200	5260 5220	46.5 43.5
IA IA	UN UN	0.1 0.1	0.21 0.21	6.74 6.79	49.4 54.6	501	40 44	1350	34.7	5350	5200	45.8
IA IA	UN	0.1	0.2	6.83	52.2	503	41	1290	31.6	5410	5210	44.7
1A 1A	1X 1X	0.1 0.1	0.15 0.16	6.32 6.3	40.1 38.1	480 485	36 36	1280 1270	37 37.8	5010 4890	5100 4950	38.3 37.7
JA	ix .	0.1	0.15	6.25	41.2	467	36	1280	37.2	5110	5050	38
IA IA	1X 1X	0.1 0.1	0.16 0.16	6.33 6.1	42.3 38.2	479 432	41	1340 1220	34.7 34.8	5290 4910	5070 4910	39.2 37.1
iA iA	18	0.1	0.16	6.37	41.2	467	36 38	1230	35.9	4910	4900	38.5
1A	2X 2X	0.1 0.1	0.17 0.17	7.41 7.77	51.1 53.2	498 452	39 44	1290 1370	28.4 29.5	5180 5260	5100 5180	39.6 41.7
IA IA	2X	0.1	0.18	7.65	52.4	483	43	1360	30.1	5400	5100	41.7
14	2X	0.1	0.16 0.15	7.89	60.45	479 474	36.5 36	1340 1320	23.65 24.3	5010 5180	4710 5050	40.7 42.4
1A 1A	2X 2X	0.1 0.1	0.15	7.77 8.39	56.5 61.1	460	38	1320	24.5	5340	4670	45.8
2 A	UN	0.1	0.26	6.99	51.5	464	34	1210	29.4	4790	5000	39.8 40
2A 2A	UN UN	0.1 0.1	0.24 0.24	6.99 6.92	54.5 49.7	445 445	36 35	1270 1160	30.1 31.9	5050 4740	4980 4840	40 39.6
2A 2A	UN	0.1	0.25	6.97	58.9	461	34	1290	27	5150	4950	43.1
2A 2A	UN UN	0.1 0.1	0.25 0.23	6.76 6.84	56.6 57.4	462 469	35 36	1220 1270	27.3 28.1	4950 4970	4770 5030	41.2 41.3
2A	1X	0.1	0.17	7.29	43.2	459	39	1250	33	5000	4760	39.1
2A 2A	1X 1X	0.1 0.1	0.17 0.16	6.94 7.45	41.2 44.7	452 454	37 41	1200 1250	30.9 31.5	4770 4940	4690 4720	37 39.3
2A 2A	XI.	0.1	0.18	6.48	40.9	482	42	1310	39.9	5130	4900	40.8
2A 2A	1X 1X	0.1 0.1	0.11 0.17	6.36 6.41	25.2 38.8	475 487	44 44	1190 1290	40.5 39.7	4830 5180	4680 4850	39.2 40.5
2A 2A	2X	0.1	0.185	7.41	42.9	437	39.5	1235	31.1	4920	4685	38.1
2A 2A 2A 2A	2X	0.1	0.17	7.23	43.8	442	39 36	1330	30.9	5320	4980 4790	39.4 37.6
2A 2A	2X 2X	0.1 0.1	0.17 0.16	7.26 6.63	41.9 34	428 396	36 35	1260 1200	31.3 34.7	5040 4830	4/90	37.9
2A	2X 2X	0.1	0.17	6.41	33.9	426	37	1220	37.2	4860	4830	39.2
2A 3A ~	2X UN	0.1	0.17 0.245	6.63 6.47	34.3 71.8	413 499.5	37 43.5	1250 1480	38.2 26.4	5130 5740	4990 5305	39.5 45.1
34	UN	0.1	0.25	6.66	75.5	496	45	1480	26.7	5810	5360	45.7
3A 3A	UN UN	0.1 0.1	0.25 0.22	6.63 7.16	73.1 66.6	481 464	45 48	1410 1400	26.3 22.9	5550 5510	5100 5020	47 49.4
3A	ÛN	0.1	0.24	7.23	65.6	484	47	1420	23.2	5630	5300	49.2
3A 3A	UN	0.1 0.1	0.22 0.2	6.98 7.09	63.8 56.2	483 422	46 50	1380 1360	22.9 16.7	5480 5280	5170 4710	48.2 53.5
34	1X 1X	0.1	0.21	7.25	60.3	445	46	1470	17.5	5790	5060	54.9
3A	IX	0.1	0.2	7.01 7.32	56.8 62.2	419 429	44 48	1430 1480	17.4 20.3	5620 5640	4890 5000	54.5 55.1
3A 3A	1X 1X	0.1 0.1	0.21 0.2	6.97	60.5	429	43	1430	19.3	5690	5000	53.9
JA	IX	0.1	0.21	7.23	61.6	437 472	44 49	1460 1460	19 29.3	5740 5750	4980 4940	53.3 51.4
3A 3A	2X 2X	0.1 0.1	0.22 0.23	6.84 6.77	49.1 48	472	49	1460	29.8	5640	5030	52.7
3A	2X	0.1	0.23	6.88	47.4	485	50	1460	30.7	5600	5020	53.4
3A 3A	2X 2X	0.1 0.1	0.245 0.25	6.34 6.6	60.75 61.3	467.5 483	39.5 40	1300 1360	31.55 32.2	5305 5450	4870 5010	48.7 50.1
<u>3A</u>	2X	0.1	0.26	6.41	62.3	498	40	1380	32.6	5630	5030	50.2
plot	treat	As 0.2	Co 0.01	Cu 0.05	NI 0.1	Cn 50	Fe 5	Mg 5	Mn 0.5	P S	K 10	Za 0,5
	Messier.	0.2 mg/kg	mg/kg	0,05 mg/kg	mg/kg	mg/kg	mæ/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
4A	UN	0.1	0.21	6.18	48.4	438	32	1180	37.2	4730	4750 4530	39.2 37.8
4A 4A	UN UN	0.1 0.1	0.22 0.18	6.02 5.65	47.1 45	415 392	33 31	1110 1120	35.2 32.2	4480 4470	4530 4330	37.8 36.1
44	UN	0.1	0.17	5.88	46.4	485	34	1230	36.6	4980	4680	36.9
4A 4A	UN UN	0.1 0.1	0.15 0.17	5.63 5.7	46 43.3	480 491	32 31	1180 1220	34.3 37.2	4770 4780	4610 4440	34.6 35.7
44	IX	0.1	0.1	5.98	30.5	411	37	1160	23.1	4820	4640	38.7
4A 4A	- 1X - 1X	0.1	0.1 0.11	6.23 6.14	31.3 31.2	460 443	41 39	1330 1180	26.7 24.6	5200 4760	4820 4690	40.7 39.9
4A	13	0.1	0.1	5.86	24.6	462	36	1170	24.9	4730	4660	33.4
4A 4A	1X 1X	0.1 0.1	0.1 0.09	5.95 5.89	24.5 24.7	463 471	38 38	1190 1210	25.6 24.3	4750 4810	4610 4650	34 34,2
44	2X 2X	0.1	0.13	6.11	40.3	460.5	36.5	1210	27.7	4875	4895	36.95
4A 4A	2X 2X	0.1 0.1	0.14 0.14	6.12 6.1	39.7 37.9	445 443	38 33	1240 1190	29.4 28.9	5050 4730	4860 4770	37.3 36.1
4A	2X 2X 2X	0.1	0.14	5.76	26.5	461	40	1250	36.4	5090	4640	37.4
44	2X 2X	0.1 0.1	0.12	5.89 5.79	27 25.6	463 445	41 38	1260 1190	36.8 35.7	4880 4820	4660 4590	38.5 37
4A 1B	CAL	0.1	0.11	5.79	39.05	739.5	32.5	1235	31.6	4850	4905	31.7
IB	CAL	0.1	0.06	5.7	40.6	850	34 33	1490	33.4	5770	5580	34.1
19 18	CAL CAL	0.1	0.06 0.07	5.55 5.73	39 40.2	812 754	33 36	1340 1280	32.7 29.5	5090 5020	5090 4910	33 32.9
1B	CAL	0.1	0.07	5.49	37.9	701	33	1210	27.7	4620	4710	31.2
1B 2B	CAL CAL	0.1 0.1	0.08 0.12	5.83 6.03	41.9 31.5	810 738	37 36	1420 1250	30.4 32.6	5310 4910	5170 4760	34.7 32.6
2B	CAL	0.1	0.08	5.7	30.8	726	34	1200	31.5	4660	4700	30.4
28	CAL	0.1	0.07	5.64	29.7 37.9	647 791	33 36	1080 1240	27.3 28.2	4300 4940	. 4390 5330	30.3 34.8
2B 2B	CAL CAL	0.1 0.1	0.14 0.07	5.83 5.6	37.9 36.9	791	36 34	1240	28.2 28.3	4940	5330 5200	34.8
28	CAL	0,1	0.08	5.71	36.4	738	35	1250	28.7	4850	5160	33.4
3B 3B	CAL CAL	0.1 0.1	0.12 0.08	6.65 6.57	29 30.1	741 731	46 45	1200 1160	30.7 28.5	4820 4710	4700 4560	34.6 33.1
· 3B	CAL	0.1	0.08	6.47	31.2	778	47	1280	31.3	4990	4940	34.7
3B 711	CAL	0.1	0.075	6.045 6.2	27.35 29.4	658 720	43.5 43	1170 1310	31.45 33.2	4740 5220	4575 5040	33.9 36.2
319 319	CAL CAL	0.1 0.1	0.08	6.2	29.4 27.3	671	43	1200	31.9	4760	4770	33.6
4B	CAL	0.1	0.11	5.65	34.6	675	44	1270	28.7	5080	5160	36.2
4B 4B	CAL CAL	0.1 0.1	0.1 0.19	5.75 5.99	33.9 36.2	629 714	40 45	1210 1380	28.7 32.4	4760 5390	4950 5360 ·	35.4 39.2
4B	CAL	0.1	0.1	5.96	30.5	638	42	1200	26.3	4800	5080	38.9
4B 4B	CAL CAL	0.1 0.1	0.1 0.1	5.89 6.1	31.2 33.8	660 702	42 47	1210 1320	26.7 27.7	4780 5230	5200 5460	37.8 43.1
	ner an		214	- / -		. • =						

Year 2001 Field Trial Soybean Agrinomical Analysis for C2 Site

	的复数形式的现在分词	10000000000					1946-1997 I				Sector Sector			
Bag #	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Мв	P	к	Zn
		EQL	0.001	0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
	5 (<u>)</u>	Units	g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
349 350	IA IA	UN UN	5.786 7.409	0.3 0.5	0.95 1.21	9.28 9.44	60.5 68.5	17100 15600	118 176	5110 4390	25.9 23.1	5280 3980	22100 17100	33.3 33.6
351* 352		UN UN	6.083 4.528	0.4 0.4	1.22 1.1	11.15 10.9	66.6 65.8	17050 17900	194 159	5020 5250	24.95 24.8	4370 4980	21650 21000	33.7 35.3
353	IA .	1X	6.355	0.1	0.78	10.8	50	13600	99	4880	16.9	4650	22000	32.1
354 355	1A 1A	1X 1X	7.575 7.358	0.1 0.2	0.78 0.71	9.89 9.95	42.2 51	14100 16300	108 94	4920 5540	18.2 21.5	4010 4780	21500 22400	33.1 34.5
356	IA.	1X	7.369	0.4	1.01	8.62	54.8	16700	131	5220	19.8	3980	22000	31.5
357 358	1A 1A	2X 2X	6.698 5.054	0.1 0.1	0.66 0.62	9.31 9.81	33.3 36.2	14700 13800	80 95	4820 4620	20.7 20	4070 4340	21400 22000	31.9 33.9
359 360	IA IA	2X 2X	9.411 8.760	0.2 0.1	0.85 0.72	8.79 9.45	38.2 37.8	14800 14800	147 97	4500 4930	21,4 20,3	3580 4100	22500 21200	31.3 34.6
373	2A	UN	3.928	0.1	0.54	10.2	39.5	11900	69	4210	15.3	4530	21500	31.9
374 375	2A 2A	UN UN	4.363 5.647	0.1 0.1	0.54 0.69	10.3 9.55	38.5 39.1	11200 11900	79 76	4320 3890	15.4 18.5	4130 4200	21100 20400	33.1 33.7
376	2A -	UN	3.894	0.1	0.58	10.1	39.3	10700	78	4200	15.4	4290	19800	32.3
377	2A 2A		5.859 5.910	0.1 0.1	0.46 0.44	9.22 9.36	39.5 38.6	9830 9570	79 79	4110 3820	15.7 13.8	4220 4140	20500 19600	26.7 26
378 379	2A	1X -	5.662	0.2	0.53	10.9	43.4	10800	92	4330	16.1	4310	21200	31.1
380 381	2A 2A	1X 2X	7.908	0.3	0.62	9.28	40.1	9540 10600	90 83	3710 4370	14.2 11.7	3540 3900	17800 20700	28.6 26.3
- 382+	2A	2X	4.723	0.3	0.685	8.93	38.15	10950	91	3885	15.85	3610	19500	29.1
383 384	2A 2A	2X 2X	6.890 4.346	0.1 0.2	0.53 0.5	9.82 11.2	36.2 37.5	9900 10200	86 85	3900 4070	14 13.4	4040 3930	19300 16400	26 28.3
49	3A	UN	8.080	0.3	0.93	6.41	39.5 37.8	10200 11500	83	3850 4100	20.4 20	4530 4510	24500 25600	26.9 26.1
50 51	3A 3A 3A	UN UN	5.970 7.093	0.3 0.2	0.83	7.42 8.26	44.7	12300	67 72	4500	21.6	5150	23000	28.3
52 53	3A 3A	UN	6.509 9.430	0.3	1.06 0.61	7.54	45.4	11100 E1900	84 80	4600 4000	21,7 22.6	5560 5190	25900 23800	30.2 31.3
55 55	3A	ix ix	9.310	0.1	0.59	7.14	33.8	10500	82	4030	20.6	5120	21800	29.8
55 56	3A 3A	1X 1X	8.250 7.951	0.2 0.3	0.64 0.69	7.5 7.27	29.1 31	9460 9640	91 82	3380 3380	19.9 20.2	4180 3930	26500 23800	28 27.6
57	3A	÷ 2X	7.235	0.3	0.75	7.84	29.7	11200	105	4050	18.5	3630	23200	27.5
58 59 60	3A	. 2X	5.455	0.1	0.82	7 9.53	31.1	10100	79	3900	20.3	4520	24700	27.8
		23 A 8 7 X	7.638	0.2					14.5					
60	3A 3A	2X 2X	7.638 7.963	0.2	1,14 0.78	7.69	44.3 39.5	11400 10900	143 103	4330 4230	22.4 22.4	4650 4510	25600 25700	28.9 30.1
	<u>32</u>	2X 2X	7.638 7.963 Sample	0.2	0.78	7.69	al contraction of the second	10900						
60 Bag#	32 plot	2X 2X treat	Sample Dry	0.2 0.1 As	Со Со	9,33 7.69 Cu	44.3 39.5 NI	<u>11400</u> 10900	Fe	4330 4230 Mg	22.4 22.4 Mn	4510 P	25700 25700	26.9 30.1 Zn
		2X	Sample	0.1		7.69	al contraction of the second							
		treat EQL	Sample Dry	0.1 As 0.2	Co 0.01	7.69 Cu 0.05	NI 0.1	Ca 50	Fe 5	Mg 5	Mn 0.5	P S	K 10	Zn 0,5
Bag #	plot	2X treat EQL Units	Sample Dry Weight (g) 0.001 g	0.1 As 0.2 mg/kg	Co 0.01 mg/kg	7.69 Cu 0.05 mæ/kg	NI 0.1 mg/kg	Ca 50 mg/kg	Fe 5 mg/kg	Mg 5 mg/kg	Mn 0,5 mg/kg	P Ş mg/kg	K 10 mg/kg	Zn 0,5 mg/kg
Bag #	plot 4A 4A	EQL Units UN UN	Sample Dry Weight (g) 0.001 g 8,722 6,319	0.1 As 0.2 mg/kg 1.3 0.2	Co 0.01 mg/kg 3.08 1.06	7.69 Cu 0.05 ng/kg 18.2 8.91	NJ 0.1 <u>mg/kg</u> 103 41.3	Ca 50 mg/kg 13400 11900	Fe 5 <u>mg/kg</u> 99 88	Mg 5 mg/kg 4660 4480	Mn 0.5 <u>mg/kg</u> 21.2 20	P 5 <u>mg/kg</u> 3750 4090	10 mg/kg 19400 22600	Zn 0.5 <u>mg/kg</u> 29.3 26.1
Bag #	plot 10	2X treat EQL Units UN	Sample Dry Weight (g) 0.001 g 8.722	0.1 As 0.2 <u>mg/kg</u> 1.3	Co 0.01 mg/kg 3.08	7.69 Cu 0.05 mg/kg 18.2	NI 0.1 mg/kg 103	Ca 50 mg/kg 13400	Fe 5 mg/kg 99	Mg 5 mg/kg 4660	Mn 0,5 <u>mg/kg</u> 21.2	P 5 <u>mg/kg</u> 3750	K 10 mg/kg 19400	Zn 0.5 <u>mg/kg</u> 29.3
Bag # 85 74 75 76 77*	plot 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136	0.1 As 0.2 mg/kg 1.3 0.2 0.2 0.1 0.1	Co 0.01 <u>mg/kg</u> 3.08 1.06 1.25 1.17 0.86	7.69 Cu 0.05 mg/kg 18.2 8.91 10.3 11.8 8.445	NI 0.1 <u>ma/kg</u> 103 41.3 55 50 32.9	Ca 50 mg/kg 13400 11900 12900 13700 10005	Fe <u>mg/kg</u> 99 88 119 113 76	Mg 5 mg/kg 4660 4480 4920 5190 3905	Mn 0.5 <u>mg/kg</u> 21.2 20 24.1 18.4 15.75	P 5 <u>mg/kg</u> 3750 4090 4690 4740 4005	10 mg/kg 19400 22600 22500 20100 20100 20700	0,5 <u>mg/kg</u> 29,3 26.1 29 35 27.5
Bag # 85 74 75 76 77* 78 79	plot 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984	0.1 As 0.2 mg/kg 1.3 0.2 0.2 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15	7.69 Cu 0.05 mg/kg 18.2 8.91 10.3 11.8 8.445 10.5 10.8	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8	Ca 50 mg/kg 13400 11900 12900 13700 10005 10500 11300	5 mg/kg 99 88 119 113 76 88 82	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810	Mn 0.5 mg/kg 21.2 20 24.1 18.4 15.75 17.6 18.3	P 5 mg/kg 3750 4090 4590 4740 4005 5110 5490	10 mg/kg 19400 22500 20100 20700 20700 24500 22700	Zn 0.5 <u>mg/kg</u> 29.3 26.1 29 35 27.5 30.8 33.3
Bag # 85 74 75 76 77* 78 79 80	plot 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.319 6.341 4.573 7.136 6.950 5.984 6.014	0.1 As 0.2 mg/kg 1.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97	7.69 Cu 0,05 mg/kg 18.2 8.91 10.3 11.8 8.445 10.5	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4	Ca 50 mg/kg 13400 11900 12900 12900 13700 10005 10500 11300 10900	Fe 5 <u>mg/kg</u> 99 88 119 113 76 88 88 82 - 89	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430	Mn 0,5 ng/kg 21.2 20 24.1 18.4 15.75 17.6 18.3 18	P <u>mg/kg</u> 3750 4090 4690 4740 4005 5110 5490 5070	K 10 mg/kg 19400 22500 22500 20100 20700 24500 22700 22700 23100	Zn 0,5 mg/kg 29,3 26,1 29 35 27,5 30,8 33,3 30,4
Bag # 85 74 75 76 77 78 79 80 81 82	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN IX IX IX IX IX IX X X X 2X	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.993	0.1 As 0.2 <u>mg/kg</u> 1.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89	7.69 Cu 0.05 <u>mg/kg</u> 18.2 8.91 10.3 10.3 10.3 10.5 10.5 10.8 10.5 9.24 8.69	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 33.8 34.8	Ca 50 mg/kg 13400 12900 12900 10005 10005 10000 10900 10200 10200	Fe 5 mg/kg 99 88 119 113 76 88 82 - 89 87 80	Mg 5 <u>mg/kg</u> 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040	Mn 0.5 mg/kg 21.2 20 24.1 18.4 15.75 17.6 18.3 18 15.9 18.3	P 5 mg/kg 3750 4090 4740 4005 5110 5490 5070 3960 4030	K 10 mg/kg 19400 22500 20100 20700 24500 24500 24500 23100 23900 23900	Zn 0.5 mg/kg 29.3 26.1 29 35 27.5 30.8 33.3 30.4 29.6 26
Bag # 85 74 75 76 77 78 79 80 81 82 83	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	2X treat EQL Units UN UN UN UN UN IX IX IX IX IX IX ZX 2X	Sample Dry Weight (g) 0.001 <u>8</u> 8.722 6.319 6.441 4.573 7.136 6.441 4.573 7.136 6.654 5.950 5.950 5.950 5.921	0.1 As 0.2 mg/kg 1.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.13 1.15 0.97 0.81 0.89 0.98	7.69 Cu 0.05 mg/kg 18.2 8.91 10.3 11.8 8.445 10.5 10.5 10.5 9.24 8.69 9.24	NI 0.1 <u>me//s</u> 103 41.3 55 50 32.9 45.2 47.8 39.4 33.8 34.8 34.8 41.9	Ca 50 mg/kg 13400 11900 13700 10500 10500 11300 10900 10200 10200 10000	Fe 5 <u>mg/kg</u> 99 88 119 113 76 88 82 82 88 87 80 78	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4040	Mn 0.5 <u>ng/kg</u> 21.2 20 24.1 18.4 15.75 17.6 18.3 18.9 15.9 18.3 20.6	P 5 <u>mg/kg</u> 3750 4090 4590 4740 4005 5110 5490 5070 3960 4030 5110	K 10 <u>mg/kg</u> 19400 22500 20100 20100 24500 24500 24500 23100 23900 23900 23900 23900 23900 23900	Zn 0,5 <u>me/kg</u> 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8
Bag # 85 74 75 76 77* 78 80 81 82 83 84 413	plot 4A	2X treat EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.993 5.201 6.613 9.168	0.1 As 0.2 mg/kg 1.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	C6 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.85 0.39	7.69 Cu 0.05 18.2 8.91 10.3 11.8 8.445 10.5 10.8 10.5 10.8 9.24 8.69 9.24 9.24 9.24 9.24 9.24 9.24 9.24 9.2	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 39.4 33.8 33.8 34.8 41.9 38.2 28	Ca 50 mg/kg 13400 12900 13700 10005 10500 10500 10900 10900 10200 10200 10200 10200 9170	Fe 5 mg/kg 99 88 119 113 76 88 82 89 87 80 80 78 79 95	Mg 5 <u>mg/kg</u> 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4680 4230 33560	Mn. 0.5 mg/kg 21.2 20 24.1 18.4 15.75 17.6 18.3 18 15.9 18.3 18.3 18.3 18.3 18.3 18.3 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	P 5 mg/kg 3750 4090 4690 4740 4740 4005 5110 5490 5070 3960 4030 5110 4770 3320	10 mg/tg 19400 22500 20100 24500 24500 24500 23100 23100 23900 24000 23900 24000 20400 20400 2060	Zn 0,5 <u>mg/kg</u> 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 23,1
Bag # 85 74 75 76 77 78 79 80 81 82 83 84 413 414	plot 4A 4B 1B	2X treat EQL Units UN UN UN UN UN IX IX IX IX IX IX IX ZX 2X 2X 2X CAL CAL	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.614 6.014 6.654 5.993 5.201 6.613 9.168 8.104	0.1 As 0.2 mg/kg 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 ing/5g 3.08 1.06 1.25 1.17 0.86 1.13 1.13 1.15 0.97 0.81 0.89 0.89 0.89 0.85 0.39 0.41	7.69 Cu 0.05 mg/tg 18.2 8.91 10.3 11.8 8.445 10.8 10.8 10.8 10.8 10.8 10.8 9.24 8.69 9.24 8.69 9.24 9.3 6.97 7.3	NI 0.1 <u>me//s</u> 103 41.3 55 50 32.9 45.2 47.8 39.4 33.8 34.8 34.8 34.8 34.8 34.8 34.8 27.7	Ca 50 mg/kg 13400 11900 13700 10005 10500 11300 10900 10200 10200 10200 10200 9170 9480	Fe <u>mg/kg</u> 99 88 119 113 76 88 82 - 89 87 80 78 79 95 96	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4330 4080 4040 4080 4040 4680 4230 3560 3560 3560	Min 0,5 ng/kg 21,2 20 24,1 18,4 15,75 17,6 18,3 18 15,9 18,3 15,9 18,3 20,6 18,1 15,9 15,3	P 5 <u>mg/kg</u> 3750 4090 4590 4740 4005 5110 5490 5070 3960 4030 5110 4770 3920 3730	K 10 19400 22500 20100 20100 24500 24500 23100 23900 23900 23900 23900 23900 23900 23900 23900 23900 24000 24000 24000 24000 24000 24000 24000 21100	Zn 0.5 <u>me/kg</u> 29,3 26.1 29 35 27.5 30.8 33.3 30.4 29.6 26 30.8 30.8 30.8 23.1 23
Bag # 85 74 75 76 77 78 79 80 81 82 83 84 413 414 415 416	plot 4A 1B 1B 1B 1B 1B	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.993 5.201 6.613 9.168 8.104 8.104 8.957 8.787	0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/tg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.89 0.98 0.85 0.39 0.41 0.37 0.39	7.69 Cu 0.05 mg/kg 18.2 8.91 10.3 11.8 8.445 10.5 10.5 10.5 10.5 10.5 9.24 8.69 9.24 9.3 6.97 7.3 6.89 7.02	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 33.8 34.8 34.8 34.8 34.9 38.2 28 27.7 23.7 23.7 28.3	Ca 50 mg/kg 13400 11900 12900 13700 10500 10500 10500 10900 10200 10000 10000 10000 10000 9170 9480 10000 9300	Fe <u>mg/kg</u> 99 88 119 113 76 88 82 89 87 80 78 79 95 96 101	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4080 4040 4080 4040 3560 3560 3560 3340 3340 3340	Min. 0.5 mg/tg 21.2 20.1 24.1 18.4 15.75 17.6 18.3 18 15.9 18.3 20.6 18.1 15.9 15.3 16.4 18.3	P 5 mg/kg 3750 4090 4590 4740 4740 4005 5110 5490 5070 3960 4030 5110 4770 3960 4030 5110 4770 3960 4030 3140 3170	K 10 mg/tg 19400 22500 20700 24500 22700 23100 23100 23900 23900 24000 24000 24000 24000 24000 24000 22600 21100 22000	Zn 0,5 <u>mÿ/kg</u> 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 30,8 23,1 23 21,8 23,5
Bag # 85 74 75 76 77* 78 80 81 82 83 84 413 414 415 415 415 415 422	plot 4A 1B 1B 1B	2X treat EQL Units UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.993 5.201 6.613 9.168 8.104 8.957	0.1 As 0.2 <u>mg/kg</u> 1.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.85 0.39 0.41 0.37 0.39 0.29 0.29 0.23	7.69 Cu 0.05 mg/tg 18.89 8.91 10.3 11.8 8.445 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 39.4 33.8 39.4 33.8 39.4 33.8 34.8 41.9 38.2 28 27.7 23.7 28.3 30.4 28	Ca 50 mg/kg 13400 12900 10005 10005 10000 10900 10200 10200 9170 9480 10000	Fe 5 mg/kg 99 88 119 113 76 88 82 89 87 80 87 80 87 80 87 80 80 101 82 83	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4680 4230 3560 3560 3560 3540 3340 3340 3410 3400 3990	Min 0.5 mg/kg 21.2 20 24.1 18.4 15.7 15.5 18.3 18.9 15.3 16.6 18.1 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 15.3 16.4 15.3 16.4 15.3 16.4 15.3 16.3 19.9 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.5 10.	P 5 mg/kg 3750 4090 4690 4740 4740 4005 5110 5490 5070 3960 4030 5110 4770 3950 3140 3770 3140 3750 3350	10 mg/tg 19400 22500 20100 24500 24500 24500 23100 23100 23900 24000 23900 24000 24500 24000 24500 24000 200000 2000000	Zn 0,5 <u>mg/kg</u> 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 23,1 23 21,8 23,5 27,2 24,4
Bag # 85 74 75 76 77 78 79 80 81 82 83 84 413 414 415 416 421 422 423	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.993 5.201 6.613 9.168 8.957 8.787 9.368 7.560 7.872	0.1 As 0.2 mg/tg 1.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.39 0.41 0.37 0.39 0.29 0.23 0.22	7.69 Cu 0.05 mg/kg 18.2 8.91 10.3 11.8 8.445 10.8 10.5 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	NI 0.1 mg/5g 103 41.3 55 50 32.9 45.2 47.8 33.8 34.8 34.8 34.8 34.8 34.8 34.8 34	Ca 50 mg/kg 13400 11900 12900 13700 10005 10500 10500 10200 10200 10200 9170 9480 10000 9170 9480 10000 9130 9130 9450	Fe 5 mg/kg 99 88 119 113 76 88 82 89 87 80 78 79 95 105 105 105 105 105 105 105 10	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4680 4230 3560 3560 3560 3560 3560 3340 3410 3400 3990 3990	Min 0,5 nig/kg 21,2 20 24,1 18,4 15,7 17,6 18,3 18,3 15,9 18,3 15,9 18,3 15,9 18,3 16,4 18,4 15,5 16,4 18,4 15,3 16,4 18,4 15,3 16,4 18,4 15,3 16,4 18,3 16,3 16,4 18,4 15,5 16,4 16,5 16,4 16	P 5 mg/kg 3750 4090 4590 4740 4005 5110 5490 5070 3960 4030 5110 4770 3920 3730 3140 3770 3750 3850 3850	K 10 mg/kg 19400 22500 20100 20100 24500 24500 23100 23900 23900 23900 23900 23900 24000 24000 24000 24000 24000 24000 22600 21100 20000 20000 21100 20000 22000 21100 20000 22000 23900 23900 23900 23900 23900 23900 24500 22000 23900 23900 23900 23900 23900 24500 22000 23900 23900 23900 24500 22000 23900 23900 23900 24500 22000 23900 23900 24500 22000 24500 22000 23900 23900 24500 22000 2000 23900 23900 24500 22000 24500 22000 23900 22000 22000 24500 22000 23900 22000 24500 22000 23900 23900 22000 24000 22000 24000 22000 24000 22000 22000 24000 22000 21000 22000 21000 22000 21000 22000 21000 22000 22000 23000 22000 23000 22000 20000 22000 200	Zn 0,5 me/kg 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 23,1 23 21,8 23,5 27,2 24,4 25,7
Bag # 85 74 75 76 77* 78 80 81 82 83 84 413 414 415 415 415 415 422	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 2B 2B	2X treat EQL Units UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.201 6.613 9.168 8.104 8.104 8.957 8.787 9.368 7.560	0.1 As 0.2 mg/kg 1.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/tg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.97 0.89 0.98 0.98 0.98 0.39 0.41 0.37 0.39 0.22 0.22 0.27 0.285	7.69 Cu 0.05 <u>mg/kg</u> 18.2 8.91 10.3 10.8 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 39.4 33.8 39.4 33.8 39.4 33.8 34.8 41.9 38.2 28 27.7 23.7 28.3 30.4 28	Ca 50 mg/kg 13400 12900 12900 10005 10500 10500 10900 10200 10200 10200 10200 10200 10200 9170 9480 10000 9130 9130	Fe <u>mg/kg</u> 99 88 119 113 76 88 82 89 87 80 78 79 96 105 101 82 83 83 73 90 103	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4680 4230 3560 3560 3560 3540 3340 3340 3410 3400 3990	Min. 0.5 mg/kg 21.2 20 24.1 18.4 15.76 18.3 17.6 18.3 17.6 18.3 18.9 18.3 20.6 18.1 15.9 15.3 16.4 18.3 9.9 15.3 16.4 18.3 19.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.4 15.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.9 15.3 16.4 18.3 19.0 15.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10	P 5 mg/kg 3750 4090 4590 4740 4740 4005 5110 5490 5070 3960 4030 5110 4770 3960 4030 5110 4770 3920 3730 3140 3770 3750 3850 4390 3700 3700 4110	K 10 mg/kg 19400 22500 20100 24500 23100 23100 23100 23900 24000 24000 24000 24000 24000 24000 24000 20000 20000 16100 18800 18800 20400	Zn 0,5 <u>mÿ/kg</u> 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 30,8 23,1 23 21,8 23,5 27,2 21,8 23,5 27,2 23,8 23,8 23,8 23,8 23,8 23,8 23,8 23
Bag # 85 74 75 76 77* 78 80 81 82 83 84 413 414 415 416 421 422 423 424 397* 398	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.983 5.201 6.613 9.168 8.104 8.104 8.957 8.787 9.366 7.560 7.872 6.908 9.208	0.1 As 0.2 mg/xg 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.39 0.41 0.37 0.39 0.41 0.37 0.29 0.22 0.22 0.22 0.23	7.69 Cu 0.05 mg/tg 8.91 10.3 8.845 10.5 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 33.8 34.8 41.9 38.2 28 27.7 28.3 28.2 28 27.7 28.3 20.4 28 30.4 28 33.3 30.7 33.85 35.1	Ca 50 mg/kg 13400 12900 12900 10005 10005 10000 10000 10200 10000 10200 10200 10200 9170 9480 10000 93100 93100 9450 10900 9450 10900 9470	Fe 5 mg/kg 99 88 119 113 76 88 82 89 87 80 78 95 96 105 101 102 83 73 90 105 105 105 105 105 105 105 10	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4040 4680 4040 4680 4040 4680 4230 3560 3560 3620 3340 3400 3990 4010 4230 4095 3840	Mn 0.5 mg/kg 21.2 20 24.1 18.4 15.75 17.6 18.3 18.3 18.3 20.6 18.3 20.6 18.3 16.4 18.3 16.4 18.3 16.4 18.3 9.9 10.3 10 11 10.3 9.9	P 5 mg/kg 3750 4090 4590 4740 4005 5110 5490 5070 3960 4030 5110 4030 5110 3920 3730 3740 3750 3750 3850 4390 3770 3750 3850 4390 4010 4110 5000	K 10 mg/kg 19400 22500 22500 22500 22500 22700 23100 23900 23900 23900 23900 23900 24000 22600 22600 2100 20000 22600 2100 20000 22600 2100 2000 2100 2000 2100 23900 2400 23900 24000 23900 24000 22500 23900 23900 24000 23900 24000 23900 24000 23900 24000 23900 24000 23900 24000 23900 24000 23900 24000 23900 24000 24000 23900 24000 25000 26000 2600 200	Zn 0,5 mg/kg 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 23,1 23,5 27,2 24,4 24,4 25,7 23,8 29,8 32,5
Bag # 85 74 75 76 77* 78 80 81 82 83 84 413 414 415 416 421 422 422 424 397* 398 399 400	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.6950 5.984 6.014 6.654 5.993 5.201 6.613 9.168 8.957 8.787 9.368 7.560 7.877 9.368 7.877 9.368 7.872 6.908 11.280 9.208 6.833 7.089	0.1 As 0.2 mg/kg 1.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.39 0.41 0.37 0.39 0.29 0.23 0.22 0.27 0.285 0.23 0.27 0.21	7.69 Cu 0.05 mg/tg 18.2 8.91 10.3 11.8 8.445 10.8 10.5 10.8 10.5 9.24 8.69 9.24 8.69 9.24 8.69 9.24 9.3 6.97 7.3 6.89 7.3 6.89 7.3 6.92 9.84 10.4 10.4 10.4 10.5	NI 0.1 mg/5g 103 41.3 55 50 32.9 45.2 47.8 33.8 34.8 34.8 34.8 34.9 38.2 28 27.7 23.7 28.3 30.4 28 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	Ca 50 mg/kg 13400 12900 12900 10005 10005 10500 10500 10500 10600 10200 9170 9480 10000 9130 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9170 9480 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 10000 10000 10000 10000 10000 10000 10000 10000 1000000	Fe 5 mg/kg 99 119 113 76 88 82 89 87 80 78 80 78 80 79 95 105 105 105 105 105 105 105 10	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4680 4040 4680 4040 4680 4040 4680 4040 3560 3560 3340 3400 3990 4010 4230 4095 3840 4050 4440	Min. 0,5 mg/kg 21,2 20, 24,1 18,4 15,75 17,6 18,3 17,6 18,3 16,4 15,9 18,3 20,6 18,1 15,9 16,3 16,4 18,4 15,5 16,4 18,4 15,5 17,6 18,4 15,5 17,6 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 15,9 15,3 16,4 16,3 16,3 17,6 16,3 16,3 16,4 16,4	P 3750 4690 4740 4005 5110 5490 5070 3960 4030 5110 5490 5070 3960 4030 5110 3960 4030 5110 3750 3350 33140 3770 33750 3350 4390 4100 4110 5490 4390 4390 4390 4100 4000 4	K 10 mg/kg 19400 22500 22500 20100 20700 24500 23900 23900 23900 23900 23900 23900 24000 22600 22000 21100 20000 21000 20	Zn 0.5 mg/kg 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 23,1 23,5 27,2 24,4 25,7 23,5 27,2 24,4 25,7 23,8 32,5 34,7 26,7
Bag # 85 74 75 76 77* 78 80 81 83 84 413 414 415 416 421 422 423 424 397* 398 399 400 405	Plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.950 5.984 6.014 6.654 5.993 5.201 6.613 9.168 8.104 8.104 8.104 8.957 8.787 9.366 7.560 7.872 6.908 11.280 9.208 6.883 7.089 6.851	0.1 As 0.2 mg/kg 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.98 0.98 0.39 0.41 0.37 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.27 0.21 0.37	7.69 Cu 0.05 mg/kg 18.2 8.91 10.3 11.8 8.445 10.5 10.8 10.5 10.8 9.24 9.3 10.4 10.5 1	NI 0.1 mg/kg 103 41.3 55 50 32.9 45.2 47.8 39.4 33.8 34.8 41.9 38.2 28 27.7 23.7 28.3 30.4 28 33.3 30.7 33.85 35.1 37.8 31.1 37.8 31.1 25.4	Ca 50 mg/kg 13400 12900 12900 10005 10005 10000 10200 10200 10200 10200 9170 9480 10000 9300 9170 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9170 9480 9450 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 10500 9450 10500 9450 10500 9450 10500 10500 9450 105000 10500 10500 10500 10500 10500 10500 10500	Fe 5 mg/kg 99 88 119 113 76 88 82 89 87 88 89 87 88 80 78 80 78 80 78 95 96 105 101 82 83 73 90 103 89 99 91 10 97	Mg 5 mg/kg. 4660 4480 4920 5190 3905 4320 4810 4810 480 4040 4680 4040 4680 4040 4680 4040 4680 4040 4680 3560 3560 3560 3340 3400 3990 4010 4230 4095 3840 4050 3350	Mn. 0.5 mg/kg 21.2 20 24.1 18.4 15.75 17.6 18.3 18.3 20.6 18.3 20.6 18.3 16.4 15.9 15.3 16.4 18.3 9.9 9.10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	P 5 mg/kg 3750 4090 4690 4740 4740 4005 5110 5490 5070 3960 4030 5110 5490 5070 3960 4030 5110 3750 3360 3140 3770 3750 3140 3770 3750 3150 4390 4390 4390 4390 4390 4390 4490 440 310 5070 4005 5070 5	K 10 mg/kg 19400 22500 22500 20100 20700 24500 23100 23900 23900 23900 23900 23900 24000 23900 24000 20000 22600 2100 20000 22000 16100 18000 19300 21800 21600 21800 20600 21800 20600 21800 20600 21800 20600 21800 20600 21800 20600 21800 21800 20600 218	Zn 0,5 mg/kg 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 23,1 23 21,8 23,5 27,2 24,4 25,7 21,8 23,5 27,2 24,4 25,7 23,8 29,8 32,5 34,7 26,7 23,3
Bag # 85 74 75 76 77* 78 80 81 82 83 84 413 414 415 416 421 422 424 397* 398 399 400	plot 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN UN	Sample Dry Weight (g) 0.001 g 8.722 6.319 6.441 4.573 7.136 6.6950 5.984 6.014 6.654 5.993 5.201 6.613 9.168 8.957 8.787 9.368 7.560 7.877 9.368 7.877 9.368 7.872 6.908 11.280 9.208 6.833 7.089	0.1 As 0.2 ms/kg 1.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Co 0.01 mg/kg 3.08 1.06 1.25 1.17 0.86 1.13 1.15 0.97 0.81 0.89 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.39 0.41 0.37 0.39 0.29 0.23 0.22 0.27 0.285 0.23 0.27 0.21	7.69 Cu 0.05 mg/tg 18.2 8.91 10.3 11.8 8.445 10.8 10.5 10.8 10.5 9.24 8.69 9.24 8.69 9.24 8.69 9.24 9.3 6.97 7.3 6.89 7.3 6.89 7.3 6.92 9.84 10.4 10.4 10.4 10.5	NI 0.1 mg/5g 103 41.3 55 50 32.9 45.2 47.8 33.8 34.8 34.8 34.8 34.9 38.2 28 27.7 23.7 28.3 30.4 28 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	Ca 50 mg/kg 13400 12900 12900 10005 10005 10500 10500 10500 10600 10200 9170 9480 10000 9130 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9170 9480 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 9450 10500 10000 10000 10000 10000 10000 10000 10000 10000 1000000	Fe 5 mg/kg 99 119 113 76 88 82 89 87 80 78 80 78 80 79 95 105 105 105 105 105 105 105 10	Mg 5 mg/kg 4660 4480 4920 5190 3905 4320 4810 4430 4080 4040 4680 4040 4680 4040 4680 4040 4680 4040 3560 3560 3340 3400 3990 4010 4230 4095 3840 4050 4440	Min. 0,5 mg/kg 21,2 20, 24,1 18,4 15,75 17,6 18,3 17,6 18,3 16,4 15,9 18,3 20,6 18,1 15,9 16,3 16,4 18,4 15,5 16,4 18,4 15,5 17,6 18,4 15,5 17,6 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 17,6 18,3 18,4 15,5 15,9 15,3 16,4 16,3 16,3 17,6 16,3 16,3 16,4 16,4	P 3750 4690 4740 4005 5110 5490 5070 3960 4030 5110 5490 5070 3960 4030 5110 3960 4030 5110 3750 3350 33140 3770 33750 3350 4390 4100 4110 5490 4390 4390 4390 4100 4000 4	K 10 mg/kg 19400 22500 22500 20100 20700 24500 23900 23900 23900 23900 23900 23900 24000 22600 22000 21100 20000 21000 20	Zn 0.5 mg/kg 29,3 26,1 29 35 27,5 30,8 33,3 30,4 29,6 26 30,8 30,8 23,1 23,5 27,2 24,4 25,7 23,5 27,2 24,4 25,7 23,8 32,5 34,7 26,7

.

Year 2001 Field Trial Soybean Toxilogical Analysis for C2 Site

Bag#	plot	treat	Sample Dry	As	Со	Cu	Ni	Ca	Fe	Mg	Mn	P	K	Za
		5	Weight (g)											
		EQL Units	0.001 g	0.2 mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 mg/kg	50 mg/kg	5 mg/kg	5 mg/kg	0.5 mg/kg	5 mg/kg	10 mg/kg	0.5 mg/kg
361	1A	UN UN	7.446 6.110	1.4 1.6	2.41 3.03	15.9 17.6	99.2 97.7	20300 22300	374 537	4570 5110	26.2 26.3	3710 3650	15500 16000	44.3 46.1
362 363	1A 1A	UN	6.146	1.3	2.32	24.9	95.4	20200	389	4540	22.5	3710	13600	48.4
364 365	1A 1A	UN 1X	7.076 4.936	1.3 1.3	2.0 2.72	14.3 16.9	75.5 102	21200 24700	319 473	4740 6360	23.7 20.7	3600 3770	13000 14600	50.8 51.7
365 366* 367*	1A 1A	ix ix ix	5.226 5.341	1.2 1.3	2.385 2.86	17.45 16.5	92 104	20850 21400	427 473.5	5580 5305	20.75 22.7	3675 3750	13900 15550	41.4 52.2
367* 368	1A.	JX I	5.341 4.237	1.1	2.53	19.1	110	20800	519	5440	20.7	3180	14600	48.5
369 370	IA IA	2X 2X	5.462 6.733	1.2 1.1	2.66 2.53	16.8 15	95.6 78.6	23600 22400	504 417	5820 5410	25.1 23.7	3170 2980	11700 10900	50.7 50.8
371 372	1A 1A	-2X 2X	6.042 6.869	0.6 1.2	0.51 2.22	32.9 13.4	2.7 69.9	31100 24100	467 377	8080 5470	413 20.7	3870 3050	19400 13500	162 46.3
385 386	2A 2A	UN UN	6.122 4.297	0.7 1.4	0.9 1.68	10.6 15.7	32.6 68.4	14300 20200	107 ° 260	4690 5180	11.6 14.5	3070 2550	14500 10900	32.7 40.8
387 388	2A 2A 2A	UN	4.733	0.8	1.23	11.4 13	37.9	15500 11900	131 131	4980 4190	12.4 13.1	2980 3460	15200 17000	39.9 35.5
389	2A 2A 2A		4.157	0.6	1.01	12.8	47.6	11300	137	4100	14.2	3530	20200	27.7
390 391	2A 2A	1X 1X	3.330 4,144	0.6 0.5	0.9 0.9	14.6 11.4	52.5 37.2	13600 11000	128 132	4890 4010	15.7 13.4	4190 3420	20100 17200	32.4 28.9
392	2A	1X 2X	4.128 4.133	1.4	<u>1.95</u> 0.7	15.5	89.9 46.7	17700 10700	309 106	5430 4460	13.5 12.9	2730 4190	15000 21200	24.4 28
394	2A 2A	2X 2X	4.220	0.4	0.78	10.7	46.7	10600	95	4410	14.6 12.1	4230 3380	21200 19100	35.6
395 396	2A 2A	2X	4.767 5.874	0.6 1.8	1.02 2.27	11.9 30.9	50.5 107	11200 19700	156 450	4350 5510	17.8	2660	13500	28.6 35.3
61* 62*	3A 3A 3A	UN UN	8.423 6.372	1.8 1.75	2.655 1.795	15.8 12.45	74.2 45.35	20800 20850	484 310	4440 4540	30.15 27.9	3435 3150	15400 14000	41.8 37,1
63 64	3A 3A	UN UN	8.157 6.708	1.6 1.7	1.9 2.6	12.5 14	51.5 69.8	21000 20800	294 439	4540 4530	22.4 32	3190 3490	11200 14200	42.9 40.5
65	3A	IX IX	6.330	1.6	2.93 2.35	20.6	89.6 62.1	21100 21000	712 501	5050 4830	42.1 36.9	2400 2310	14500 13600	34.9 35.2
66 67	3A 3A	iX	9.466 7.939	1.5 1.3	2.04	15.9 13.8	52.5	23000	467	4930	34.2	2440	15900	33.3
68 69	3A 3A	1X 2X	9.183 7.970	1.4	2.27	15.6	61.2 39.3	22900 24500	502 309	4870 5490	37.6 29.3	2520 3240	15200 14500	45.5 42.9
.70	3A 3A 3A	2X 2X	5.662 8.408	1.6 1.5	1.78 2.87	11.5 18.1	40.1 89.4	24100 22300	407 697	5090 5060	36.6 38.6	2640 2540	14800 14300	40.4 35.9
71 72	<u> </u>	2X	5.515	1.6	2.77	17.2	78.6	23900	576	5200	31.5	3100	14100	41.3
			Sample								2240 2240			
Bag #	plot		Dry				1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	64 63 - 61	A PARTA BEARING AND					Zn
Carlos H. Bridge		treat		As	Co	Cu	NI	Ca	Fe	Mg	Mn	P	K	
			Weight (g)			n por estas Alexandres de la companya de la comp Alexandres de la companya de la comp						ellen er		05
		EQL Units	Weight (g) 0.001 g	0.2 mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 mg/kg	50 mg/kg	5 mg/kg	5 mg/kg	0.5 mg/kg	5 mg/kg	10 mg/kg	0.5 mg/kg
73 86	4A 4A	EQL Units UN UN	Weight (g) 0.001 g 5.629 7.912	0.2 mg/kg 0.2 1.2	0.01 mg/kg 1.13 2.74	0.05 mg/kg 9.4 15.2	0.1 mg/kg 40.5 82.1	50 mg/kg 21100 20300	5 <u>mg/kg</u> 471 377	5 <u>mg/kg</u> 4410 4300	0.5 mg/kg 23.9 22.1	5 mg/kg 2570 2870	10 <u>mg/kg</u> 11300 10900	mg/kg 48.4 49.5
73 86 87 88	4A 4A 4A 4A	EQL Units UN	Weight (g) 0.001 g 5.629	0.2 mg/kg 0.2	0.01 <u>mg/kg</u> 1.13	0.05 mg/kg 9.4	0.1 mg/kg 40.5	50 mg/kg 21100	5 mg/kg 471	5 mg/kg 4410	0.5 mg/kg 23.9	5 mg/kg 2570	10 mg/kg 11300	mg/kg 48.4 49.5 43.9 49.2
88 89	4A 4A 4A	EQL Units UN UN UN UN UN	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66	0.05 mg/kg 9.4 15.2 13.8 14.8 11.4	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4	50 mg/kg 21100 20300 17700 17100 27400	5 mg/kg 471 377 297 314 236	5 <u>mg/kg</u> 4410 4300 4530 4250 6240	0.5 mg/kg 23.9 22.1 24.8 23 14.1	5 ng/kg 2570 2870 2630 2580 2980	10 mg/kg 11300 10900 12400 10600 13700	mg/kg 48.4 49.5 43.9 49.2 43.1
88 89 90 91	4A 4A 4A 4A 4A	EQL Units UN UN UN UN UN UN IX IX	Weight (g) 0.001 <u>B</u> 5.629 7.912 4.996 7.234 3.965 3.750 3.846	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 0.7	0.01 nig/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71	0.05 mg/kg 9.4 15.2 13.8 14.8 11.4 8.92 11.4	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3	50 mg/kg 21100 20300 17700 17100 27400 18300 18600	5 mg/kg 471 377 297 314 236 191 227	5 <u>mg/kg</u> 4410 4300 4530 4250 6240 4980 5330	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7	5 mg/kg 2570 2870 2630 2580 2980 2250 2660	10 mg/kg 11300 10900 12400 10600 13700 13700 14700	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6
88 89 90 91 92* 93	4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN IX IX IX IX IX IX IX	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680	0.2 mg/kg 0.2 1.2 0.9 0.9 1.1 0.7 0.7 1.05 1.4	0.01 mg/kg 1.13 2.74 2.4 2.4 2.34 1.66 1.31 1.71 1.71 1.74 2.38	0.05 mg/kg 9.4 15.2 13.8 14.8 11.4 8.92 11.4 8.92 11.4 10.9 16.7	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2	50 mg/kg 21100 20300 17700 17100 27400 18300 18600 18600 26150 24000	5 mg/kg 471 377 297 314 236 191 227 268 497	5 mg/kg 4410 4300 4530 4250 6240 4980 5330 5515 5380	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8	5 ng/kg 2570 2630 2580 2980 2250 2660 2285 2260	10 mg/kg 11300 10900 12400 10600 13700 13700 14700 14700 10500 11400	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6
88 89 90 91 92* 93 94 95	4A 4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN UN IX IX IX IX IX IX IX	Weight (g) 0.001 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.495 5.495	0.2 mg/kg 0.2 1.2 0.9 0.9 1.1 0.7 0.7 1.07 1.05 1.4 1.1 1.1	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.66 1.31 1.71 1.74 2.38 1.69 2.28	0.05 mg/kg 9.4 15.2 13.8 14.8 11.4 8.92 11.4 10.9 16.7 12.2 18.2	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9	50 mg/kg 21100 20300 17100 27400 18600 26150 24000 23600 18100	5 mg/kg 471 377 297 314 236 191 227 268 497 333 484	5 mg/kg 4410 4300 4530 4250 6240 4980 5315 5380 5315 5380 5380 4970	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5	5 mg/kg 2570 2630 2580 2980 2250 2660 2285 2260 2350 2510	10 me/kg 11300 10900 12400 10600 13700 13700 13700 14700 10500 11400 13300	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6
88 89 90 91 92* 93 94	4A 4A 4A 4A 4A 4A 4A	EQL Units UN UN UN IX IX IX IX IX 2X 2X 2X 2X	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.495 5.642	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 1.07 1.05 1.4 1.1	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.74 2.38 1.69	0.05 mg/kg 9.4 15.2 13.8 14.8 11.4 8.92 11.4 8.92 11.4 10.9 16.7 12.2	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9	50 mg/kg 21100 20300 17700 17100 27400 18600 26150 26150 24000 23600	5 mg/kg 471 377 297 314 236 191 227 268 497 333 484 415 367	5 <u>me/kg</u> 4410 4300 4530 6240 6240 4980 5330 5515 5380 5380	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7	5 <u>wey/kg</u> 2570 2870 2580 2580 2250 2660 2285 2260 2350 2350 2510 2490 2780	10 mg/kg 11300 10900 12400 10600 13700 13700 14700 10500 14700 13300 15300 11400 12700	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7
88 89 90 91 92* 93 94 95 96 417 418	4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B	EQL Units UN UN UN IX IX IX IX IX IX ZX 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.642 4.905 6.550	0.2 mg/tg 0.2 1.2 0.9 0.9 - 1.1 0.7 0.7 1.0 5 1.4 1.1 1.1 1.2 0.8 0.8 0.8	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.33	0.05 mg/kg 9.4 15.2 13.8 14.8 9.2 11.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.8	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.3	50 mg/kg 21100 20300 17700 17100 27400 18300 18600 26150 24000 23600 23600 18100 18100 18100 18100	5 ng/kg 471 377 297 314 236 191 227 268 497 333 484 415 367 348	5 mg/kg 4410 4300 4530 4250 6240 4980 5315 5380 5315 5380 5380 5380 4970 5360 5100 5100 5210	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.8 19.8 19.8 19.8 19.8 19.8 2.5 19.8 2.5	5 nw/kg 2570 2630 2580 2980 2980 2980 2050 2660 2250 2660 2250 2660 2350 2350 2510 2490 2780 2780 2580	10 mg/kg 11300 10900 12400 10600 13700 13700 14700 10500 11400 15300 11400 12900	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6 42.2 44.5 41.6
88 89 90 91 92* 93 94 95 96 417 418 419 420	4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 1B	EQL Units UN UN UN UN UN X X X 2X 2X 2X 2X 2X 2X CAL CAL CAL	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.495 5.642 4.905 6.550 5.786 8.208	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 0.7 0.7 1.05 1.4 1.1 1.1 1.1 1.2 0.8 0.8 0.8 0.7 0.6	0.01 mg/kg 1.13 2.74 2.4 2.4 1.66 1.31 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.33 1.07 1.07	0.05 mg/kg 9.4 15.2 13.8 14.8 92 11.4 8.92 11.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.8 11.2 12.8 11.7	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 56.5 47.3 31.1 38.2	50 mg/kg 21100 20300 17700 17700 27400 18300 26150 24000 26150 24000 26150 24000 26150 24000 26150 24000 26150 24000 26150 24000 26150 24000 26150 24000 2600 2600 2800 2800 2800 2800 2800 2	5 mg/kg 471 297 314 297 314 191 226 497 333 484 415 348 454 415 348 263	5 mg/kg 4410 4530 4250 6240 4980 5330 5315 5380 5380 4970 5360 5360 5100 5210 4830 4300	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5 19.8 19.7 22.5 19.8 18.8 26 20.3 20.7	5 mg/kg 2570 2630 2580 2980 2250 2660 2285 2260 2350 2510 2490 2510 2490 2540 2540 2490 2490 2490	10 mg/kg 11300 10900 12400 10600 13700 13700 13700 14700 10500 11400 13300 15300 12700 12900 14100 13500	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6 42.2 44.5 41.6 42.2 44.5 41.6 40.2 39.6
88 89 90 91 92* 93 94 95 96 417 418 419 420 425 426	4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 1B 2B 2B	EQL Units UN UN UN UN UN IX IX IX IX IX IX IX IX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.495 5.492 5.495 5.492 6.550 5.786 8.208 4.581 5.157	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 0.7 1.05 1.4 1.1 1.1 1.2 0.8 0.8 0.8 0.7 0.6 0.6	0,01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.33 1.07 1.07 1.07 1.07 0.97 0.76	0.05 mg/kg 9.4 15.2 13.8 14.8 92 11.4 8.92 11.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.8 14.9 12.8 14.9 12.2 11.7 12.2 13.3	0:1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.3 31.1 38.2 47.7 38.8	50 mg/kg 21100 20300 17700 17100 27400 27400 18500 26150 26150 26150 26150 26150 26150 26150 2600 18100 18100 18100 18100 18100 15200 17900 17100	5 mg/kg 471 297 314 236 191 227 268 497 333 484 415 367 348 245 263 207 184	5 mg/kg 4410 4530 4250 6240 4980 5330 5515 5380 5380 5380 5380 5360 5100 5210 4970 5360 5100 5380 5380 5500	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5 19.8 18.8 26 20.3 20.7 12.2 12.4	5 nug/kg 2570 2630 2580 2580 2280 2280 2280 2285 2260 2350 2350 2350 2350 2490 2490 2490 2470 2540 2490 2470 2540 2610	10 mg/kg 11300 10900 12400 10600 13700 13700 14700 10500 14700 13300 13300 13300 1400 12700 12700 12900 14100 13500 14900	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6 42.2 44.5 41.6 40.2 39.6 24.8 26
88 89 90 91 92* 93 94 95 96 417 418 419 420 425	4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 1B 1B 2B	EOL Units UN UN UN IX IX IX IX IX IX IX ZX ZX ZX CAL CAL CAL CAL	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.346 4.455 4.680 5.497 5.495 5.642 4.905 6.550 5.786 8.208 8.208	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 1.05 1.4 1.1 1.2 0.8 0.8 0.8 0.8 0.6 0.6	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.33 1.07 1.07 1.07	0.05 mg/kg 9.4 15.2 13.8 11.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.8 14.9 12.8	0:1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.3 31.1 38.2 47.7 38.8 71.55 36.15	50 mg/kg 21100 20300 17700 17100 27400 24000 26150 26150 26150 26150 26150 26150 26150 26150 26150 26150 26150 26150 2600 18100 18100 18100 18100 18000 17900 17100	5 mg/kg 471 297 314 236 191 227 268 497 333 484 497 333 484 415 367 348 245 263 207 184 318.5 267	5 mg/kg 4410 4300 4530 6240 4980 5330 5515 5380 5380 5380 5380 5380 5100 5100 5210 5210 5380 5510 5380 5500 5945	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5 19.8 18.8 26 20.3 20.7 12.2	5 mg/kg 2570 2630 2580 2580 2580 2580 2580 2660 2285 2260 2350 2510 2490 2780 2540 2540 2540 2490 2490 2490 2490 2555 5555 2530	10 mg/kg 11300 12400 12400 13700 13700 13700 14700 10500 14700 13300 13300 13300 13300 12700 12900 12900 14100 13500 14100 14200 14200 14200 14200	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6 42.2 44.5 41.6 40.2 39.6 24.8 26 52.8 24.85
88 89 90 91 92* 93 94 95 96 417 418 419 420 425 427* 428* 401	4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 2B 2B 2B 2B 2B 2B 2B 3B	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN CAL CAL CAL CAL CAL CAL CAL CAL	Weight (g) 0.001 g 5.629 7.912 4.996 7.913 4.995 3.750 3.846 4.455 4.680 5.495 5.642 4.905 5.786 8.208 5.157 4.686 5.045	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 0.9 1.1 0.7 1.05 1.05 1.4 1.1 1.1 1.2 0.8 0.8 0.8 0.7 0.6 0.6 0.6 1.05 0.5 0.8	0,01 mg/kg 1,13 2,74 2,4 2,4 1,66 1,31 1,71 1,74 2,38 1,69 2,28 2,1 1,5 1,33 1,07 1,07 0,97 0,76 1,475 0,69 1,07	9.05 mg/kg 9.4 15.2 13.8 14.4 8.92 11.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.8 14.9 12.8 11.7 12.3 11.7 12.3 13.3 24.45 16.5	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.3 31.1 38.2 47.7 38.8 71.55 36.15 54.2	50 mg/kg 21100 20300 17700 17100 27400 18300 26150 24000 26150 24000 23600 18100 18100 18100 18100 18100 18100 15200 17900 17100 17000 17000	5 mg/kg 471 377 297 314 226 191 226 497 268 497 268 497 348 484 415 367 348 263 207 184 318.5 167 260	5 mg/kg 4410 4530 4250 6240 4980 5315 5315 5380 5380 4970 5360 5100 5210 4830 4300 5380 5380 5100 5210 5210 5380 5380 5380 5380 5390	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5 19.8 19.7 22.5 19.8 18.8 26 20.3 20.7 12.2 12.4 23.3 11.45 15	5 mg/kg 2570 2630 2580 2580 2580 2280 2660 2285 2260 2350 2510 2490 2490 2490 2490 2470 2540 2470 2540 2610 5555 2530 2340	10 mg/kg 11300 10900 12400 10600 13700 13700 13700 14700 10500 11400 13300 15300 11400 12700 12900 14100 13500 14900 30950 15250 13300	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6 42.2 44.5 41.6 42.2 44.5 41.6 40.2 39.6 24.8 26 52.8 26 52.8 24.85 27.3
88 89 90 91 92 93 94 95 96 417 418 419 420 425 427 426 427* 428* 401 400 <	4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 1B 2B 2B 2B 2B 2B 2B 2B 3B 3B 3B 3B	EQL Units UN UN UN UN UN UN UN UN UN UN UN UN CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.445 5.642 4.905 5.786 8.208 4.581 5.157 6.854 4.922 6.314	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 0.7 1.05 1.4 1.1 1.1 1.2 0.8 0.8 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.8 0.9 0.8	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.33 1.07 1.07 1.07 1.07 1.07 1.07 1.475 0.69 1.07 1.475 0.69 1.07	0.05 mg/kg 9.4 15.2 13.8 14.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.3 14.9 12.3 14.9 12.3 14.9 12.2 14.9 12.3 14.9 12.3 14.9 12.3 14.9 12.3 14.9 12.3 14.9 12.3 14.9 12.5 12.5 16.5 17.4 17.8	0:1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.9 78.9 68.6 56.5 47.7 38.2 47.7 38.2 47.7 38.8 71.55 36.15 54.2 71.6 72.8	50 mg/kg 21100 20300 17700 17100 27400 27400 18500 26150 26150 26150 26150 26150 26150 26150 2600 18100 21900 18100 18100 18100 15200 17900 17900 17000 19000 21500 21500 21500	5 mg/kg 471 297 314 236 191 227 268 497 333 484 415 367 348 263 267 348 263 263 263 263 263 263 263 263 263 263	5 mg/kg 4410 4530 4250 6240 4980 5330 5515 5380 5380 5380 5380 5380 5100 5210 4970 5360 5100 5210 4330 4370 5560 100200 5945 5390 5380 5580	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5 19.8 18.8 26 20.3 20.7 12.2 12.4 23.3 11.45 15 15.7 14.6	5 nug/kg 2570 2630 2580 2580 2250 2660 2285 2260 2350 2350 2350 2350 2490 2490 2490 2470 2540 2470 2540 2470 2540 2470 2540 2470 2555 2530 2340 2380 2380 2380 2380	10 mg/kg 11300 10900 12400 10600 13700 13700 14700 10500 14700 13300 1400 13300 14100 12700 12900 14100 13500 14900 30950 15250 13300	mg/kg 48.4 49.5 43.9 49.2 43.1 32.9 41.6 46.45 41.6 38.7 36.6 42.2 44.5 41.6 39.6 24.8 26 52.8 24.85 27.3 30.7 26.2
88 89 90 91 92* 93 94 94 95 96 417 418 419 420 425 425 426 427* 428* 401 402 402 403 404 404 409 409 409 409 409 409 409 409 409 409 400 <	4A, 4A, 4A, 4A, 4A, 4A, 4A, 4A, 4A, 4A,	BOL Units UN UN UN UN UN UN UN UN UN UN UN CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.495 5.642 4.905 5.786 8.208 4.531 5.157 4.686 5.045 6.854 4.922 6.514 8.001 3.908	0.2 mg/kg 0.2 1.2 0.9 0.9 0.9 1.1 0.7 1.05 1.4 1.1 1.1 1.2 0.8 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.7 0.6 0.8 0.8 0.7 1.8	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.33 1.07 1.07 1.07 0.97 0.76 1.475 0.69 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07	0.05 mg/kg 9.4 15.2 13.8 14.8 11.4 8.92 11.4 10.9 16.7 12.2 18.2 15.8 14.9 12.8 11.2 11.7 12.8 11.7 13.3 24.45 13.3 12.4 15.8 13.3 12.4 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 13.3 12.4 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8	0:1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.3 31.1 38.2 47.7 73.8 8.6 51.1 55.5 54.2 71.6 72.8 55.7 16 9	50 mg/kg 21100 20300 17700 17100 27400 18600 26150 24000 26150 26150 26150 26150 26150 26150 26150 26150 26150 18100 18100 18100 18100 18000 17900 17900 17000 19000 21500 21500 21500 21500 22400	5 mg/kg 471 297 297 297 226 191 227 268 497 333 484 497 333 484 495 263 207 207 266 207 207 184 318.5 167 260 383 334 231 1200	5 mg/kg 4410 4300 4530 6240 4980 5330 5515 5380 5380 5380 5380 5380 5380 5100 5210 4830 4370 5210 5380 5560 10200 5945 5390 5580 5580 5580 5580 5580 5580 5580 55	0.5 mg/kg 23.9 22.1 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 22.5 19.8 19.7 12.7 15.9 19.8 19.7 12.7 15.9 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 19.8 19.7 12.5 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.7 15.4 15.7 15.7 15.7 14.6 15.7 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 15.7 14.6 14.2 49.7 14.2 15.7 15.7 14.6 15.7 14.6 15.7 14.6 15.7 15	5 mg/kg 2570 2630 2580 2580 2580 2580 2580 2660 2285 2260 2350 2510 2490 2780 2540 2540 2540 2490 2470 2540 2540 2610 5555 2530 2490 2470 2550 2550 2530 2490 2470 2470 2580 2490 2470 2470 2580 2490 2470 2470 2470 2580 2490 2470 2470 2470 2470 2470 2470 2470 247	10 mg/kg 11300 12400 12400 13700 13700 13700 13700 14700 10500 14700 13300 13300 13300 12700 12900 14100 12900 14100 14200 14200 14200 14200 15250 13300 15250 13300 15000 15000	mg/kg 48.4 49.5 43.9 49.5 43.9 49.5 43.1 32.9 41.6 38.7 36.6 42.2 44.5 41.6 39.6 24.8 26 52.8 24.85 27.3 30.7 26.2 29.4 52.5
88 89 90 91 92 93 94 95 95 96 417 418 419 425 426 427* 428* 401 401 403 403 404 403 404 404 404 404 404 405	4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 1B 1B 1B 2B 2B 2B 2B 2B 2B 2B 2B 3B 3B 3B 3B 3B 3B	EQL Units UN UN UN IX IX IX IX IX IX IX IX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX ZX	Weight (g) 0.001 g 5.629 7.912 4.996 7.234 3.965 3.750 3.846 4.455 4.680 5.497 5.495 5.642 4.905 5.642 4.905 5.786 8.208 4.581 5.157 4.686 5.045 6.854 4.922 6.514 8.001	0.2 mg/kg 0.2 1.2 0.9 1.1 0.7 0.7 1.4 1.1 1.1 1.1 1.2 0.8 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.01 mg/kg 1.13 2.74 2.4 2.34 1.66 1.31 1.71 1.74 2.38 1.69 2.28 2.1 1.5 1.5 1.33 1.33 1.33 1.37 1.07 1.07 0.97 0.76 1.475 0.69 1.07 1.44 1.37 1.04	0.05 mg/kg 9.4 15.2 13.8 11.4 8.92 11.4 10.9 16.7 12.2 15.8 14.9 12.2 15.8 14.9 12.2 15.8 14.9 12.8 11.2 11.2 11.2 11.2 12.8 13.3 12.8 15.2 15.5 16.5 12.3 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15	0.1 mg/kg 40.5 82.1 68.5 71.8 34.4 26.2 41.3 36.95 79.2 47.9 78.9 68.6 56.5 47.3 31.1 38.2 47.7 38.8 71.55 36.15 54.2 71.6 72.8 55.7	50 mg/kg 21100 20300 17700 17100 27400 26150 26150 24000 23600 24000 23600 18100 18100 18100 18800 16900 15200 17900 17900 17900 17900 21500	5 mg/kg 471 377 297 206 191 227 268 207 268 484 415 367 348 245 263 207 184 245 263 207 184 318.5 167 260 383 334 2251	5 mg/kg 4410 4300 4330 4250 6240 4980 5330 5380 5380 5380 5380 5380 5380 53	0.5 mg/kg 23.9 24.8 23 14.1 17.2 16.7 15.9 19.8 19.7 19.7 19.8 19.7 19.8 19.7 19.8 19.7 19.8 19.7 19.7 19.8 19.7 19.8 19.7 19.8 19.7 19.8 19.7 19.7 19.8 19.7 19.8 19.7 19.8 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	5 mg/kg 2570 2630 2980 2250 2660 2285 2285 2260 2350 2510 2490 2490 2490 2470 2540 2610 5555 2530 2540 2610 2555 2530 2340 2340 2430	10 me/kg 11300 10900 12400 13700 13700 13700 13700 14700 10500 14700 13300 15300 11400 12900 14100 12900 14100 13500 14200 14200 14200 14200 15250 13300 15250 13300 15250 1300 15250	mg/kg 48,4 49,5 43,9 49,2 43,1 32,9 41,6 46,45 41,6 46,42 41,6 42,2 44,5 41,6 40,2 39,6 24,8 26 27,3 30,7 26,2 29,4

Year 2001 Field Trial Soybean Seed Analysis for C2 Site

Bag #	Sample Code	plot	treat	As	Co	Cu	NI	Ca	Fe	Mg	Mn	P	K	Zn
			EQL Units	0.2 mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 mg/kg	50 mg/kg	5 mg/kg	5 tng/kg	0.5 mg/kg	5 mg/kg	10 mg/kg	0.5 mg/kg
1279X 1279Y	X Y	JA 1A	UN UN	0.1 0.1	0.52 0.5	10 9.77	50.6 47.1	2400 2480	52 52	2080 2040	18.4 18.5	5560 5420	17100 17000	30.5 29.7
1279Z 1280X	Z X	1A 1A	UN UN	0.1 0.1	0.52 0.52	10.3 10.6	49.3 42,1	2450 2390	56 48	2090 2040	18.3 17.5	5590 5350	17000 15800	30 30.1
1280Y	Y	1A	UN	0.2	0.81	11.7	45.2	2480	51	2100	17.7	5550	15700	31.4
1280Z 1281X		1A 1A	UN 1X	0.1 0.1	0.51 0.54	11.3 10.6	44 35.3	2340 2540	59 58	2050 2240	18.1 15.1	5400 5120	15300 16000	31.6 30.2
1281Y 1281Z*	Y	1A	1X 1X	0.1 0.1	0.53 0.545	9.97 10.6	34.7 35.7	2530 2595	56 57.5	2160 2300	15.3 15.25	5010 5270	16000 16900	29.3 29.75
1281 1X*	z 1X	1A 1A	1X	0.1	0.38	13.75	39.6	2580	62	2580	15.2	5810	17500	34.5
1281 IY 1281 IZ	1Y 1Z	1A 1A	1X 1X	0.1 0.1	0.39 0.38	13.5 13.8	40,6 39,4	2640 2610	65 65	2580 2630	15.8 15.4	5820 5830	17600 17900	34.4 35.3
1281 2X	2X	1A	1X	0.1	0.41	13.9	42.3 40.5	2690 2560	61	2650 2600	15.3 15.1	6070 5890	18500 18000	35 34,3
1281 2Y 1281 2Z	2Y 2Z	1A 1A	1X 1X	0.1 0.1	0.4 0.4	13.9 13.8	39.9	2470	66 62 55	2520	14.9	5740	17400	34.6
1282X 1282Y	2X 2Y	1A 1A	1X 1X	0.1 0.1	0.62 0.62	10.2 9.74	40.4 40.9	2520 2520	55 57	2440 2320	17 16.7	5350 5510	17900 18400	30.5 29.7
1282Z	2Z	1A	1X	0.1	0.61	9.53	40.4	2360	57	2350	17.4	5450	17900	28.8
1283X 1283Y	X Y	1A 1A	2X 2X	0.1 0.1	0.46 0.46	9.8 10	29.3 31.4	2480 2430	62 61	2400 2340	15 14.7	5100 5070	17100 17100	30.2 30.7
1283Z * 1284X	z x	1A 1A	2X 2X	0.1 0.1	0.45 0.51	10 9.74	29.6 31.1	2580 2710	60 52	2170 2450	14.9 14.5	4770 5290	17600 17400	30.6 30
1284Y	Y	1A	2X	0.1	0.48	10.4	29.6	2880	61	2570	15.1	5310	17700	30.7
1284Z 1285X*	z x	1A 2A	2X UN	0.1	0.44	9.73 10.35	29.2 32.9	2380 2550	59 45.5	2310 2335	14.3 15.15	4900 5120	16700 17950	29.8 30.45
1285Y	Y	2A	UN	0.1	0.5	10.1 9.71	30.9 31.5	2750 2790	53 58	2420 2390	14.6 14.2	5480 5490	17900 17700	30.4 30.5
1285Z 1286X	z x	2A 2A	UN UN	0.1 0.1	0.51 0.54	9.67	32.5	1010	56	2350	15.1	5120	17900	30.3
1286Y 1286Z	Y Z	2A 2A	UN UN	0.1 0.1	0.55 0.55	10.1 10	34.1 34.1	2580 2620	54 56	2310 2380	14.8 14.9	5170 5110	18100 17900	31.4 29.9
1287X	x	2A	1X	0.1	0.58	11.5	42.3	2530	55 56	2420	14.4	5880	17500	30.8
1287Y 1287Z	Y Z	2A 2A	1X 1X	0.1 0.1	0.56 0.58	11.3 11.8	41.2 41.6	2640 2560	56 59	2350 2400	14.9 14.7	5820 5920	17300 17400	31.3 31.8
1288X 1288Y	X Y	2A 2A	1X 1X	0.1 0.1	0.52 0.52	9.73 9.86	37.7 39.4	2360 2410	56 58	2280 2270	14.5 14.8	5610 5680	17300 17800	30.2 30.6
1288Z	Z	2A	1X	0.1	0.51	9.91	37.5	2470	55	2300	14.7	5820	17200	30
1289X 1289Y	X Y	2A 2A	2X 2X	0.1 0.1	0.55 0.54	9.38 9.21	37.7 37.5	2300 2180	61 61	2280 2170	16.1 16	5590 5460	18000 17100	29.1 28.3
1289Z	Z	2A	2X	0.1	0.58	9.46	38.7	2180 2470	63 52	2170 2280	16.2 16.05	5510 5740	17500 20950	29 30.4
1290X* 1290Y	X Y	2A 2A	2X 2X	0.1 0.1	0.67 0.67	10.5 10.5	41.5 41.3	2560	58	2320	16	5860	21000	30.6
1290Z	Z	<u>2A</u>	2X	0.1	0.68	11.2	40.8	2690	60	2290	16.6	6100	20900	31.5
Bag #	Sample Code	plot	treat	As	Co	Cu	Ni	Ca	Fe	Mg	Ma	P	к	Zo
			EQL	0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1291X 1291Y	X Y	3A 3A	UN UN	0.1	0.54 0.56	9.07 9,42	35.2 36.4	2250 2220	62 58	2130 2120	13.8 13.6	5580 5490	19500 19000	31 33.2
1291Z 1292X	z x	3A 3A	UN UN	0.1	0.52 0.55	9.19 8.73	34.8 32.4	2240 2000	58 58	2100 1940	13.4 14.9	5420 4840	18600 16900	30.4 28.6
1292Y	Y	3A	UN	0.1	0.61	9.01	35.3	2070	63	2050	15.2	5200	18100	31.9
1292Z 1293Z	Z Z X	3A 3A	UN IX	0.1	0.59 0.52	8.9 10.8	33 26.7	2050 2360	60 65	2040 2160	15.6 16.5	5050 5260	17500 18900	30.4 33.1
1294X 1294Y	X Y	3A	1X 1X	0.1 0.1	0.47 0.51	9.17 9.97	33.4 34.8	2050 2080	62 69	2100 2120	16 17.6	5510 5610	21000 22300	31.8 32.6
1294Z	Z	3A 3A	1X	0.1	0.48	9.48	34.5	2060	64	2100	15.8	5630	21200	31.9
1295X* 1295Y	X Y	3A 3A	2X 2X	0.1	0.435	10.15 10.2	30.35 29.4	2080 2120	66.5 61	2065 2110	14.1 14	5430 5460	19750 19600	32.25 32.5
1296Y	Y	3A	2X	0.1	0.4 0.4	10.6 10.4	27.5	2150	66	2050	11.9	5350 5270	18300	31.9 31.9
1296Z 1297X	Z X	3A 4A	2X UN	0.1	0.72	9.61	27.5 36.4	2140 2450	66 54	2010 2050	11.5 14.1	4960	18700 20000	29.7
1297Y 1297Z	Y Z	4A 4A	UN UN	0.1 0.1	0.72 0.71	9.13 9.25	37.4 35.7	2420 2380	57 58	2000 2050	13.9 14.2	4700 4650	20000 20300	29.7 29.6
1298X	х	4A	UN	0.1	0.67	9.42	34.8	2480	58	2060	14.8	4650	19300	29.6
1299X 1299Y	X Y	4A 4A	1X 1X	0.1	0.61 0.59	11.4 10.5	33.3 33	2310 2150	69 65	2280 2240	11.9 11.4	5160 5110	21000 20900	34.1 33
1299Z 1300X*	z x	4A 4A	1X 1X	0.1 0.1	0.59 0.555	10.7 10.1	32.3 28.9	2260 2365	65 58	2200 2205	11.4 11.5	4970 4745	20700 19550	32.8 30.75
1300Y*	Y	4A	1X	0.1	0.61	10.195	31.3	2410	51	2455	12.5	5470	18050	33.4
1300Z 1301Z	Z Z	4A 4A	1X 2X	0.1	0.59 0.61	10.3 8.85	31.3 36.8	2440 2380	63 65	2520 2450	12.7 18.7	5640 5570	19000 20400	34.5 30.8
1302X 1302Y	x Y	4A 4A	2X 2X	0.1 0.1	0.48 0.46	10.4 10.9	29.6 28.2	2460 2420	63 66	2230 2260	13.3 14.1	5660 5530	17300 16700	32.1 32.9
1302T	Z	4A 4A	2X 2X	0.1	0.48	10.5	29.6	2420	65	2260	14.1	5480	16600	32.9

-

Year 2001 Field Trial Soybean Seed Analysis for C2 Site

Bag #	Sample Code	plot	treat	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	P	к	Zn
1319X	X	1B	CAL	0.1	0.33	9.4	31.4	2320	56	2110	17.1	5100	16900	31.3
1319Y	Y	1 B	CAL	0.1	0.31	9.37	30.2	2330	57	2110	17.1	5030	16700	31,1
1319Z	z	1B	CAL	0.1	0.31	9.4	30	2240	61	2110	16.5	5010	16200	30.6
1320X	х	1B	CAL	0.1	0.38	10.1	36	2530	62	2290	18.9	5690	19800	33.8
1320Y	Y	1B	CAL	0.1	0.36	9.64	35	2350	55	2260	17.4	5560	19200	33.3
1320Z	Z	IB	CAL	0.1	0.37	9.53	34.2	2390	57	2230	17.4	5580	18900	33.5
1323Y	Y	3B	CAL	0.1	0.26	16.1	40.3	2570	77	2360	15.9	6090	15100	37.8
1324Y	Y	3B	CAL	0.1	0.31	16.1	42.6	2740	71	2440	16.2	6340	18100	36.9
1324Z	Z	3B	CAL	0.1	0.31	16	42.6	2660	69	2400	15.7	6360	17500	37.4
1325X	x	4B	CAL	0.1	0.22	9.45	23.9	2300	58	2110	16.4	5010	16700	30.7
1325Y	Y	4B	CAL	0.1	0.23	9.74	23.8	2270	61	2000	17.2	4780	16400	31.8
1325Z	Z	4B	CAL	0.1	0.23	9.66	23.3	2270	60	2080	16.4	4830	16300	31.5
1326X	х	4B	CAL	0.1	0.34	11.3	31.1	2710	59	2470	16.8	6100	19700	37.1

Bag#	plot	treat	Sample Dry Weight (g)	As	Co	Cu	NI	Ca	Fe	Mg	Mn	P	K	Za
		ÉQL Unita	0.001	0.2 mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 nig/kg	50 mg/kg	5 mg/kg	5 mg/kg	0.5 mg/kg	5 mg/kg	10 mg/kg	0.5 mg/kg
237	14	UN	4.756	0.1	0.08	4.37	1.9	3060 2960	53	1660 1760	9.1 9.3	2050 1650	12800 12100	35.1 34
238 239	1A 1A	UN UN	4.766 4.967	0.1	0.07	5.27 5.30	2.2	1800	54 42	1760	7.4	1880	15800	22.3
240 241	1A 1A	UN IX	6.621 5.904	0.1	0.06	5.62 6.46	1.7 1.7	2590 2780	48 52	1420 1810	7.4 13.1	1640 2250	14900 15000	32.2 33.3
242	JA	1X	4.933	0.1	0.07	5.92	1.8	2820	54	1870	12.7	2750	15600	36.5
243 244*	1A 1A	1X 1X	4.970 4.037	0.1	0.06	5.23 5.05	1.6 1.8	3050 2960	61 63	1850 1880	15.2 14.4	2480 2570	14500 15200	38.7 36.6
245*	1A	2X	4.665	0.1	0.14	4.85	1.8	3670	73	2070	16.5	2760	15300	43.2
246 247	1A 1A	2X 2X	4.443 5.766	0.1	0.07	4.55 4.78	1.8 1.7	3550 3970	63 70	2080 2150	17.4 17.1	2810 2850	15300 14900	45 43.3
.248	IA	2X	6.224	0.1	0.09	4.83	1.5	2810	62	1870	14.3	2490	15800	44
261 262	2A 2A	UN UN	4.298 4.609	0.1 0.1	0.09	5.76 5.22	3.3	1750 1410	40 31	1460 1310	10.5 8.2	2040 2130	14300 15500	26.6 21.6
263	2Å	UN	3.461	0.1	0.10	4.56	2.6	2410	53	1690	12.3	1610	12400	29.3
264 265	2A 2A	UN	6.522 7.053	0.1 0.1	0.13	6.24 6.30	2.5 1.9	1770 3890	40 66	1560 2090	12.8 16.7	2330 2870	17300 15400	23.2 36.8
266	2A	1X 1X	5.937	0.1	0.10	5.49	2.2	3330	67	2030	15.5	2810	15900	34.2
267 268	2A 2A	1X 1X	5.101 4.403	0.1 0.1	0.12	5.74 5.07	2.3	3320 2960	57 54	1830 1850	14 18	2620 2740	13800 13700	31.5 33.9
269	24	2X	4.414	0.1	0.08	5.31	2.7	3230	60	1970	13.7	2580	13700	41.1
270 271	2A 2A	2X 2X	3.824 5.593	0.1 0.1	0.10 0.09	5.46 5.77	3.2	3090 3870	62 67	1980 2160	12.3 13.2	2730 2690	14300 14100	39.5 40.9
272	2A	2X	4.721	0.1	0.13	6.56	2.3	4210	74	2130	17,4	2850	14200	47.8
189 190	3A 3A	UN UN	3.584 2.969	0.1	0.16 0.19	5.89 4.60	2.8 2.5	1830 2900	48 57	1120 1300	8.2 15.1	2180 1510	15100 12800	23.6 38.8
191	3A	UN	2.803	0.1	0.10	4.59	2.1	2870	74	1335	12.75	1560	12450	38.8
192 193	3A 3A	UN 1X	2.607 1.758	0.1 0.1	0.14	27.80 4.30	2.5 2.3	2960 2965	67 79	1690 1970	8.9 11.3	1930 2500	15500 14400	34.9 37.65
194	3A	ix ·	2.422	0.1	0.09	4.14	2.0	2930	55	1890	12.9	2610	14800	34.2
195 196	3A 3A	1X 1X	2.738 1.883	0.1	0.13	4.30 3.64	1.9 2.0	3130 3190	60 56	1770 1760	11.3 10.8	2420 2360	14400 14200	34.4 34.6
197	. JA	1X 2X	3.232	0.1	0.13	5.37	1.7	2270	65	1350	10	2630	19200	21.7
198 199*	3A 3A	2X 2X	2.833 3.787	0.1	0.13 0.18	4.46 4.71	1.8 2.7	2420 2710	60 56	1410 1610	14.2 13.9	2600 2710	18400 17300	18.6 33.1
200	3A.	<u>2X</u>	2.509	0.1	0.17	4.09	2.1	2710	69	1670	15.4	2440	15300	36.1
			Sample Dry											
· Bag #	plot	treat	Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	P	K	Za
		EQL	0.001	0.2	0,01	0.05	0.1	50	5	5	0.5	5	10	0.5
213	4A	Units UN	2.055	0.1	<u>mg/kg</u> 0.20	mg/kg 3.93	mg/kg 3.5	mg/kg 3050	<u>mg/kg</u> 44	mg/kg 1930	<u>mg/kg</u> 9,4	mg/kg 1630	mg/kg 10600	<u>mg/kg</u> 32.3
214	4A	UN	2.072	0.1	0.17	4.08	3.4	2650	47	1960	8.8	1930	12700	27.5
215 216	4A 4A	UN UN	2.254 2.761	0.1	0.18	4.47 4.77	3.0 3.1	2920 2900	56 49	1620 1800	9.1 7.3	1810 1790	11200 12700	34.4 28.5
217	4 A	1X	3.522	0.2	0.21	5.52	3.3	3020	59	1680	24.6	2710	14300	40.7
218 219	4A 4A	1X 1X	2.121 3.350	0.1	0.12 0.18	4.05	2.3	3470 3030	69 62	1880 1820	23.7 18.4	2820 2620	15000 14000	45.1 37.8
220	4A	IX	2.631	0.2	0.23	5.51	4.3	4200	92	1890	25.2	2770	13800	53.7
221 222	4A 4A	2X 2X	2.734 2.781	0.1	0.19 0.19	4.79	3.6 3.9	1860 2110	49 53	1240 1360	11.4 11.5	2480 2810	16500 17600	22.7 22.2
223 224	4A 4A	2X 2X	2.504 3.933	0.1	0.15	5.39	3.8	1870 1730	46	1210 1220	8.4 10.3	2540 2550	17000 17600	21.7 21.2
224 961	IB	CAL	2,545	0.1	0.19 0.16	5.11 3.97	2.8 1.1	2440	41 54	1490	11.7	2330	15600	23.3
962 963	18	CAL CAL	2.733 1.464	0.3 0.1	0.24 0.14	4.10 3.62	1.3 1.2	2510 2555	54 60.5	1520 1430	11.4 11.35	2520 2195	15900 15500	26.4 26.75
963 964	1B 1B	CAL	2,412	0.1	0.14	3.62	1.2	2555	57	1430	11.35	2195	16000	26.75
-965	2B 2B	CAL	1.326 1.442	0.1 0.1	0.14 0.10	3.87 3.47	1.2 1.4	1810 1440	56 54	1240 1000	9.1 8.6	2120 2130	14400 15000	18.2 19.4
966 967	2B	CAL CAL	2.203	0.1	0.10 0.17	3.55	1.4	1440 1760	54 63	1000 1160	8.6	2380	14900	21.8
968	2B	CAL	1.045	0.1	0.16	3.76 4.13	2.0	1500 2690	55 74	1030 1350	13 6.9	2370 1900	15400 12300	26.2 25.3
969	3B	CAL	2.608 2.700	0.1 0.1	0.15 0.19	4.13 4.52	1.1	2690 2160	74 53	1350 1210	6.9 10.8	1900	12300 12900	25.3
970	3D	CAL												
971*	. 3B	CAL	2.870	0.1	0.20	5.00	1.3	2360	66	1220	7.4	1810	13100	25.3
971* 972				0.1 0.2 0.1	0.20 0.24 0.12	5.00 4.79 3.42	1.3 1.7 0.9	2360 2500 1980	66 84 64	1220 1270 1180	7.4 8.5 9.4	1810 1880 2050	13100 12800 13500	25.3 26.3 21.2
971*	3B 3B	CAL CAL	2.870 2.083	0.2	0.24	4.79	1.7	2500	84	1270	8.5	1880	12800	26.3

.

30

Bag #	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Nİ	Ca	Fe	Mg	Mn	P	K	Zn
		BQL Units	0.001	0.2 mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 mg/kg	50 mg/kg	5 mg/kg	5 mg/kg	0.5 mg/kg	5 mg/kg	10 `mg/kg	0.5 mg/kg
249	IA.	UN	5.685	1.2	0.30	6.98	5.3	2790	71	1540 1730	5 5	1320 1010	16900 17500	9.6 8.9
250 251	JA JA	UN UN	6.396 6.345	1.2 1.1	0.28	5.84 6.65	5.3 5.7	3050 3090	82 80	1730	4.5	1230	17900	8.1
252 253	IA IA	UN	6.306 4.451	1.1	0.31 0.41	7.27	6.6 8.5	4730 6230	79 92	1860 2110	6.8 6.1	1190 1790	17100 29400	19.3 10.3
254	IA IA	1X 1X	3.931	1.5 1.4	0.41	8.95	9.5	6020	93	1940	6.4	1580	26300	9.5
255 256	1A 1A	1X 1X	3.401 2.855	1.5 1.7	0.68	9.15 9.40	19.6 12.8	5980 6540	95 101	1990 2190	6.6 6.5	1440 1560	24500 26600	9.9 11.7
257	14	2X	7.673	0.6	0.25	4.97	3.2	8410	172	2680	7.1	1730	24100	10.2
258 259	1A 1A	2X 2X	6.955 5.747	0.7 0.7	0.31	5.22 5.21	5.3 5.1	9290 7900	116 151	2920 2550	7.7	1890 1460	20500 24100	14.8 11.2
260*	IA	2X	5.921	0.6	0.34	5.49	9.7	6670	105	2510	7.5	1910	23700	13.8
273 274	2A 2A	UN UN	4.024 3.759	1.1 0.9	0.40	5.16 4.60	11.8 7.4	3930 4130	52 62	2630 2180	7.4 5.2	2550 1600	21700 22300	12.8 8.8
275*	2A	UN	5.098	1.1	0.27	4.96	7.4	4330	68	2280	6.8	2460	21900	11
276 277	2A 2A	UN IX	4,562 2,838	1,2 1,3	0.27	4.80 8.07	8.4 17.5	4110 9300	57 148	2220 2950	5.9 9.1	1680 1920	22100 24200	9.3 10,2
278	2A	IX	4,112	1.3	0.35	7.39	7.8	9580	153	2980	8.1	1650	24900	10.5
279 280	2A 2A	1X 1X	3.005 6.383	1.1 0.9	0.38	6.71 5.33	7.3 6.6	10400 12700	219 169	3490 4390	9.7 8.8	1600 1590	26000 22000	10.3 10
281	2A -	2X	3.415	1.6	0.44	8.49	13.2	10500	153	3370	6.6	2120	22900	13.3
282 283	2A 2A	2X 2X	4.228 3.437	1.1 1.1	0.43	5.93 6.87	10.4 8.6	8260 8260	111 126	3220 2900	5.9 6.2	1710 1980	21400 22900	10 12
284	27	2X	4,702	1.3	0.37	7.66	11.7	7640	146	2760	5.9	1650	23200	10.4
201 202	3A 3A	UN UN	2.494 3.734	0.6	0.33	4.88 5.53	5.4 7.1	5290 4950	154 97	2370 2050	8.4 7.4	2520 2020	20800 18000	12.9 14.1
203	3A	UN	3.970	0.5	0.37	5.36	5.7	7150	128	1990	7.7	1480	18600	13.1
204 205	3A 3A	UN IX	3.216 2.290	0.4	0.43	5.31 4.55	7.4 6.7	8060 4910	122 83	2720 2440	6.3 6.5	3660 1960	19700 23900	15.5 9.6
206	3A	1X	3.209	1.0	0.33	4.30	5.4	5620	91	2540	6.1	1600	25700	9.8
207 208	3A 3A	1X 1X	1.957 1.973	1.1 0.9	0.54 0.45	4.59 4.32	6.6 6.2	5850 5375	120 124.5	2640 2635	6 6.25	1460 2540	26000 25500	10.3 14.2
	2000	12 2 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	and an operation of the second											
										14 S. A.				1.6
Beat	alat		Sample Dry	A-	F .	C a	Ni	C.	V a	Ma	Ma	Þ	ĸ	75
Bag #	plot	treat	Sample Dry Weight (g)	Aı	Co	Cu	NI	Ca	Fe	Mg	Mu	P	к	Za
Bag #	plot		Weight (g)	30.50										
Bag #	plot	EQL		0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
209	38	EQL Units 2X	Weight (g) 0.001 E 4.916	0.2 mg/kg 0.8	0.01 mg/kg 0.41	0.05 mg/kg 5.62	0.1 <u>mg/kg</u> 4.7	50 mg/kg 4260	5 <u>mg/kg</u> 100	5 <u>mg/kg</u> 1680	0.5 mg/kg 6.7	5 <u>mg/kg</u> 1600	10 mg/kg 19600	0,5 <u>mg/kg</u> 12.4
209 210	3A 3A	EQL Units 2X	Weight (g) 0.001 <u>E</u> 4.916 4.273	0,2 mg/kg 0.8 1.0	0.01 mg/kg 0.41 0.32	0.05 mg/kg 5.62 5.34	0.1 <u>mg/kg</u> 4.7 5.4	50 mg/kg 4260 4540	5 <u>mg/kg</u> 100 120	5 mg/kg 1680 1740	0.5 mg/kg 6.7 7.3	5 <u>mg/kg</u> 1600 1610	10 mg/kg 19600 21000	0.5 <u>mg/kg</u> 12.4 11.1
209 210 211 212	3A 3A 3A 3A 3A	EQL Units 2X 2X 2X 2X 2X 2X	Weight (g) 0.001 <u>e</u> 4.916 4.273 4.202 3.644	0,2 mg/kg 0.8 1.0 0.6 0.7	0.01 m¢/kg 0.41 0.32 0.32 0.32	0.05 mg/kg 5.62 5.34 5.12 4.38	0,1 <u>mg/kg</u> 4.7 5.4 3.5 4.7	50 mg/kg 4260 4540 4540 4060 4450	5 mg/kg 100 120 99 123	5 <u>mg/kg</u> 1680 1740 1870 1710	0.5 mg/kg 6.7 7.3 8.1 7.1	5 <u>mg/kg</u> 1600 1610 2040 1490	10 mg/kg 19600 21000 23100 20600	0.5. <u>mg/kg</u> 12.4 11.1 12.2 11.7
209 210 211 212 225	3A 3A 3A 3A 3A 4A	EQL Units 2X 2X 2X 2X 2X 2X UN	Weight (g) 0,001 8 4,916 4,273 4,202 3,644 2,934	0,2 mg/kg 0.8 1.0 0.6 0.7 0.4	0.01 m¢/kg 0.41 0.32 0.32 0.36 0.37	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79	0.1 mg/kg 4.7 5.4 3.5 4.7 8.7	50 mg/kg 4260 4540 4060 4450 4120	5 mg/kg 100 120 99 123 64	5 mg/kg 1680 1740 1870 1710 2060	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7	5 mg/kg 1600 1610 2040 1490 2140	10 mg/kg 19600 21000 23100 20600 18800	0.5 mg/kg 12.4 11.1 12.2 11.7 12.7
209 210 211 211 212 225 226 227	3A 3A 3A 3A 4A 4A 4A	EQL Units 2X 2X 2X 2X 2X UN UN UN	Weight (g) 0.001 E 4.916 4.273 4.202 3.644 2.934 1.726 2.249	0.2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6	0.01 mg/kg 0.41 0.32 0.32 0.36 0.37 0.40 0.33	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79 4.86 4.62	0,1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6	50 mg/kg 4260 4540 4060 4450 4120 4410 4870	5 mg/kg 100 120 99 123 64 63 62	5 mg/kg 1680 1740 1870 1710 2060 2190 2560	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 5	5 mg/kg 1600 1610 2040 1490 2140 2140 2480 2350	10 mg/kg 19600 21000 23100 20600 18800 16200 19000	0.5 mg/cg 12.4 11.1 12.2 11.7 12.7 14.9 8.9
209 210 211 212 225 226 227 228	3A 3A 3A 3A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN UN UN	Weight (g) 0.001 8 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212	0,2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6	0.01 mé/kg 0.41 0.32 0.32 0.36 0.37 0.40 0.33 0.26	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79 4.86 4.62 4.87	0.1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6 6.6	50 mg/kg 4260 4540 4060 4450 4120 4410 4870 5370	5 mg/kg 100 120 99 123 64 63 62 62 62	5 mg/kg 1680 1740 1870 1710 2060 2190 2560 2900	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 5 6.1	5 mg/kg 1600 1610 2040 1490 2140 2140 2350 2350 2890	10 mg/kg 19600 21000 23100 20600 18800 16200 19000 18400	0.5 mg/kg 12.4 11.1 12.2 11.7 12.7 12.7 12.9 8.9 11.1
209 210 211 212 225 226 227 228 229• 230	3A 3A 3A 3A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X 2X UN UN UN UN UN UN UN UN UN UN 1X 1X	Weight (g) 0.001 <u>9</u> 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200	0.2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.6 0.7 0.7	0.01 mg/kg 0.41 0.32 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79 4.86 4.62 4.87 4.87 4.28 5.93	0.1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6 6.6 4.4 5.7	50 mg/kg 4260 4540 4060 4450 4120 4410 4870 5370 6820 6520	5 <u>mg/kg</u> 100 120 99 123 64 63 62 62 62 116 97	5 mg/kg 1680 1740 1870 1710 2060 2190 2560 2900 2060 2060 2410	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 5 6.1 7.5 7.1	5 mg/kg 1600 1610 2040 1490 2140 2480 2350 2890 2960 3590	10 mg/kg 19600 21000 23100 20600 18400 16200 19000 18400 26500 25200	0.5 mg/tg 12.4 11.1 12.2 11.7 12.7 14.9 8.9 11.1 13.2 12.7
209 210 211 212 225 226 227 228 229* 230 231	3A 3A 3A 3A 4A 4A 4A 4A	EQL Units 2X 2X 2X UN UN UN UN UN UN UN UN UN UN	Weight (g) 0,001 g 4,916 4,273 4,202 3,644 2,934 1,726 2,249 3,212 2,883 3,200 3,830	0.2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.8	0.01 mg/kg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.42	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79 4.86 4.62 4.87 4.28 5.93 5.36	0.1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6 6.6 4.4 5.7 5.8	50 mg/kg 4260 450 4450 4120 4410 4470 5370 6820 6520 6040	5 mg/kg. 100 120 99 123 64 63 62 62 62 62 116 97 94	5 mg/kg 1680 1740 1870 1710 2060 2190 2560 2900 2060 2410 1930	0.5 mg/kg 6.7 7.3 8.1 7.1 5.3 5 6.1 7.5 7.1 5.55	5 mg/kg 1600 1610 2040 1490 2140 2140 2350 2350 2890 2960 3590 2710	10 mg/kg 19600 21000 23100 20600 18800 16200 19000 18400 26500 25200 25200 26000	0.5 mp/kg 12.4 11.1 12.2 11.7 12.7 14.9 8.9 11.1 13.2 12.7 11.2
209 210 211 212 225 226 227 228 229* 230 231 231 232 233	3A 3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN UN UN UN UN UN 1X 1X 1X 1X 1X 2X	Weight (g) 0,001 g 4,916 4,273 4,202 3,644 2,934 1,726 2,249 3,212 2,883 3,200 3,830 4,383 1,951	0,2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.6 1.0	0.01 m2/kg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.42 0.29 0.31	0.05 mg/kg 5.64 5.12 4.38 4.79 4.86 4.62 4.87 4.28 5.93 5.36 4.63 6.08	0.1 mg/kg 4.7 5.4 3.5 4.7 9.3 7.6 6.6 6.4 4.4 5.7 5.8 3.7 9.3	50 mg/kg 4540 4540 4450 4120 4120 4870 5370 6820 6520 6520 6520 6520 5450	5 mg/kg 1200 999 123 64 63 62 62 62 62 116 97 94 91 117	5 mg/kg 1660 1740 1770 2060 2190 2560 2900 2060 2410 1930 2230 2410 1930 22100	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 5 6.1 7.5 7.1 5.55 7,1 5.55 7,1 5.65 7,1 5.65	5 mg/kg 1600 1610 2040 2140 2140 2140 2350 2960 3590 2710 2890 2710 2830 1580	10 mg/kg 19600 21000 20600 18800 16200 19000 18400 26500 25200 26000 24300 23800	0.5 mp/kg 12.4 11.1 12.2 11.7 12.7 12.7 14.9 8.9 11.1 13.2 12.7 11.2 12.4 10.4
209 210 211 225 226 227 228 229* 230 231 212 233 231 212 233 234	3A 3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN UN UN 1X 1X 1X 1X 1X 2X	Weight (g) 0.001 8 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.833 3.200 3.830 4.383 1.951 2.338	0.2 mg/g 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.6 1.0 0.9	0.01 má/kg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.42 0.29 0.31 0.35	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79 4.86 4.62 4.87 4.28 5.93 5.36 4.63 6.08 4.52	0,1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6 6.6 4.4 5.7 5.8 3.7 5.8 3.7 9.3 7.6	50 mg/kg 4260 4540 4450 4120 4410 4870 4870 6820 6520 6520 6520 6520 6520 4840	5 mg/kg 120 99 123 64 63 62 62 62 116 63 62 97 94 91 117 87	5 mg/kg 1740 1870 1710 2060 2190 2560 2900 2060 2410 1930 2230 2100 2060	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 5 6.1 7.5 7.1 5.55 7 6.3 4.9	5 mg/tg 1600 2040 1490 2140 2480 2350 2890 2960 3590 2710 2830 1540	10 mg/kg 19500 21000 21000 20500 18800 16200 19000 18400 26500 25200 26000 24300 24300 24300 22200	0.5 mg/cg 12.4 11.1 12.2 11.7 12.7 14.9 8.9 11.1 13.2 12.7 11.2 12.4 10.4 8.4
209 210 211 212 225 226 227 228 229* 230 231 231 232 233	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN 1X 1X 1X 1X 1X 2X 2X 2X 2X 2X	Weight (g) 0,001 g 4,916 4,273 4,202 3,644 2,934 1,726 2,249 3,212 2,883 3,200 3,830 4,383 1,951	0,2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.6 1.0	0.01 m2/kg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.42 0.29 0.31	0.05 mg/kg 5.64 5.12 4.38 4.79 4.86 4.62 4.87 4.28 5.93 5.36 4.63 6.08	0.1 mg/kg 4.7 5.4 3.5 4.7 9.3 7.6 6.6 6.4 4.4 5.7 5.8 3.7 9.3	50 mg/kg 4540 4540 4450 4120 4120 4870 5370 6820 6520 6520 6520 6520 5450	5 mg/kg 1200 999 123 64 63 62 62 62 62 116 97 94 91 117	5 mg/kg 1680 1740 1710 2060 2900 2560 2900 2600 2410 1930 2230 2410 1930 22100 2060 2000	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 6.1 7.5 5.55 7.1 5.55 7 6.3 4.9 8.3 5.6	5 mg/kg 1600 1610 2040 2140 2150 2350 2350 2590 2710 2890 2590 2710 2830 1580 1580 1540 2020 21380	10 mg/kg 19600 23100 23100 26000 16200 16200 16200 26500 25500 26000 24300 22200 24300 22200 24300	0.5 mp/kg 12.4 11.1 12.2 11.7 12.7 12.7 14.9 8.9 11.1 13.2 12.7 11.2 12.4 10.4
209 210 211 212 225 226 227 228 230 231 231 233 244 244 235 236 (025	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN UN UN UN 1X 1X 1X 1X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X	Weight (g) 0,001 8 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.830 4.383 1.951 2.338 1.871 1.747 3.228	0.2 mg/kg 0.8 1.0 0.6 0.7 0.7 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.6 1.0 0.9 0.5 0.9 0.5 0.9 0.3	0.01 mg/kg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.42 0.29 0.31 0.35 0.26 0.31 0.35	0.05 mg/kg 5.62 5.34 5.12 4.38 4.62 4.62 4.62 4.62 4.62 4.62 4.63 5.36 4.63 6.08 4.52 4.48 4.52 4.48 4.52	0,1 mg/kg 4.7 5.4 3.5 4.7 9.3 7.6 6.6 4.4 5.7 9.3 7.6 6.5 8.0 9.3 7.6 6.5 8.0 4.2	50 mg/kg 4260 4540 4450 4410 4410 4870 5370 6820 6520 6040 7350 5450 4840 5560 4840 5560	5 mg/kg 100 120 99 123 64 63 62 62 116 97 97 94 91 117 87 96 87 97 97	5 mp/kg 1680 1740 1870 2190 2560 2900 2600 2410 1930 2230 2100 2230 2100 2400 22400 2150	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.5 6.1 7.5 5.55 7 6.3 4.9 8.3 5.6 6.8	5 mg/kg 1600 1610 2040 2140 2480 2350 2960 3590 2710 2830 1580 2830 1540 2020 1380	10 mg/kg 19600 23100 23100 26500 18400 16200 26500 26500 24300 24300 24300 24300 24300 24300 24300 22200	0.5 my/tg 12.4 11.1 12.2 11.7 12.7 14.9 11.1 13.2 12.7 11.2 12.7 11.2 12.7 11.2 12.7 11.2 12.7 11.4 10.4 8.4
209 210 211 225 226 227 228 229 230 231 232 233 233 234 235 236 1025 1026 1027	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN UN UN UN UN UN UN UN UN UN CAL CAL	Weight (g) 0.001 g 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.830 4.383 1.951 2.338 1.871 1.747	02 mg/kg 0.8 1.0 0.6 0.7 0.4 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.6 1.0 0.9 0.5 0.9	0.01 mo/xg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.42 0.29 0.42 0.29 0.42 0.31 0.35 0.26 0.30	0.05 mg/kg 5.62 5.34 5.12 4.38 4.79 4.86 4.62 4.87 4.28 5.36 4.63 6.08 4.52 4.63 6.03 4.52 4.49 3.64	0,1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6 6.6 4.4 5.7 5.8 3.7 9.3 7.6 6.5 8.0	50 mg/kg 4260 4540 4450 4120 4120 6220 6520 6040 7350 5450 4840 5560 4840 5560 4840 5520 6220 6220	5 mg/kg 100 120 99 123 64 63 62 62 62 116 97 94 91 117 87 96 87	5 mg/kg 1680 1740 1870 2190 2560 2900 2060 2410 2300 2300 2300 2300 2300 2400 2400 2000 2150 2150 2150 2150	0.5 mg/kg 6.7 7.3 8.1 7.1 4.7 5.3 6.1 7.5 5.55 7.1 5.55 7 6.3 4.9 8.3 5.6	5 mg/kg 1600 1610 2040 2140 2350 2890 2960 3590 2890 2710 2830 1540 2020 1540 2020 1540 2020 1380 1420 2220	10 mg/kg 19600 21000 23100 20600 18800 16200 18800 25200 25200 25200 25200 25200 24300 24300 24300 22200 24300 22200	0.5 mg/tg 12.4 11.1 12.2 11.7 12.7 14.9 8.9 11.1 13.2 12.7 11.2 12.4 10.4 8.4 9.7 8.4 9.7 8.4 11.4 10.5
209 210 211 212 225 226 227 228 229 230 231 231 231 233 233 234 235 235 2025 1025 1025	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B	EQL Units 2X 2X 2X 2X 2X UN UN UN UN UN 1X 1X 1X 1X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X	Weight (g) 0.001 9 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.830 4.383 1.951 2.338 1.871 1.747 3.228 1.689 3.322 4.727	022 mg/2g 0.8 0.6 0.7 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.6 0.6 0.6 0.7 0.8 0.6 0.5 0.9 0.3 0.3 0.3 0.7	0.01 mg/kg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.42 0.29 0.42 0.29 0.31 0.35 0.26 0.30 0.47 0.30 0.47 0.62	0.05 mg/kg 5.62 5.34 4.38 4.79 4.86 4.62 4.87 4.28 5.36 4.63 5.36 4.63 6.08 4.59 3.64 4.79 3.64 4.27 3.64 4.27 3.64	0.1 mg/kg 4.7 5.4 3.5 4.7 8.7 9.3 7.6 6.6 4.4 5.7 5.8 3.7 9.3 7.6 6.5 8.0 4.2 5.1 3.1 3.8	50 mg/kg 4540 4540 4120 4120 4110 4870 5370 6820 6040 7350 65450 4840 55450 4840 5550 4970 5720 5250 4030 4780	5 mg/kg 100 120 99 123 64 63 62 62 116 97 94 91 117 87 96 87 97 97 97 283	5 mg/kg 1680 1740 2060 2900 2060 2900 2060 2900 2060 2410 1930 2230 2400 2020 2400 2020 2150 2180 1910 2020	05 mg/kg 6.7 7.3 8.3 5 6.1 7.5 7.1 5.55 7.1 5.55 7.55 7.55 7.55	5 mg/kg 1600 1610 2040 2440 2480 2590 2710 2890 2710 2890 2710 2890 2710 2890 2710 2890 2710 2800 2210 1580 1580 1580 1580 1580 1580 1580 15	10 mg/kg 19600 21000 23100 20600 18800 16200 26500 26500 24300 22200 24300 22800 22800 22800 22800 22900 22200 22200	0,5 mg/kg 12.4 11.1 12.2 11.7 12.7 12.7 12.7 13.2 12.4 13.2 12.4 13.2 12.4 13.2 12.4 8.9 1.1 13.2 12.4 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2
209 210 211 212 225 226 227 230 231 231 233 233 233 233 233 233 235 235 2025 1025 1025 1025 1025 1027 1028 1029	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X 2X 2X UN UN UN UN UN UN 1X 1X 1X 1X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X	Weight (g) 0,001 8 4,916 4,273 4,202 3,644 2,934 1,726 2,249 3,212 2,883 3,200 3,830 4,383 1,951 2,338 1,871 1,747 3,238 1,689 3,322	0.2 mg/kg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.6 1.0 0.9 0.5 0.9 0.3 0.3 0.3	0.01 m6/82 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.31 0.35 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.05 mg/kg 5.62 5.34 4.5.12 4.38 4.79 4.86 4.62 4.85 5.36 4.63 5.36 4.63 5.36 4.63 6.08 4.52 4.79 3.64 4.27 3.64 4.27 3.68	0.1 mg/kg 4.7 5.4.7 9.3 7.6 6.6 4.4 5.7 5.8 7.6 6.5 8.0 4.2 5.1 3.1 3.8 2.0 2.9	50 mg/kg 4260 4540 4450 4120 4120 6220 6520 6040 7350 5450 4840 5560 4840 5560 4840 5520 6220 6220 6220 6220 6220 6220 622	5 mg/kg 100 120 99 123 64 63 62 62 116 97 94 91 117 87 96 87 97 97 97 72 83 90 122	5 mg/kg 1680 1740 2060 2190 2560 2900 2600 2410 1930 2230 2100 2060 2400 2020 2400 2020 2150 2150 2150 2150 2150 2150 21	0.5 mg/kg 6.7 3.8.1 7.1 7.5 5.6 1. 7.5 5.5 7 6.3 4.9 8.3 5.6 8.3 5.6 6.8 5.9 6.6 6.4 5.3	5 mg/kg 1600 1610 2040 2140 2480 2350 2590 2710 2890 2590 2590 2710 2830 2590 2710 2830 2590 2710 2830 2590 2200 2200 2220 2200 2230 2330 2350 200 2140 240 240 240 240 240 250 250 2710 240 240 250 2710 240 240 240 240 240 240 250 2710 240 240 240 250 270 270 270 270 270 270 270 270 270 27	10 mg/kg 19600 21000 06200 18800 16200 26500 25000 26000 22000 24300 223800 223800 223800 223800 223900 22200 22300 22300 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 20000 20000 2000000	0,5 mp/tg 12.4 11.1 12.7 12.7 12.7 12.7 12.7 12.7 12.7
209 210 211 225 226 227 230 230 231 202 231 231 233 234 235 236 1025 1025 1025 1025 1025 1025 1025 1029 1030	3A 3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 1B 2B 2B	BQL Units 2X 2X 2X 2X 2X 2X UN UN UN IX IX IX IX IX IX 2X 2X 2X 2X 2X 2X 2X 2X 2X CAL CAL CAL	Weight (g) 0.001 g 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.813 3.200 3.830 4.383 1.951 2.338 1.871 1.747 3.238 1.689 3.322 4.727 4.023 1.884	0.2 mg/tg 0.8 1.0 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.0] møkg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.33 0.26 0.31 0.39 0.31 0.35 0.26 0.29 0.31 0.35 0.26 0.29 0.31	0.05 mp/kg 5.62 5.34 4.79 4.86 4.62 4.62 4.87 4.87 4.86 4.63 6.08 4.52 4.48 4.52 4.48 4.79 3.64 4.27 3.64 4.27 3.64 4.27 3.64 3.91	0.1 mg/kg 4.7 5.7 8.7 9.3 7.6 6.6 4.4 5.7 9.3 7.6 6.4 4.4 5.7 9.3 7.6 6.5 8.0 4.2 3.1 3.1 3.1 3.1 3.1	50 mg/kg 4260 4450 4450 4450 4450 6520 6540 6540 7350 5450 4840 5560 4840 5560 4840 5550 4840 55250 4030 4780 5250 4030 43530 4030	5 mg/kg 100 120 99 123 64 63 62 116 62 116 97 94 91 117 87 97 94 91 117 87 97 97 97 97 97 72 83 90 122 90 121	5 mg/kg 1680 1740 1870 1710 2060 2900 2560 2000 2410 1910 2230 2000 2400 2230 2000 2400 2020 2150 2150 2180 1910 2020 2180 1910 2020 2180 1910 2020 2180 1910 2020 2180 2180 2190 2020 2190 2020 2190 2020 2020 202	0.5 mg/kg 6.7 7.3 8.1 4.7 5.3 5 6.1 7.5 7.1 5.55 7 6.3 4.9 8.3 6.8 6.8 6.8 5.3 6.6 6.6 6.3 5.3 5.5	5 mp/tg 1600 1610 2040 2140 2350 2350 2590 2590 2590 2710 2830 1540 2540 2540 2540 2540 2540 2520 1540 2520 1540 2520 1540 2520 2520 1540 2520 1540 2520 2520 2520 2520 2520 2520 2520 2	10 mg/kg 19600 21000 21000 19000 18800 16200 25200 25200 25200 24300 24300 22800 24300 22800 24300 22800 22900 22200 22200 22200 22000 22000 22000	0.5. mg/kg 11.1 12.2 11.7 12.7 14.9 11.1 13.2 12.7 11.2 12.7 12.7 12.7 12.7 12.7 12
209 210 211 212 225 226 227 230 231 231 233 233 233 233 233 233 235 235 2025 1025 1025 1025 1025 1027 1028 1029	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X 2X 2X UN UN UN UN UN UN 1X 1X 1X 1X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X	Weight (g) 0,001 8 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.830 4.383 1.951 2.338 1.871 1.747 3.228 1.689 3.322 4.727 4.038 2.589	0.2 mg/gg 0.8 1.0 0.6 0.7 0.4 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4	0.01 m6/82 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.31 0.35 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.05 mg/kg 5.62 5.34 4.5.12 4.38 4.79 4.86 4.62 4.85 5.36 4.63 5.36 4.63 5.36 4.63 6.08 4.52 4.79 3.64 4.27 3.64 4.27 3.68	0.1 mg/kg 4.7 5.4.7 9.3 7.6 6.6 4.4 5.7 5.8 7.6 6.5 8.0 4.2 5.1 3.1 3.8 2.0 2.9	50 mg/kg 4540 4540 4120 4120 4120 4120 6520 6040 7350 6520 6040 7350 5450 4840 5560 4970 5550 4030 5220 6220 4030 4780 3530 4010	5 mg/kg 100 120 99 123 64 63 62 62 116 97 94 91 117 87 96 87 97 97 97 72 83 90 122	5 mg/kg 1680 1740 2060 2190 2560 2900 2600 2410 1930 2230 2100 2060 2400 2020 2400 2020 2150 2150 2150 2150 2150 2150 21	0.5 mg/kg 6.7 3.8.1 7.1 7.5 5.6 1. 7.5 5.5 7 6.3 4.9 8.3 5.6 8.3 5.6 6.8 5.9 6.6 6.4 5.3	5 mg/kg 1600 1610 2040 2140 2480 2350 2590 2710 2890 2590 2590 2710 2830 2590 2710 2830 2590 2710 2830 2590 2200 2200 2220 2200 2230 2330 2350 200 2140 240 240 240 240 240 250 250 2710 240 240 250 2710 240 240 240 240 240 240 250 2710 240 240 240 250 270 270 270 270 270 270 270 270 270 27	10 mg/kg 19600 21000 06200 18800 16200 26500 25000 26000 22000 24300 223800 224300 223800 224300 224300 224300 224300 224300 22400 22400 22400 22400 2200 22	0,5 mp/tg 12.4 11.1 12.7 12.7 12.7 12.7 12.7 12.7 13.2 12.7 11.2 12.4 11.4 13.2 12.7 12.7 11.2 12.4 11.2 12.4 11.2 12.4 11.2 12.4 11.2 12.7 12.7 12.7 12.7 12.7 12.7 12.7
209 210 211 212 225 226 227 228 229 230 231 231 233 234 235 235 235 235 235 2025 1025 1025 1025 1025 1027 1029 1030 1031 1031 1032	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN 1X 1X 1X 1X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X	Weight (g) 0,001 g 4,916 4,273 4,202 3,644 2,934 1,726 2,249 3,212 2,883 3,200 3,830 4,383 1,951 2,338 1,871 1,747 3,228 1,689 3,322 4,727 4,038 2,589 1,884 3,876 2,969 4,131 1,844 3,876 2,969 4,131 1,157 1	0.2 mg/g =	0.0] md/kg 0.41 0.32 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.35 0.26 0.31 0.39 0.42 0.31 0.32 0.30 0.47 0.31 0.32 0.30 0.30 0.31 0.32 0.32 0.32 0.32 0.33 0.42 0.32 0.32 0.32 0.34 0.33 0.42 0.31 0.35 0.31 0.35 0.31 0.35	0.05 mg/kg 5.63 4.34 5.34 5.34 4.78 4.28 4.87 4.28 5.93 5.36 4.63 6.08 4.59 4.63 6.08 4.52 4.48 4.79 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 4.26 4.26 4.26 4.27 4.26 4.26 4.26 4.26 4.26 4.27 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26	0,1 mg/kg 4,7 5,4 3,5 4,7 8,7 7,6 4,4 5,7 5,8 3,7 6,6 4,4 4,5,7 7,6 6 4,2 4,5,7 7,6,6 8,0 7,6,6 8,0 2,9,3 7,6,5 8,0 2,2 3,1 3,0 6,6 6,4,0	50 mg/kg 4540 4540 4450 4410 4410 4870 5370 6220 6520 6520 65450 5450 5450 5450 5450 5450 5450 54	5 mp/tg 100 120 99 123 64 63 62 62 62 62 62 97 94 91 117 96 87 97 97 97 97 97 28 83 90 122 111 88 87 86	5 1660 1740 1740 1740 2060 2000 2000 2000 2010 2000 2150 2150 2180 2150 2180 1910 2020 2150 2180 1910 2020 2150 2150 2180 1910 2020 2150 2180 2190 2230	0.5 mg/kg 6.7 7.3 8.1 4.7 5.5 5.1 7.5 5.55 7 6.3 4.9 5.6 6.4 5.3 5.6 6.4 5.3 5.5 6.4 5.3 5.5 6.4 9.4 5.3 5.4 9.4 5.3 5.5 5.5 5.5 6.1 7.1 7.1 7.1 7.1 7.1 7.3 8.1 7.5 7.3 8.1 7.5 7.5 8.1 7.5 7.5 8.1 7.5 7.5 8.1 7.5 7.5 8.1 7.5 7.5 8.1 7.5 7.5 8.1 7.5 7.5 8.1 7.5 7.5 7.5 8.1 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	5 mg/kg 1600 1610 2040 1490 2480 2350 2960 3550 2800 2960 3550 2710 2830 1580 1580 1580 1580 1580 1580 1580 2020 2020 2020 2020 2370 1960 2370 1960 2370 1660	10 mg/kg 19600 21000 21000 18400 16200 26500 25200 24300 22300 24300 22300 24300 22500 21900 22700 22700 22900 24000 18100 22900 22900 24000 218000 25800	0.5 mp/tst 11.1 11.2 11.7 12.7 12.7 12.7 12.7 12.7
209 210 211 212 225 226 227 230 230 231 231 233 234 235 236 0025 1026 1027 1027 1028 1028 1029 1030 1031 1032	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 1B 1B 1B 1B 1B 2B 2B 2B 2B 2B 2B 2B 2B 2B 2B 2B	EQL Units 2X 2X 2X 2X 2X UN UN UN UN UN UN UN UN UN UN UN UN UN	Weight (g) 0.001 g 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.830 4.383 1.951 2.338 1.871 1.747 3.238 1.871 1.747 3.238 1.689 3.322 4.727 4.038 2.589 1.884 3.878 2.969	0.2 mg/tg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.6 0.9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.4 0.8	0.01 motes 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.31 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39	0.05 mg/kg 5.62 5.34 4.79 4.86 4.62 4.87 4.87 4.87 5.36 4.62 4.48 5.93 5.36 4.63 6.08 4.52 4.48 4.79 3.64 4.79 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.27 3.64 4.28 4.28 5.34 4.28 5.34 4.28 5.34 4.28 5.34 5.34 4.28 5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	0.1 mg/kg 4.7 5.4 3.5 4.7 9.3 7.6 6.6 4.4 5.7 8.7 9.3 7.6 6.5 8.0 4.2 5.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.6 6.6	50 mg/kg 4540 4540 4120 4120 4120 6220 6520 6520 6040 7350 5450 6040 7350 5450 6040 7350 5450 6040 7350 5450 4030 4030 43530 4010 4430 4430	5 mg/kg 120 99 123 64 63 62 62 62 116 97 91 117 87 96 87 97 97 92 83 90 122 111 88 87 3	5 mg/kg 1740 1770 1770 2060 2900 2060 2410 2060 2400 2000 2000 2000 2000 2000 200	0.5 mg/kg 6.7 7.3 8.1 4.7 5.3 5.6 6.1 7.5 7.1 5.55 7 6.3 4.9 8.3 5.6 6.8 9 6.6 6.8 9 6.6 6.4 5.3 5.5 5.5 4.45	5 mg/tg 1600 1610 2040 1490 2150 2890 2960 3590 2710 2830 1580 3590 2710 2710 2830 1580 3590 2710 2830 1580 3590 2220 1880 1220 2220 1830 1260 2200 2370	10 mg/kg 19600 21000 21000 18000 16200 26500 26500 26500 24300 22200 24300 22200 24300 22200 24000 22200 22200 22200 22200 22200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 200 200 200 200 200 200 200 20000 2000000	0,5 mg/kg 12.4 11.1 12.2 11.7 12.7 14.9 8.9 11.1 13.2 12.7 12.7 12.7 13.2 12.7 13.2 12.4 10.4 8.4 13.4 8.4 11.4 10.6 10.5 10.5 10.5 11.8 10.1 10 9.5 5 12.3
209 210 211 211 225 226 227 230 231 231 233 233 234 233 233 234 235 235 235 205 1025 1025 1025 1025 1025 1025 1025	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X UN UN UN UN UN IX 1X 1X 1X 1X 1X 1X 1X 2X 2X 2X 2X CAL CAL CAL CAL CAL CAL CAL CAL	Weight (g) 0.001 9 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.830 4.383 1.951 2.338 1.871 1.747 3.228 1.877 1.884 3.876 2.969 4.131 4.764 2.977 6.193	0.2 mg/tg 0.8 1.0 0.6 0.7 0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.8 0.6 0.6 0.7 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.6 0.6 0.7 0.8 0.0 0.8 0.0 0.0 0.8 0.7 0.8 0.0 0.9 0.3 0.3 0.3 0.3 0.7 0.4 0.5 0.4 0.5 0.5 0.6 0.7 0.7 0.7 0.8 0.9 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.01 m6/kg. 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.30 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.31 0.35 0.42 0.30 0.42 0.30 0.42 0.32 0.42 0.32 0.42 0.34 0.35 0.42 0.30 0.37 0.42 0.31 0.35 0.42 0.32 0.42 0.32 0.34 0.32 0.42 0.32 0.34 0.35 0.42 0.32 0.42 0.32 0.42 0.32 0.42 0.32 0.42 0.31 0.35 0.42 0.30 0.42 0.30 0.42 0.30 0.42 0.30 0.35 0.30 0.42 0.30 0.35 0.30 0.30 0.42 0.30 0.30 0.35 0.30 0.30 0.30 0.42 0.30 0.30 0.30 0.42 0.31 0.35 0.30 0.47 0.30 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.30 0.47 0.31 0.32 0.47 0.30 0.47 0.31 0.32 0.47 0.32 0.47 0.31 0.32 0.47 0.31 0.32 0.47 0.31 0.32 0.37 0.31 0.32 0.47 0.31 0.32 0.37 0.31 0.32 0.37 0.31 0.32 0.32 0.37 0.31 0.32	0.05 mg/5g 5.62 5.34 4.5.34 4.79 4.86 4.62 4.62 4.62 4.63 5.36 4.63 5.36 4.63 6.08 4.52 4.79 3.64 4.27 3.64 4.27 3.64 5.92 4.76 3.91 7.64 5.39 7.64 5.397	0.1 mg/kg 4.7 5.4 3.5 4.7 8.7 7.6 6.6 4.4 5.7 7.6 6.4 4.4 5.7 7.6 6.5 8.0 4.2 5.1 3.1 3.8 2.0 4.2 5.1 3.1 3.8 2.0 6.5 8.0 4.2 5.1 3.8 2.0 4.2 5.1 3.8 3.7 6.5 8.0 4.2 5.1 3.8 3.8 5.1 3.8 5.1 3.8 5.1 3.8 5.1 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	50 mg/kg 4540 4540 4120 4410 4410 450 5370 6820 6520 6040 7350 5450 4840 5550 4840 5550 4840 5550 4030 4780 4780 4780 4780 4780 4780 3530 4780 4780 4780 4780 5570	5 mg/kg. 120 99 123 64 62 62 62 116 97 94 91 117 87 97 97 97 97 97 72 83 90 122 1111 83 83 90 122 1111 83 84 64 61 97 97 97 72 83 90 97 97 72 83 90 90 120 120 120 94 94 94 94 94 94 94 94 94 94 94 94 94	5 1680 1740 1740 1770 1710 2060 2000 2000 2000 2000 2000 2150 2020 2150 2020 2180 1910 2180 1910 2180 1910 2180 2180 2180 2180 2250 2500 2500 2500 2500 2500 2500 25	0.5 mg/bg 6.7 7.3 8.1 4.7 5.3 5 7 6.1 7.5 5 7 6.3 4.9 6.6 8.3 5.5 6.4 5.3 5.5 6.4 5.3 5.5 9 6.6 4.5 3 5.5 9 4.45 4.7 4.5	5 mg/tg 1600 1610 2040 1490 2140 2480 2500 2960 3590 2710 2830 1580 1540 2020 2710 2830 1580 1580 2200 2200 2200 2200 2200 2200 2200 2	10 mg/kg 19600 21000 21000 06200 18400 26500 25200 24300 22200 24300 22200 24300 22200 24300 22200 24300 22200 24300 22500 22700 22700 22700 2200 2200 220	0,5 mp/tg 12.4 11.1 12.2 12.7 12.7 12.7 12.7 13.2 12.7 13.2 12.7 11.2 12.4 13.2 12.7 12.7 12.7 13.2 12.7 13.2 12.7 12.7 13.2 12.4 13.2 13.2 12.7 13.2 12.7 10.4 10.6 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
209 210 211 212 225 226 227 228 229 230 231 233 233 233 233 233 233 234 235 235 235 235 235 235 235 235 235 235	3A 3A 3A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	EQL Units 2X 2X 2X 2X 2X 2X UN UN UN UN UN UN UN UN UN UN UN UN UN	Weight (g) 0.001 8 4.916 4.273 4.202 3.644 2.934 1.726 2.249 3.212 2.883 3.200 3.832 4.737 4.038 2.889 3.822 4.727 4.038 2.889 3.878 3.876 4.431 3.727 4.038 2.869 4.431 3.876 4.431 3.876 4.431 3.876 4.431 3.876 4.431 4.777 4.038 2.869 4.1511 4.764 2.977	0.2 mg/tg 0.8 1.0 0.6 0.7 0.4 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.6 0.6 0.7 0.7 0.7 0.8 0.6 0.6 0.9 0.5 0.9 0.3 0.3 0.3 0.3 0.3 0.7 0.4 0.8 1.0 0.6 0.7 0.8 1.0 0.6 0.7 0.4 0.6 0.7 0.4 0.6 0.7 0.4 0.6 0.7 0.4 0.6 0.7 0.4 0.6 0.7 0.4 0.6 0.7 0.6 0.7 0.7 0.4 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.0] møkg 0.41 0.32 0.36 0.37 0.40 0.33 0.26 0.33 0.26 0.31 0.39 0.42 0.29 0.31 0.35 0.26 0.29 0.31 0.35 0.26 0.29 0.30 0.30 0.39 0.47 0.30 0.30 0.30 0.30 0.30 0.33 0.47	0.05 mg/kg 5.62 5.34 4.79 4.86 4.62 4.62 4.87 4.87 4.86 5.93 5.36 4.63 6.08 4.52 4.48 4.52 4.48 4.79 3.64 4.52 4.79 3.64 4.52 4.76 3.64 5.52 4.78 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 3.64 5.52 4.79 5.54 5.34 5.34 5.34 5.34 5.34 5.34 5.34	0.1 mg/kg 4.7 4.7 4.7 9.3 7.6 6.6 4.4 5.7 5.8 3.7 9.3 7.6 6.5 8.0 4.2 5.1 3.1 3.1 3.2 8.20 2.9 9.3 1.3.0 6.6 4.0 6.7 6.1	50 mg/kg 4260 4450 4450 4450 6520 6520 6040 6520 6040 7350 5450 4840 5560 4840 5560 4840 5520 6040 5520 6040 4840 5520 4840 5520 4030 4430 400 4400 4400 4400 4550 3890 3880 3960	5 mg/kg 100 120 99 123 64 63 62 62 62 91 91 116 97 94 91 117 87 96 87 97 97 97 97 97 97 97 97 283 90 122 121 188 87 90 122 122 83 90 123 123 16 94 94 94 94 94 94 94 94 94 94 94 94 94	5 mg/kg 1680 1740 2060 2190 2560 2060 2410 1930 2060 2410 2330 2060 2410 2330 2060 2410 1930 2020 2180 1810 1700 1910 2020 2180	0.5 mg/kg 6.7 3.8.1 4.7 5.3 5.61 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	5 mp/tg 1600 1610 2040 1490 2480 2350 2590 2710 2830 1580 2020 1540 2020 1540 2020 1540 2020 1840 2220 1840 2220 1840 2220 1840 2220 1840 2220 1840 2220 1840 2220 1866 2390 2370 2390 2370 2390 2370 2070	10 mg/kg 19600 21000 21000 18800 16200 25200 25200 25200 24300 24300 24300 22200 24300 22200 24300 22200 22200 22200 22200 22200 22200 22200 22000 22200 22000 225300	0.5. mp/kg 12.4 11.1 12.2 11.7 12.7 14.9 8.9 11.1 13.2 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12

*

Year 2001 Field Trial Corn Seed Analysis for C2 Site
--

TCAI 2001 F		<u>Corn Seeu</u>	Analysis fo	r C2 Site									
Bag #	plót	treat	Å5	Co	Ca	NI	Ca	Fe	Mg	Ma	P	ĸ	Zu
	ului ad		0.2 mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 mg/kg	50 mg/kg	5 mg/kg	5 mg/kg	0.5 mg/kg	5 mg/kg	10 mg/kg	0.5 mg/kg
1255X 1255Y	1A 1A	UN UN	0.1 0.1	0.02 0.02	1.31 1.31	2.1 2.1	72 74	20 21	830 863	3.6 3.7	2560 2560	4030 3960	18.6 18.7
1255Z 1256X 1256Y	1A 1A 1A	UN UN UN	0.1 0.1 0.1	0.02 0.03 0.03	1.11 1.53 1.46	1.8 2.6 2.8	70 92 86	18 20 22	780 830 913	3.5 3.8 4	2280 2450 2670	3460 4260 4600	17.2 19 20.2
1256Z 1257X	iA IA	UN 1X	0.1 0.1	0.03 0.02	1.47	2.5 1.7	98 61	22 22	962 883	4.4 3.7	2660 2850	4200 4140	21.9 20.1
1257¥ 1257Z 1258X	1A 1A	1X 1X	0.1	0.02	1.34 1.25 1.42	1.7 1.6 2.3	66 77.5 92	18 25 19	921 1120 1080	3.5 4.1 4.4	2980 3325 3150	4280 4765 4620	18.9 21 20.9
1258X 1258Y 1258Z*	1A 1A 1A	1X 1X 1X	0.1 0.1 0.1	0.02 0.02 0.02	1.42 1.34 1.26	2,2 2,1	83 80	22 20	1230 1080	4.2 3.9	3420 3100	4690 4430	20.9 22.2 19.9
1259X 1259Y	1A 1A	2X 2X	0.1 0.1	0.03	1.25	2.5 2.3	73 68	18 18	953 943 934	4 3.9 4	2720 2680 2740	3700 3740 3720	21.5 20.9 21.3
12592 1260X 1260Y	1A 1A 1A	2X 2X 2X	0.1 0.1 0.1	0.03 0.04 0.03	1.33 1.64 1.33	2.3 2.8 2.5	62 84 72	19 17 17	934 933 922	3.9 3.8	2640 2670	4030 4070	21.3 21.7 20
1260Z 1261X	1A 2A 2A	2X 2X UN	0.1	0.03	1.35	2.5 3.7	75 70 72	17 20	953 878	4 3.8 2.7	2770 2510	4040 4010 4050	21.3 16.9 16.9
1261Y 1261Z 1262X	2A 2A 2A	UN UN UN	0.1 0.1 0.1	0.03 0.03 0.03	1.45 1.53 1.36	3.5 3.8 3.4	62 82	20 21 21	877 890 865	3.7 3.6 3.5	2500 2510 2400	3860 4200	16.6 17.6
1262Y 1262Z	2A 2A	UN UN	0.1 0.1	0.03 0.03	1.33 1.29	3.4 3.2	85 91.5	23 19.5	917 979	4 3.85	2460 2475	4010 4155	19 17 21.2
1263X 1263Y 1263Z*	2A 2A 2A	1X 1X 1X	0.1 0.1 0.1	0.03 0.03 0.04	1.32 1.32 1.43	3.1 3.1 3.2	72 70 64	23 25 23	1040 1030 998	4 4,2 4	3250 3250 3260	4530 4680 4850	21.2 21.1 20.5
1264X 1264Y	2A 2A		0.1 0.1	0.03 0.03	1.41 1.43	3.4 3.5	61 67	20 22	982 1020	3.8 4.2	3120 3290	4960 4900	18.6 21.7
1264Z 1265X 1265Y	2A 2A 2A	1X 2X 2X	0.1 0.1 0.1	0.03 0.04 0.04	1.41 1.45 1.37	3.4 3.2 3.3	80 71 78	22 24 21	1060 879 943	4.4 4.6 4.9	3390 2620 2700	5250 3820 4070	21.9 23.4 23.7
1265Z 1266X	2A 2A 2A	2X 2X	0.1 0.1	0.04 0.03	1.33 1.26	3.3 3.5	80 89	17 21	939 861.5	4.9 4.5	2790 2620	4170 4375	23.3 23.25
1266¥ 1266Z 1267X	2A 2A 3A	2X 2X UN	0.1 0.1 0.1	0.04 0.04 0.03	1.37 1.38 1.34	3.3 3.5 2.2	95 82 84	19 19 17	892 842 1020	4.6 4.1 3.6	2900 2710 2780	5020 4610 4670	23.8 22.4 18.7
1267¥ 1267Z	3A 3A	UN UN	0.1	0.03	1.24 1.30	2.1 2.0	83 88 140	17 19	977 1020 1020	3.2 3.5 4.4	2720 2810	4620 4720 4830	16.2 18
1268X 1268Y 1268Z*	3A 3A 3A	UN UN UN	0.1 0.1 0.1	0.03 0.02 0.03	1.59 1.68 1.59	2.1 2.2 2.3	97 81	26 18 20	926 848	4.4 3.7 3.6	2630 2480 2390	4830 4490 4110	21.1 17.5 18.6
1269X* 1269Y	3A 3A	1X 1X	0.1	0.04 0.03	1.61 1.55	2.9 2.8	77 75	22 23 22	1050 1050	4 4.2 4	3000 3020 2920	4140 4110 3910	21,3 22
1269Z 1270X 1270Y	3A 3A 3A	1X 1X 1X	0.1 0.1 0.1	0.03 0.03 0.03	1.43 1.67 1.69	2.9 2.9 3.1	82 107 117	20 21	1030 1060 1150	4,1 4,4	2780 3020	4610 4830	20.7 19.7 22.1
1270Z	<u>3A</u>	<u>ix.</u> .	0.1	0.03	1.80	3.0	109	21.5	1105	4.45	2930	4870	21.2
Bag #	plot	treat	As	Co	Cu	NI. '	Ca	Fe	Mg	. Mn	P	к	Zn
			0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
1271X	3A	2X	mg/kg 0.1	<u>mg/kg</u> 0.04	mg/kg 1.42	<u>mg/kg</u> 2.4	mg/kg 80	mg/kg 15	mg/kg 1040	<u>mg/kg</u> 4,5	mg/kg 2800	mg/kg 3730	mg/kg 23
1271¥ 1271Z 1272X	3A 3A 3A	2X 2X 2X	0.1	0.04 0.05 0.04	1.38 1.39 1.29	2.3 2.3 2.2	77 63 72	16 17 17	946 927 963	4.3 3.9 4.1	2720 2710 2700	3830 3680 3790	22 21.2 20,1
1272Y 1272Z	3A 3A	2X 2X 2X	0.1 0.1 0.1	0.04 0.03	1.33	2.5 2.3	72 78	17 19	907 976	4 4.6	2610 2830	3940 4190	18.9 20.8
1273X 1273Y 1273Z	4A 4A 4A	UN UN UN	0.1 0.1 0.1	0.04 0.05 0.04	1.41 1.51 1.65	2.5 2.4 2.5	64 74 79	23 23 23	931 997 1010	4.6 4.9 5.2	3190 3330 3390	4440 4410 4710	23.9 25.5 25.5
1274X* 1274¥	4A 4A	UN UN	0.1 0.1	0.05 0.05	1.45 1.48	2.5 2.9	66 72	20 22	872 970	4.3 4.8	2940 3190	3980 4170	21.5 22.9
1274Z 1275X 1275Y	4A 4A 4A	UN IX IX	0.1 0.1 0.1	0.05 0.04 0.04	1.38 1.52 1.44	2.7 2.0 2.2	62 102.5 95	19 18.5 17	862 1045 962	3.9 4.8 4.3	2870 2830 2720	3940 4880 4830	21.1 21.6 19.7
1275Z 1276X	4A 4A	ых 1Х	0.1 0.1	0.04 0.04	1.37 1.32	2.1 2.3	88 130	17 16	1030 1060	4.8 4.9	2830 2670	4730 5550	22,2 19,1
1276Y 1276Z 1277X	4A 4A 4A	1X 1X 2X	0.1 0.1 0.1	0.04 0.04 0.05	1.34 1.31 1.40	2.2 2.3 2.9	126 132 65	19 17 22	1040 1040 976	4.9 5.4 4.4	2660 2630 3040	5410 5770 4360	19.6 20.9 21.7
1277Y 1277Z	4A 4A	2X 2X	0.1 0.1	0.05 0.05	1.44 1.23	3.0 2.7	70 56	21 20	958 846	4.2 3.6	3080 2750	4350 3800	21.3 19
1278X 1278¥ 1278Z	4A 4A 4A	2X 2X 2X	0.1 0.1 0.1	0.05 0.05 0.05	1.31 1.37 1.61	3.1 3.0 3.3	72 69 85	19 21 19	960 974 1020	4 4.2 4.3	3050 3060 3160	4920 4690 5140	19.7 20.8 20.6
1311X* 1311Y	18 18	CAL CAL	0.1 0.1	0.03	1.37 1.44	2.8 2.8	138.5 176	16 14	1075 1080	5.2 5.1	3210 3180	6415 6860	19.6 19.2
1311Z 1312X 1312Y	1B 19 1B	CAL CAL CAL	0.1 0.1 0.1	0.03 0.03 0.03	1.57 1.61 1.42	2.8 2.8 2.7	171 150 119	17 21 21	1150 1110 1010	5.8 5.9 5.4	3370 3100 2860	7030 6450 6000	21.5 21 19.5
13122 1313X	1B 2B	CAL CAL	0.1 0.1	0.03	1.54 1.45	2.9 2.3	147 205	21 23	1100 1110	5.7 7.8	3050 2720	6390 5760	20.4 23.8
1313Y 1313Z 1314X	2B 2B 2B	CAL CAL CAL	0.1 0.1 0.1	0.02 0.02 0.03	1.60 1.95 3.53	2.4 2.8 6.6	232 304 716	23 23 22	1160 1210 1450	7.9 8.7 9.2	2850 2910 3370	5990 7140 13800	24.3 27.8 36.8
1314Y 1314Z	2B 2B	CAL CAL	0.1 0.1	0.03 0.03	3.60 3.71	6.0 6.3	816 782	20 23	1500 1460	9.2 9.3	3550 3430	15100 14300	37.6 37.9
1316X 1316Y 1316Z	3B 3B 3B	CAL CAL CAL	0.1 0.1 0.1	0.03 0.03 0.03	5.70 1.66 1.64	2.5 2.5 2.4	158 162 165	20 20 20	1010 998 989	5.8 5.9 5.7	2770 2720 2750	7420 7390 7320	23.6 21 20.6
1317X 1317Y	4B 4B	CAL CAL	0.1 0.1	0.03 0.03 0.04	1.23 1.28 1.24	2.7 2.7 2.6	100 90 91	19 17 18	1010 952 927	4.5 4.2 3.9	2750 2640 2540	5070 4750 4780	20.6 19.8 19.6
1317Z 1318X 1318Y	4B 4B 4B	CAL CAL CAL	0.1 0.1 0.1	0.03	1.37 1.38	2.7 2.8	93 95	17 18	955 931	3.9 4	2660 2610	5380 5260	17.2 18
1318¥ 1318Z	4 <u>B</u>	CAL	0.1	0.03	1.28	2.7	88	16	918	3.8	2600	5110	16.8

Year 2001 Field Studies	- C2 Site - Parameters	in Radish (All Leaves)
-------------------------	------------------------	------------------------

IREFLANMADAL IA UN 1.717 0.3 1.05 10.10 49.8 21900 230 2570 14.2 1720 20000 157 REFLANMADAL IA UN 1.156 0.4 1.29 13.40 61.6 22700 250 245 3040 16.8 2300 1960 194 REFLAXEMADAL IA IX 0.989 0.3 1.03 14.6 6.6 27800 167 2500 15.7 2700 22700 216 REFLAXEMADAL IA IX 1.033 14.60 43.7 25800 162 3160 15.7 2700 22700 211 REFLAXEMADAL IA IX 1.443 0.2 0.30 10.50 35.7 26100 141 3400 15.7 2100 22500 2200 212 REFLAXEMADAL IA IX 2.497 0.5 1.10 15.40 5600 2560 3500 350 350				A CONTRACTOR			e de la composición de la composición de la composición de la composición de la composición de la composición d								
Units r. ray/sq. ray/s	Sample Code	plot	treat		As	Co	Cu	NÍ	Ca	Fe	Mg	Mn	P	K	Zn
Units r inpl/st inpl/s			FOL	0.001	0.2	0.01	0.05	01	50	5	5	0.5		10	0.5
BREF ALURRADIAL IA UN 1.624 0.3 1.17 12.60 92.4 3000 21.5 3270 18.5 2260 1920 243 REF (AURRADZAL IA UN 1.426 0.3 1.12 11.30 60.7 22600 2210 2130 15.2 2300 24200 15.7 REF (AURRADAL IA UN 1.148 0.3 1.21 15.0 60.7 22500 2270 0.21 215.9 22200 18.4 REF (AURRADAL IA UN 1.148 0.3 1.21 19.66 58.5 20600 200 230 16 1970 18.5 2200 18.5 2200 15.7 210 2000 15.7 2100 2370 2210 214.9 2330 2200 15.6 2390 2210 214.9 2310 2210 214.9 2310 2210 14.5 2300 2200 15.7 2000 2370 2260 220.0	and the state of the state of the		1.	0.001			a second and a second	CARL NO. AND A CONTRACT	Part Carl State Carl	17 JAN 17 MA		Concept California - Concept Concept California	38 A. 19		1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -
REF AUNRADZALI IA UN 1.426 0.3 1.12 13.10 54.7 2660 221 3280 13.3 2190 24400 19.7 REFIAURRADAL IA UN 1.148 0.3 1.12 11.30 60.7 22500 127 3040 15.2 2500 2200 18.4 REFIAURRADAL IA UN 1.246 0.3 1.12 11.30 60.7 2500 220 270 2.12 1.24 1.20 62.4 2160 2.16 0.3 1.16 1.33 2.000 15.8 2.000 15.7 2700 2.200 14.9 2.300 15.0 2.16 2.3500 15.7 2.700 2.210 2.45 2.900 2.270 2.16 3.10 3.10 3.10 3.91 2.300 15.7 2.100 2.3500 2.270 2.16 3.10 3.10 3.91 2.500 1.27 2.160 1.56 2.390 2.270 2.16 <td< td=""><td>PERIATINEADIAL</td><td>14</td><td></td><td>1 654</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PERIATINEADIAL	14		1 654											
BEPE ALVIRADAAL IA UN 1.149 0.3 1.12 19.30 0.07 2200 197 3040 15.2 2300 24200 197 REF ALVIRADAAL IA UN 1.148 0.3 1.21 9.96 58.5 2000 2200 2330 16 1930 19750 18.64 REF ALVIRADAL IA UN 1.717 0.3 1.26 10.10 49.8 21500 2230 16 1930 1970 18.6 REF ALVIRADAL IA UN 1.116 0.4 1.29 13.40 61.6 2700 250 240 14.93 21.30 22.600 18.7 REF ALVIRADALI IA 1.489 0.3 1.02 13.10 30.1 23800 15.7 2700 21.6 13.6 1.6 13.6 1.6 23.100 1.6 23.100 24.6 12.8 1.4 1.2 12.0 21.6 3.160 1.6 25.90 22.100															
REF (AURACALL) IA UN 1.148 0.3 1.21 9.96 58.5 20600 220 2770 20.1 2150 22200 18.4 REF (AURACDSAL) IA UN 1.717 0.3 1.03 1.265 48.1 26400 220 2670 1.4.2 1720 20000 15.7 REF (AURACDAL) IA UN 1.116 0.4 1.29 13.40 6.6 27300 250 220 14.4 2330 25000 18.5 REF (AURACDAL) IA IX 0.989 0.3 1.03 14.60 43.7 25000 16.7 2300 15.6 2300 21.0 21.6 REF (AURACDAL) IA IX 1.482 0.2 0.80 10.30 30.1 21900 13.1 2940 1.5.7 2700 21.6 REF (AURACDAL) IA IX 1.482 0.2 0.80 10.30 30.1 2500 12.0 10.0 1.6 12.0															
REF ALVRADSAL IA UN 2.216 0.3 1.263 48.1 26400 200 2830 16 1930 19750 18.65 REF ALVRADSAL IA UN 1.500 0.3 1.24 12.20 62.4 25000 245 3040 16.8 2360 1960 1970 18.65 REF ALVRADSAL IA UN 1.116 0.4 1.29 18.46 62.4 25000 18.7 3450 14.4 9.2130 22600 18.6 REF ALVRADSAL IA IX 1.490 0.3 1.00 14.6 43.7 23500 16.7 2300 23700 221.6 2300 2300 15.7 2300 2300 2300 2300 15.7 2300 2300 2300 2300 15.7 2300 2300 2300 2300 15.7 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
REF IA UN 1.530 0.3 1.24 1.220 62.4 2500 245 3040 11.6.8 2360 1960 196 REFIAURRADIAL IA IX 1.490 0.3 1.00 13.30 46.6 2700 167 2300 15.5 23700 21.6 REFIAIKRADAL IA IX 1.727 0.3 1.02 13.10 93.1 25800 162 3160 15.6 2390 22700 21.6 REFIAIKRADAL IA IX 1.443 0.20 0.80 10.30 30.1 21900 15.7 2000 22400 21.8 REFIAIKRADAL IA IX 1.443 0.20 0.80 12.30 41.5 27200 17.1 3040 15.7 2100 23600 22.3 12.8 14.0 2360 32.1 2010 20000 15.1 REFIAIKRADAL IA 1X 2.497 0.5 1.39 43050 12.6 55.															18.65
REF ALUNRADAAL IA UN 1.116 0.4 1.29 13.40 61.6 2700 250 2420 14 2330 25000 15.6 REFIAIXRAD2AL IA IX 0.969 0.3 1.03 14.60 43.7 2300 167 2900 15.7 2700 23700 211 REFIAIXRADAL IA IX 1.727 0.3 1.02 1310 391 25800 162 3160 15.7 2700 211 REFIAIXRADAL IA IX 1.443 0.2 0.80 10.30 30.1 21900 131 2940 14.5 2300 2200 211 REFIAIXRADAL IA IX 1.822 0.3 0.96 12.30 41.5 2700 171 3090 14 2380 2250 202 2370 222 210 2000 202 25130 220 2310 2250 330 14 170 16.3 32700<	REFIAUNRAD6AL	1A	UN	1.717	0.3	1.05	10.10	49.8	21900	230	2670	14.2	1720	20000	15.7
IEPE (A) A IA IA </td <td></td> <td>1A</td> <td>UN</td> <td></td> <td>0.3</td> <td>1,24</td> <td></td> <td>62.4</td> <td>25600</td> <td>245</td> <td>3040</td> <td>16.8</td> <td>2360</td> <td>19800</td> <td>19.4</td>		1A	UN		0.3	1,24		62.4	25600	245	3040	16.8	2360	19800	19.4
CHEP (1) XRADAL IA IX 0.989 0.3 1.03 14.60 43.7 25300 167 2900 15.7 2700 23700 21.6 REF (I) XRADAL A IX 1.443 0.2 0.80 10.30 30.1 25800 162 31.00 14.5 2990 22100 21.1 REF (1) XRADAL A IX 1.882 0.2 0.93 10.50 32.7 26100 141 3040 1.5.7 2100 2350 20.2 REF (1) XRADAL A IX 2.497 0.5 1.10 15.40 50600 286 6570 1.2.8 1240 1970 22.2 REF (1) XRADAL A IX 1.812 0.3 0.91 10.50 39.4 30500 183 4690 13.2 2100 2000 13.2 REF (1) XRADAL A X 1.138 0.5 1.93 19.10 88.2 35600 344 4680 14.6	REFIAUNRAD8AL	1A	UN	1.116	0.4	1.29	13.40	61.6	22700	250	2920	14	2330	25000	19.6
EBE AXX AD3AL IA JX I.727 0.3 1.02 13.10 99.1 22800 162 31.60 15.6 2390 22700 21 BEFLAIXRADAL IA IX 1.842 0.2 0.93 10.50 32.7 26100 141 3040 15.7 2100 23500 20.2 BEFLAIXRADAL IA IX 2.497 0.5 1.10 11.30 540 56600 286 6570 12.8 1240 19700 22.2 BEFLAIXRADIAL IA IX 2.497 0.5 1.10 11.30 540 3500 187 3520 12.9 3370 25600 32.2 BEFLAIXRADIAL IA 2X 1.091 0.4 1.77 16.70 68.8 33600 183 4590 13.2 2520 22.20 23.1 BEFLAIXRADAL IA 2X 1.568 0.3 1.41 17.10 68.3 33700 12.2 2520 </td <td>REFIAIXRADIAL</td> <td>- 1A</td> <td>- IX</td> <td>1.490</td> <td>0.3</td> <td>1.00</td> <td>13.30</td> <td>46.6</td> <td>27800</td> <td>187</td> <td>3450</td> <td>14.9</td> <td>2130</td> <td>22600</td> <td>18.2</td>	REFIAIXRADIAL	- 1A	- IX	1.490	0.3	1.00	13.30	46.6	27800	187	3450	14.9	2130	22600	18.2
BERICAL KRADAL IA IX 1443 0.2 0.80 10.30 30.1 21900 131 2940 14.5 2090 22400 21.8 REFLAIRRADSAL IA IX 2.149 0.3 0.96 12.30 41.5 27200 171 3090 14 2380 21800 23.1 REFLAIRRADSAL IA IX 1.812 0.3 0.91 10.50 39.4 50500 12.8 1240 19700 22.2 REFLAIRRADSAL IA IX 1.812 0.3 0.91 10.50 39.4 30500 187 3520 12 2010 20000 19.1 REFLAIRRADAL IA 2X 1.091 0.4 1.77 16.70 65.8 3600 20.2 2760 212.00 25.1 10.8 65.60 2760 22.00 28.2 REFLAIRRADAL IA 2X 1.568 0.3 1.41 17.10 66.33 32700 184															
EUF IA 1X 1.82 0.2 0.93 10.50 32.7 26100 141 3040 15.7 2100 2550 202 REFIAIXKAD7AL 1A 1X 2.497 0.5 1.10 11.30 54.0 50600 226 6570 1.28 1240 19700 221 REFIAIXKAD7AL 1A 1X 1.91 0.4 1.77 16.70 55.8 36800 225 5630 1.29 3370 25600 326 REFIAIXKADZAL 1A 2X 1.614 0.4 1.477 16.70 65.8 36800 12.2 2576 310 12.6 2760 21200 2210 2120															
EFEF (A) XRADGAL IA L1A L1A L2A9 0.5 1.230 41.5 27200 171 3000 1.4 2380 21800 221.2 REF (A) XRADBAL IA IX 1.812 0.3 0.91 10.50 394 30500 187 3530 12.2 2010 2000 19.1 REF (A) XRADAL IA 2X 1.138 0.5 1.93 19.10 68.2 32600 304 4680 14.6 2760 21200 251 REF (A) XRADAL IA 2X 1.138 0.5 1.93 19.10 68.2 32700 113 4950 13.2 2820 22200 31.9 REF (A) XRADAL IA 2X 1.648 0.3 1.41 17.10 68.3 37700 184 5060 10.6 10.9 2760 23200 28.2 REF (A) XRADAL IA 2X 1.538 0.30 1.44 1.30 51.0 1.64 33700															
REF1 AXRAD7AL 1A 1X 2.497 0.5 1.10 11.30 54.00 286 6570 12.8 1240 19700 22.2 REF1 AXRAD1AL 1A 2X 1.091 0.4 1.77 16.70 65.8 36600 225 5530 12.9 3370 25600 32.2 REF1 AXRAD1AL 1A 2X 1.1318 0.5 1.93 19.10 88.2 32600 304 4680 14.6 2760 21200 23.1 REF1 AXRAD3AL 1A 2X 1.614 0.4 1.47 11.10 66.6 3300 183 4950 13.2 2820 2220 22200 2310 28.2 REF1 AXRAD3AL 1A 2X 1.568 0.3 1.24 15.40 43.0 32700 184 506 10.9 2600 28.2 2870 28.2 2870 28.2 2870 28.2 2870 28.2 2870 28.2 2870 28.2															
REF. (A) XRADBAL 1A IX IA12 0.3 0.91 10.50 39.4 30500 187 3520 12 2010 20000 19.1 REFLAZXRAD2AL IA 2X 1.091 0.4 1.77 16.70 65.8 36800 225 5630 12.9 3370 25600 32.2 REFLAZKRAD2AL IA 2X 1.614 0.4 1.47 11.06 66.6 33000 183 4950 13.2 2820 2200 23.3 REFLAZKRAD4L IA 2X 1.668 0.3 1.28 15.40 43.0 32700 184 5060 10.9 2760 23200 28.2 REFLAZKRAD5AL IA 2X 1.568 0.3 1.28 15.40 43.0 32700 124 5000 14.4 2800 2260 22.0 22.0 22.0 22.2 16.70 14.4 130 54.1 28300 248 14.0 1.7 3010 22															
EFE (AZXRAD)AL 1A 2X 1.091 0.4 1.77 16.70 65.8 36800 225 5630 12.9 3370 25600 322 REF (AZXRAD)AL 1A 2X 1.138 0.5 1.93 19.10 88.2 32600 304 4680 14.6 2760 122 2820 22200 31.9 REF (AZXRAD)AL 1A 2X 1.088 0.3 1.41 17.10 66.3 33200 183 4950 13.2 2820 2200 23.8 REF (AZXRAD)AL 1A 2X 1.549 0.3 1.44 14.30 50.9 24700 184 320 11.7 3010 2260 22.10 28.2 REF (AZXRAD)AL 1A 2X 1.533 0.3 1.40 12.70 48.4 30400 214 5000 14.4 2830 20700 26.5 REF (AURRAD)AL 2A UN 1.414 0.3 1.35 1.080 63.0															
REF AZXADAL 1A 2X 1.138 0.5 1.93 19.10 88.2 32600 304 4680 14.6 2760 21200 25.1 REF1A2XRADAL 1A 2X 1.614 0.4 1.47 11.60 46.6 33300 183 4950 13.2 2820 22200 23.9 REF1A2XRADAL 1A 2X 1.568 0.3 1.24 43.0 32700 184 5060 10.9 2760 23200 28.2 REF1A2XRADAL 1A 2X 1.549 0.3 1.34 13.80 50.9 24700 184 3820 11.7 3010 22800 221.0 22800 221.0 28.2 REF 28.4XRADAL 2A UN 1.441 0.3 1.37 10.80 50.9 24700 184 3820 11.7 3010 22800 26.5 21400 17.9 21400 17.9 21400 17.9 21400 17.9 21400 17															
REF AZXRAD3AL 1A 2X 1.614 0.4 1.47 1.160 66.6 33300 183 4950 13.2 2820 22200 31.9 REF AZXRAD5AL 1A 2X 1.088 0.3 1.41 17.10 68.3 32700 212 5270 10.8 2650 20700 28.2 REF AZXRAD5AL 1A 2X 1.568 0.3 1.44 14.30 54.1 28300 208 4280 14.2 2960 22600 28.2 REF AZXRAD5AL 1A 2X 1.549 0.3 1.44 14.30 54.1 28300 208 4280 14.2 2960 22600 2820 27.1 REF AZXRAD5AL 1A 2X 1.533 0.3 1.40 12.7 48.4 30400 214 5000 14.4 2830 2070 757 REF2AURRAD3AL 2A UN 1.441 0.3 1.28 10															
REF1A2XRADAL 1A 2X 1.088 0.3 1.41 17.10 68.3 32700 121 5270 10.8 2650 20700 25.3 REF1A2XRAD6AL 1A 2X 1.568 0.3 1.28 15.40 43.0 32700 184 5060 10.9 2760 23200 28.3 REF1A2XRAD6AL 1A 2X 1.549 0.3 1.34 13.80 50.9 24700 184 3820 11.7 3010 22600 22610 25.5 REF1A2XRAD7AL 1A 2X 1.533 0.3 1.40 12.70 48.4 30400 214 5000 14.4 2830 21400 17.9 REF2AUNRAD7AL 2A UN 0.791 0.3 1.35 10.80 63.0 25600 248 2760 18 2450 21400 17.9 REF2AUNRAD7AL 2A UN 1.034 0.3 1.37 10.70 64.4 27500 212 <															
REF1A2XRAD5AL IA 2X 1.568 0.3 1.28 15.40 43.0 32700 184 5060 10.9 2760 23200 28.2 REF1A2XRAD5AL IA 2X 1.569 0.3 1.34 14.30 54.1 28300 208 4280 14.2 2960 22600 28.2 REF1A2XRAD5AL IA 2X 1.533 0.3 1.40 12.7 48.4 30400 214 5000 14.4 2830 20700 25.5 REF2AURAD2AL 2A UN 0.791 0.3 1.35 10.80 63.0 25600 248 2760 18 2450 2140 17.9 REF2AURAD2AL 2A UN 1.441 0.3 1.37 10.70 64.4 27500 212 3400 16.6 2210 15800 17.4 REF2AURAD5AL 2A UN 1.437 0.3 1.12 13.50 69.3 28900 268 2780 20															
REF1A2XRAD5AL 1A 2X 1.549 0.3 1.44 14.30 54.1 28300 208 4280 14.2 2960 22600 28.2 REF1A2XRAD5AL 1A 2X 1.533 0.3 1.40 12.70 48.4 30400 214 5000 14.4 28.30 27.10 REF2AURAD1AL 2A UN 0.791 0.3 1.35 10.80 63.0 25600 248 2760 18 2450 21400 17.9 REF2AURAD3AL 2A UN 0.441 0.3 1.35 10.80 63.0 25600 218 2910 19.1 1930 15800 17.7 REF2AURAD3AL 2A UN 0.936 0.5 1.72 13.30 82.5 23700 248 200 16.6 2210 1500 2010 1600 2020 2010 1500 2020 19.7 3170 18.1 2310 2200 19.7 3170 18.1 2310															
BER JA2XRAD7AL 1A 2X 1.269 0.3 1.38 13.80 50.9 24700 184 3820 11.7 3010 22800 27.1 REF JA2XRAD8AL IA 2X 1.533 0.3 1.40 12.70 48.4 30400 214 5000 14.4 2830 20700 26.5 REF2AUNRAD2AL 2A UN 1.41 0.3 1.28 10.90 60.1 24700 218 2910 19.1 1930 15800 17.4 REF2AUNRAD2AL 2A UN 1.467 0.4 1.39 13.50 69.3 28900 268 2780 20.7 1790 20400 19.1 REF2AUNRAD5AL 2A UN 1.438 0.3 1.26 9.48 60.9 30800 233 3070 22.1 1860 20000 20.5 REF2AUNRAD5AL 2A UN 1.514 0.3 1.15 11.10 52.6 27800 197 3170															
REF1A2XRADSAL 1A 2X 1.533 0.3 1.40 12.70 48.4 30400 214 5000 14.4 2830 20700 26.5 REF2AUNRADIAL 2A UN 0.791 0.3 1.35 10.80 63.0 25600 248 2760 18 2450 21400 17.9 REF2AUNRAD3AL 2A UN 1.441 0.3 1.37 10.70 64.4 27500 212 3400 16.6 2210 20100 19.1 REF2AUNRAD3AL 2A UN 1.467 0.4 1.39 13.50 69.3 28900 268 2780 20.7 1790 20400 19.2 REF2AUNRAD5AL 2A UN 1.514 0.3 1.12 13.90 62.5 23700 348 3010 19.6 2210 15600 20.0 20.2 REF2AUNRAD5AL 2A UN 1.514 0.3 1.15 11.10 52.6 27800 22 2850															
RHF2AUNRADIAL 2A UN 0.791 0.3 1.35 10.80 63.0 25600 248 2760 18 2450 21400 17.9 RHF2AUNRADJAL 2A UN 1.441 0.3 1.28 10.90 60.1 24700 218 2910 19.1 1930 15800 17.4 RHF2AUNRADJAL 2A UN 1.034 0.3 1.37 10.70 64.4 27500 212 3400 16.6 2210 20400 19.1 RHF2AUNRADJAL 2A UN 1.467 0.4 1.39 13.50 69.3 28900 268 2780 20.7 1790 20400 19.2 RHF2AUNRADJAL 2A UN 1.418 0.3 1.26 9.48 60.9 30800 223 3070 22.1 1860 2000 20.2 RHF2AUNRADJAL 2A UN 1.514 0.3 1.15 11.10 52.6 27800 197.1 8.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
REF2AUNRAD2AL 2A UN 1.441 0.3 1.28 10.90 60.1 24700 218 2910 19.1 1930 15800 17.4 REF2AUNRAD3AL 2A UN 1.034 0.3 1.37 10.70 64.4 27500 212 3400 16.6 2210 20100 19.1 REF2AUNRAD4AL 2A UN 1.467 0.4 1.39 13.50 69.3 28900 268 2780 20.7 1700 20100 19.2 REF2AUNRAD6AL 2A UN 1.438 0.3 1.26 9.48 60.9 30800 233 3070 22.1 1860 20000 20.5 REF2AUNRAD6AL 2A UN 1.514 0.3 1.15 11.10 55.8 25800 202 2850 17.2 2210 15900 20.2 REF2AUNRAD6AL 2A UN 0.893 0.3 1.29 10.10 55.8 25800 202 2850															
REF2A UNRAD3AL 2A UN 1.034 0.3 1.37 10.70 64.4 27500 212 3400 16.6 2210 20100 19.1 NEF2A UNRAD4AL 2A UN 1.467 0.4 1.39 13.50 69.3 28900 268 2780 20.7 1790 20400 19.2 REF2A UNRAD5AL 2A UN 0.366 0.5 1.72 13.30 68.25 23700 348 3010 19.6 2210 1500 20.8 REF2A UNRAD5AL 2A UN 1.514 0.3 1.15 11.10 52.6 27800 197 3170 18.1 2310 22000 19.7 REF2A UNRAD7AL 2A UN 0.893 0.3 1.29 10.10 55.8 25800 202 2850 17.2 210 15900 29.2 REF2A UNRAD7AL 2A 1X 1.805 1.2 3.05 21.80 154.0 31400 658 4160															
REF2 VINRADAL 2A UN 1.467 0.4 1.39 13.50 69.3 28900 268 2780 20.7 1790 20400 19.2 REF2A UNRADAL 2A UN 0.936 0.5 1.72 13.90 82.5 23700 348 3010 19.6 2210 15600 20.8 REF2A UNRADAL 2A UN 1.438 0.3 1.26 9.48 60.9 30800 233 3070 22.1 1860 20000 20.5 REF2A UNRADAL 2A UN 1.514 0.3 1.15 11.10 52.6 27800 197 3170 18.1 2310 22000 19.7 REF2A UNRADAL 2A UN 0.893 0.3 1.29 10.10 55.8 25800 202 2850 17.2 2210 15900 29.2 REF2A UNRADAL 2A 1X 1.741 0.4 1.69 19.0 84.3 32600 207 3810 <															
REF2AUNRAD5AL 2A UN 0.936 0.5 1.72 13.90 82.5 23700 348 3010 19.6 2210 15600 20.8 REF2AUNRAD6AL 2A UN 1.438 0.3 1.26 9.48 60.9 30800 233 3070 22.1 1860 20000 20.5 REF2AUNRAD7AL 2A UN 0.514 0.3 1.15 11.10 52.6 27800 197 3170 18.1 2310 2200 19.7 REF2AUNRAD8AL 2A UN 0.893 0.3 1.29 10.10 55.8 25800 202 2850 17.2 2210 15900 20.2 REF2AURRAD1AL 2A 1X 1.805 1.2 3.05 1.80 154.0 31400 658 4160 13.6 2960 16900 29.2 REF2AURRAD3AL 2A 1X 1.741 0.4 1.65 14.10 67.3 34000 337 3980 <															
REF2AUNRAD7AL 2A UN 1.514 0.3 1.15 11.10 52.6 27800 197 3170 18.1 2310 22000 19.7 REF2AUNRAD8AL 2A UN 0.893 0.3 1.29 10.10 55.8 25800 202 2850 17.2 2210 15900 20.2 REF2AIXRAD1AL 2A 1X 1.805 1.2 3.05 21.80 154.0 31400 658 4160 13.6 2960 12030 28.8 REF2AIXRAD3AL 2A 1X 1.741 0.4 1.69 19.00 84.3 32600 207 3810 16.9 2490 20300 28.8 REF2AIXRAD4AL 2A 1X 1.798 0.5 1.68 16.00 69.2 37200 226 4700 17 2490 20000 28.6 REF2AIXRAD5AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 16.8 2500			UN		0.5	1.72		82.5	23700	348	3010				
REF2AUNRADBAL 2A UN 0.893 0.3 1.29 10.10 55.8 25800 202 2850 17.2 2210 15900 20.2 REF2AIXRADIAL 2A 1X 1.805 1.2 3.05 21.80 154.0 31400 658 4160 13.6 2960 16900 29.2 REF2AIXRADIAL 2A 1X 1.741 0.4 1.69 19.00 84.3 32600 207 3810 16.9 29.00 28.8 REF2AIXRAD3AL 2A 1X 1.786 0.4 1.93 15.40 87.4 34600 337 3980 17.2 2360 18700 28.5 REF2AIXRAD5AL 2A 1X 1.798 0.5 1.66 16.10 69.2 37200 226 4700 17 2490 20000 28.6 REF2AIXRAD5AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 16.8 2500 20100	REF2AUNRAD6AL	2A	UN	1.438	0.3	1.26	9.48	60.9	30800	233	3070	22.1	1860	20000	20.5
REP2A IXRADIAL 2A 1X 1.805 1.2 3.05 21.80 154.0 31400 658 4160 13.6 2960 16900 29.2 REF2A IXRADAL 2A 1X 1.741 0.4 1.69 19.00 84.3 32600 207 3810 16.9 2490 20300 28. REF2A IXRADAL 2A 1X 1.586 0.4 1.93 15.40 87.4 34600 337 3980 17.2 2300 28.5 REF2A IXRADAL 2A 1X 1.586 0.4 1.93 15.40 87.4 34600 337 3980 17.2 2300 28.5 REF2A IXRADAL 2A 1X 1.798 0.5 1.68 16.00 69.2 37200 226 4700 17 2490 20000 28.6 REF2A IXRADAL 2A 1X 1.361 0.3 1.45 15.30 56.8 30300 164 4110 16.8 2580 <t< td=""><td>REF2AUNRAD7AL</td><td>2Á</td><td>UN</td><td>1,514</td><td>0.3</td><td>1.15</td><td>11.10</td><td>52.6</td><td>27800</td><td>197</td><td>3170</td><td>18.1</td><td>2310</td><td>22000</td><td>19.7</td></t<>	REF2AUNRAD7AL	2Á	UN	1,514	0.3	1.15	11.10	52.6	27800	197	3170	18.1	2310	22000	19.7
REF2AIXRAD2AL 2A 1X 1.741 0.4 1.69 19.00 84.3 32600 207 3810 16.9 2490 20300 28 REF2AIXRAD3AL 2A 1X 1.586 0.4 1.93 15.40 87.4 34600 337 3980 17.2 2360 18700 28.5 REF2AIXRAD3AL 2A 1X 1.798 0.5 1.68 16.00 69.2 37200 226 4700 17.7 2490 20000 28.6 REF2AIXRAD3AL 2A 1X 1.798 0.5 1.65 14.10 67.3 34100 197 4250 19.1 2680 22900 24.9 REF2AIXRAD5AL 2A 1X 1.361 0.3 1.45 15.30 56.8 30300 164 4310 16.8 2580 21000 25 REF2AIXRAD5AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 <td< td=""><td>REF2AUNRAD8AL</td><td>2A</td><td>UN</td><td>0.893</td><td>0.3</td><td>1.29</td><td>10.10</td><td>55.8</td><td>25800</td><td>202</td><td>2850</td><td>17.2</td><td>2210</td><td>15900</td><td>20.2</td></td<>	REF2AUNRAD8AL	2A	UN	0.893	0.3	1.29	10.10	55.8	25800	202	2850	17.2	2210	15900	20.2
REF2A1XRAD3AL 2A 1X 1.586 0.4 1.93 15.40 87.4 34600 337 3980 17.2 2360 18700 28.5 REF2A1XRAD4AL 2A 1X 1.798 0.5 1.68 16.00 69.2 37200 226 4700 17 2490 20000 28.6 REF2A1XRAD5AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 197 4250 19.1 268.0 20000 28.6 REF2A1XRAD5AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 16.8 2950 20100 28.7 REF2A1XRAD6AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 16.8 2580 21200 25 REF2A1XRAD6AL 2A 1X 1.555 0.3 1.48 11.80 60.0 3210 13.4 2190 17.80 17.3 <td>REF2A1XRADIAL</td> <td>2A</td> <td>IX</td> <td>1.805</td> <td>1.2</td> <td>3.05</td> <td>21.80</td> <td>154.0</td> <td>31400</td> <td>658</td> <td>4160</td> <td>13.6</td> <td>2960</td> <td>16900</td> <td>29,2</td>	REF2A1XRADIAL	2A	IX	1.805	1.2	3.05	21.80	154.0	31400	658	4160	13.6	2960	16900	29,2
REF2A1XRAD4AL 2A 1X 1.798 0.5 1.68 16.00 69.2 37200 226 4700 17 2490 20000 28.6 REF2A1XRAD4AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 197 4250 19.1 2680 22900 28.6 REF2A1XRAD6AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 197 4250 19.1 2680 22900 28.6 REF2A1XRAD6AL 2A 1X 1.361 0.3 1.45 15.30 56.8 30300 205 4140 16.8 2580 21200 25 REF2A1XRAD6AL 2A 1X 1.595 0.3 1.48 1.80 60.0 32100 262 3370 15.5 2000 19500 11.4 REF2A2XRAD1AL 2A 2X 1.055 0.2 1.08 9.83 36.5 23400 257 3290 1	REF2A1XRAD2AL	2A	iX	1.741	0.4		19.00					16.9	2490	20300	
REF2A1XRAD5AL 2A 1X 1.729 0.4 1.65 14.10 67.3 34100 197 4250 19.1 2680 22900 24.9 REF2A1XRAD6AL 2A 1X 1.361 0.3 1.45 15.30 56.8 30300 164 4310 16.8 2950 20100 28.7 REF2A1XRAD6AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 16.8 2950 21100 25 REF2A1XRAD6AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 16.8 2580 21200 25 REF2A1XRAD6AL 2A 1X 1.555 0.2 1.08 9.83 36.5 23400 205 3310 13.4 2190 17800 17.3 REF2A2XRAD3AL 2A 2X 1.265 0.3 0.99 9.40 8.2800 257 3290 11.9															
REF2A1XRAD6AL 2A 1X 1.361 0.3 1.45 15.30 56.8 30300 164 4310 16.8 2950 20100 28.7 REF2A1XRAD6AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 16.8 2950 2100 28.7 REF2A1XRAD7AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 16.8 2580 21200 25 REF2A1XRAD6AL 2A 1X 1.595 0.3 1.48 11.80 60.0 32100 265 3310 13.4 2190 17800 17.3 REF2A2XRAD2AL 2A 2X 1.265 0.3 0.99 9.09 40.8 23800 257 3200 11.9 1750 19200 12.6 REF2A2XRAD3AL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 252 3220 <td< td=""><td></td><td></td><td>Sec. 2. 1977. 201</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Sec. 2. 1977. 201												
REF2A1XRAD7AL 2A 1X 1.724 0.3 1.59 17.40 69.7 30900 205 4140 16.8 2580 21200 25 REF2A1XRAD6AL 2A 1X 1.595 0.3 1.48 11.80 60.0 32100 262 3370 15.5 2000 19500 21.4 REF2A2XRAD1AL 2A 2X 1.055 0.2 1.08 9.83 36.5 23400 205 3310 13.4 2190 17800 17.3 REF2A2XRAD2AL 2A 2X 1.055 0.2 1.08 9.83 36.5 23400 257 3290 11.9 1750 19200 12.6 REF2A2XRAD3AL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 219 3470 11.5 2080 2400 20.3 REF2A2XRAD4AL 2A 2X 1.064 0.2 1.16 8.65 42.4 24900 219 3470 1															
REF2A1XRAD8AL 2A 1X 1.595 0.3 1.48 11.80 60.0 32100 262 3570 15.5 2000 19500 21.4 REF2A2XRAD1AL 2A 2X 1.055 0.2 1.08 9.83 36.5 23400 205 3310 13.4 2190 17800 17.3 REF2A2XRAD2AL 2A 2X 1.265 0.3 0.99 9.09 40.8 23800 257 3290 11.9 1750 19200 12.6 REF2A2XRAD3AL 2A 2X 1.265 0.3 0.17 10.20 53.4 20400 252 3220 15.3 2290 20400 16.9 REF2A2XRAD4AL 2A 2X 1.104 0.2 1.16 8.65 42.4 24900 219 3470 11.5 2080 20400 20.3 REF2A2XRAD5AL 2A 2X 1.260 0.3 1.00 8.50 48.4 17200 264 2920 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
REF2A2XRADIAL 2A 2X 1.055 0.2 1.08 9.83 36.5 23400 205 3310 13.4 2190 17800 17.3 REF2A2XRADAL 2A 2X 1.265 0.3 0.99 9.09 40.8 23800 257 3200 11.9 1750 19200 12.6 REF2A2XRADAL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 257 3200 11.9 1750 19200 16.9 REF2A2XRAD3AL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 219 3470 11.5 2080 20400 20.3 REF2A2XRAD5AL 2A 2X 1.260 0.3 1.00 8.50 48.4 17200 264 2920 11 1800 18900 14.4 REF2A2XRAD6AL 2A 2X 1.114 0.3 1.17 8.74 42.8 21600 265 3500 11.			2.00 A												
REF2A2XRAD2AL 2A 2X 1.265 0.3 0.99 9.09 40.8 23800 257 3290 11.9 1750 19200 12.6 REF2A2XRAD3AL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 252 3220 15.3 2290 20400 16.9 REF2A2XRAD3AL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 219 3470 11.5 2080 20400 20.3 20.7 31.00 8.50 48.4 17200 264 2920 11 1800 18900 14.4 REF2A2XRAD6AL 2A 2X 1.14 0.3 1.07 8.74 42.8 21600 264 2920 11 1800 18900 14.4 REF2A2XRAD6AL 2A 2X 1.114 0.3 1.07 8.74 42.8 21600 265 2970 11.8 2020 20400 21.7 REF2A2X															
REF2A2XRAD3AL 2A 2X 0.665 0.3 1.17 10.20 53.4 20400 252 3220 15.3 2290 20400 16.9 REF2A2XRAD4AL 2A 2X 1.104 0.2 1.16 8.65 42.4 24900 219 3470 11.5 2080 20400 20.3 REF2A2XRAD5AL 2A 2X 1.260 0.3 1.00 8.50 48.4 17200 264 2920 11 1800 18900 14.4 REF2A2XRAD5AL 2A 2X 1.114 0.3 1.17 8.74 42.8 21600 265 3500 11.8 2020 20400 17.9 REF2A2XRAD5AL 2A 2X 1.195 0.3 1.13 10.50 40.6 18200 255 2970 11 2140 19500 21															
REP2A2XRAD4AL 2A 2X 1.104 0.2 1.16 8.65 42.4 24900 219 3470 11.5 2080 20400 20.3 REP2A2XRAD5AL 2A 2X 1.260 0.3 1.00 8.50 48.4 17200 264 2920 11 1800 18900 14.4 REP2A2XRAD5AL 2A 2X 1.114 0.3 1.17 8.74 42.8 21600 265 3500 11.8 2020 1.75 REP2A2XRAD5AL 2A 2X 1.114 0.3 1.17 8.74 42.8 21600 265 3500 11.8 2020 1.9 1.9 0.17.5 REP2A2XRAD7AL 2A 2X 1.195 0.3 1.13 10.50 40.6 18200 255 2970 11 2140 19500 21															
REF2A2XRAD5AL 2A 2X 1.260 0.3 1.00 8.50 48.4 17200 264 2920 11 1800 18900 14.4 REF2A2XRAD6AL 2A 2X 1.114 0.3 1.17 8.74 42.8 21600 265 3500 11.8 2020 20400 17.5 REF2A2XRAD6AL 2A 2X 1.195 0.3 1.13 10.50 40.6 18200 255 2970 11 2140 19500 21															
REF2A2XRAD6AL 2A 2X 1.114 0.3 1.17 8.74 42.8 21600 265 3500 11.8 2020 20400 17.5 REF2A2XRAD7AL 2A 2X 1.195 0.3 1.13 10.50 40.6 18200 255 2970 11 2140 19500 21															
REF2A2XRAD7AL 2A 2X 1.195 0.3 1.13 10.50 40.6 18200 255 2970 11 2140 19500 21															
CREMEYAZXXXATWATWATWATWATWATWATWATWATWATWATWATWATWA	REF2A2XRAD/AL	2A 2A	2X	1,195	0.3	1.13	8.88	40.6	22300	255	3320	13	2140	19500	21 19.75

Year 2001 Field Studies - C2 Site - Parameters in	Radish (All Leaves)
I car 2001 Fictu Studies - C2 Site - I arameters in	Haussi (IIII Leaves)

Sample Code	plot	treat	Sample Dry	As	Co	Cu	NI	Ca	Fe	Mg	Mn	P	к	Zn
Sample Code	htor	દા દસા	Weight (g)	A3	- C0	Cu		СА	rc	ivag	14411	1	"	240
		ÉQL	0.001	0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
		Units	0.001 g	mg/kg	0.01 mg/kg	0.05 mg/kg	0.1 mg/kg	50 mg/kg	o me∕ke	o mg/kg	0.5 mg/kg	o mg/kg	ng/kg	0.5 mg/kg
REF3AUNRAD1AL	3A	UN	1.517	0.5	1.67	13.80	70.8	25300	303	3300	11.5	2940	20300	20.8
REF3AUNRAD2AL	3A	UN	2.157	0.9	2.41	19.30	124.0	25300	561	3340	14.3	2660	20400	29.4
REF3AUNRAD3AL	3A	ŲŊ	2.603	0.6	1.80	11.90	95.2	24200	395	2990	12.7	2420	23600	22.2
REF3AUNRAD4AL	3A	UN UN	1.999 2.235	0.9	2.92 2.54	19.20 16.20	146.0	33500 33500	611 548	3920	15.9 16.6	2860	23900	31.5 20.5
REF3AUNRAD5AL REF3AUNRAD6AL	3A 3A	UN	3.176	0.8 1.3	2.54	26.80	128.0 213.0	41900	548 920	4350 5190	19	2680 3000	18900 27300	20.5
REF3AUNRAD7AL	34	UN	1.875	0.6	1,87	13.80	93.1	26500	408	3430	11.5	2760	25200	20.6
REF3AUNRADSAL	3A	UN	2.672	0.6	1.84	13.00	84.1	27100	336	3370	11.7	2640	25100	23.8
REF3A1XRAD1AL	3A	ix	2.253	0.8	2.14	15.40	102.0	23900	514	4320	10.8	3100	20800	23
REF3A1XRAD2AL	3A	ıх	0.685	0.6	1.88	14.40	82.1	18500	374	3470	11.2	3620	21600	35
REF3A1XRAD3AL	3A	1X	2.188	1.0	2,82	21.00	148.0	25800	642	4310	12.8	3640	20700	22.3
REF3A1XRAD4AL	3A .	1X	2.099	1.0	3.30	22.00	178.0	32300	658	4230	14.5	2520	13800	32.7
REF3A1XRAD5AL	3A	1X -	3.002	0.7	2.08	16.80	107.0	23500	441	3550	10.6	3280	16300	25
REF3A1XRAD6AL	3A	IX	2.032	0.7	2.11	15.20	107.0	21000	462	3320	11.1	2740	19200	30.9
REF3A1XRAD7AL	3A	JX	1.300	0.6	1.84	17.70	83.3	25700	390	4920	11.8	3860	22700	29.5
REF3A1XRAD8AL	3A	iX	1.930	0.8	1.91	19.10	89.3	22500	410	3580	10.8	3150	17000	36.7
REF3A2XRAD1AL	3A	2X	1.959	0.4	1.78	14.80	68.9	29800	215	3810	14.4	2660	19100	29.9
REF3A2XRAD2AL	3A	2X	1.339	1.0	3.14	20.70	152.0	33300	646	4240	14	2740	15000	33.2
REF3A2XRAD3AL	3A	2X	1.595	1.0	2.76	18.60	142.0	38100	552	5180	13.1	3330	18700	31.3 29.1
REF3A2XRAD4AL	3A	2X	3.367	1.0	2.79	20.40	140.0	22500	629 523	3520 4570	12.4	3360	17300	
REF3A2XRAD5AL REF3A2XRAD6AL	3A 3A	2X 2X	1.219 1.359	1.1 1.2	2.56 3.14	18.90 22.30	110.0 152.0	33300 29000	626	4570	14.1 14.8	2860 2750	16500 15500	28.6 32.2
REF3A2XRAD7AL	3A	2X	1.551	1.1	2.25	17.30	112.0	43400	496	5950	14.8	1710	11500	28.9
REF3A2XRAD8AL	. 3A	2X	1.291	0.9	1.75	14.90	87.8	41600	403	5320	9.9	1790	13000	23
REF4AUNRADIAL	4A	ŪN	1.295	0.3	1.28	11.10	41.8	27400	206	4050	10.9	3500	22700	24.8
REF4AUNRAD2AL	4A	UN	0.803	0.4	1.60	15.20	68.0	22400	256	3150	13.8	2930	23200	22.6
REF4AUNRAD3AL	4A	UN	1.564	0.3	1.23	9.71	48.3	27500	193	3750	13.1	2590	20500	22.8
REF4AUNRAD4AL	4A	UN	1.593	0.3	1.20	9.52	42.2	26300	201.5	3575	13.15	2420	22800	19.35
REF4AUNRAD5AL	4A	UN	2.150	0.3	1.39	12.00	44.2	25700	201	3800	13.5	2830	24300	24.8
REF4AUNRAD6AL	4A	- UN	1.621	0.3	1.10	9.36	36.7	23100	173	3740	12.5	2850	20400	21.2
REF4AUNRAD7AL	. 4A	UN	1.077	0.2	1.21	11.10	37.6	20800	178	2970	11.6	2770	19200	22
REF4AUNRAD8AL	4A	UN	2.028	0.3	1.16	10.90	45.8	31100	210	3750	13.3	2580	22200	22.1
REF4A1XRAD1AL	4A	1X	2.492	0.4	1.37	13.40	66.5	31300	306	4810	13	3070	26800	30.8
REF4A1XRAD2AL	4A	1X	1.620	0.4	1.31	13.70	50.6	21900	241	3690	12.2	3720	28200	30.9
REF4A1XRAD3AL	4A	IX	2,172	0.4	1.33	13.05	51.2	24700	256	4100	11.1	3445	28550	29.6
REF4A1XRAD4AL REF4A1XRAD5AL	4A 4A	1X 1X	2.100 2.167	0.4 0.4	1.37 1.15	12.60 11.80	53.6 36.5	23300 25600	246 176	3820 4460	14.9 11	3220 2860	28600 26400	27.1 21.2
		1X		0.4	1.15	11.80	55.2	23600	260	3950	11.3	3420	24000	21.2
REF4A1XRAD6AL REF4A1XRAD7AL	4A 4A		1.380 2.134	0.4	1.01	12.10	33.2 44.7	30000	260	3930 4440	12.1	3280	24000	27.8
REF4A1XRAD8AL	44	ix	2.261	0.4	1.18	13.50	55.9	27200	257	4440	14.5	2930	28900	24.2
REF4A2XRADIAL	4A	2X	1.500	0.4	0.97	8.94	32.7	24200	206	4010	10.7	2540	21400	17.4
REF4A2XRAD2AL	4A	2X	1.333	0.3	1.12	10.80	35.7	22200	190	3680	11.3	2900	22000	21.5
REF4A2XRAD3AL	4A	2X	1.097	0.3	1.09	10.80	30.5	27000	173	3650	13.5	2520	20000	16.1
REF4A2XRAD4AL	4Å	2X	1.289	0.3	1.17	10.30	33.5	29000	180	4230	10.8	2530	17500	27.4
REF4A2XRAD5AL	4A	2X	1.544	0.3	1.04	10.10	27.4	26400	192	4290	13.4	2820	22000	27.7
REF4A2XRAD6AL	4 A	2X	1.581	0.2	0.99	8.69	35.8	21300	223	3620	9.9	2670	21500	25.1
REF4A2XRAD7AL	4A.	2X	1.885	0.4	1.17	11.10	41.8	20700	241	3650	10.9	2990	22200	24.9
REF4A2XRAD8AL	4A	2X	1.187	0.3	1.17	11.00	46.6	21200	291	4090	9.9	2520	21400	19.1

Year 2001 Field Studies - C2 Site - Parameters in Radish (All Leaves)

Sample Code	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	Р	K	Zn
		EQL	0.001	0.2	0.01	0.05	.0,1	50	5	5	0.5	5	10	0.5
Alter of the second		Units	g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
REFIBCALRADIAL	18	CAL	1,481	0.4	1.56	19.3	79	27400	358	5880	15.7	3990	29000	49.9
REFIBCALRAD2AL	1 B	CAL	2,120	0.5	1.95	20	75.6	29700	379	5990	16.8	4620	32600	58
REFIBCALRAD3AL	IB .	CAL	2.919	0.4	1.92	21.9	94.6	32300	401	6190	16	4220	31700	44.7
REFIBCALRAD4AL	1 B	CAL	2.295	0.6	1.87	21.8	94.7	31000	416	6870	14.5	4590	31300	46.8
REF1BCALRAD5AL	1 B	CAL	2.309	0.7	2.31	21.4	114	24700	497	5350	15.9	4510	29600	45.2
REFIBCALRAD6AL	1B	CAL	1.837	0.8	2.77	26	148	29900	633	7030	19.9	4330	23900	54.1
REFIBCALRAD7AL	1 B	CAL	2.494	0.7	2.24	23.1	110	28900	473	6440	18.1	3920	28000	46
REF2BCALRAD1AL	2B	CAL	3.766	1.1	3.42	28.1	178	34900	982	6930	24.4	4160	27600	55.4
REF2BCALRAD2AL	2B	CAL	2.345	1.8	5.34	44.2	309	28500	1590	6570	32.2	4360	29300	53.7
REF2BCALRAD3AL	2B	CAL	2.341	1.3	4.08	38.7	216	29800	1150	7110	29.4	4450	26700	67
REF2BCALRAD4AL	2B	CAL	2.832	1.2	4.26	31.3	222	34100	1190	6560	27.7	3950	25400	56.6
REF2BCALRAD5AL	2B	CAL	3.348	1.1	3.87	37.3	198	29500	1020	6900	27.2	4490	31700	61.8
REF2BCALRAD6AL	2B	CAL	2.478	1.2	3.91	37.1	198	27400	1090	6680	27.9	4630	27900	55
REF2BCALRAD7AL	2B	CAL	4.466	1.1	3.89	34.6	210	32100	1090	6460	28.3	4510	30900	60.2
REF3BCALRADIAL	3B	CAL	9.138	0.5	2.07	24.5	92	35900	401	6760	19.4	5290	30200	59
REF3BCALRAD2AL	3B	CAL	4.308	0.5	1.87	20.7	85.3	31500	350	5680	15.1	4500	26800	58.8
REF3BCALRAD3AL	3B	CAL	3.152	0.4	1.74	20.8	88.9	31200	341	5490	14.9	4830	30700	47.2
REF3BCALRAD4AL	3B	CAL	7.294	0.6	1.99	23.3	101	34100	414	6320	15.6	4940	30800	58.8
REF3BCALRAD5AL*	3B	CAL .	5.880	0.4	1.705	20.45	82.7	28750	319	5865	17.75	5040	33150	55.1
REF3BCALRAD6AL	3B	CAL	10.163	0.4	1.67	19.8	78.7	36800	323	6410	14.7	4780	28300	50.9
REF3BCALRAD7AL	3B	CAL	9.549	0.5	2.14	21.5	115	36000	454	6820	18.4	4960	27500	64.1
REF4BCALRADIAL	4B	CAL	1.644	0.7	2.17	21.9	89.8	26700	644	6770	21.3	4650	27500	54.7
REF4BCALRAD2AL	4B	CAL	3.015	0.6	2.01	19	75.8	30500	615	7000	20.9	4470	22300	58
REF4BCALRAD3AL*	4 B	CAL	3.094	0.8	2.605	26.25	108.5	32250	791.5	7235	25.3	4425	25250	52.75
REF4BCALRAD4AL	4B	CAL	2.538	0.5	1.76	17.8	69.3	30000	539	6390	21.1	4280	23800	46
REF4BCALRAD5AL	4B .	CAL	3.654	0.5	1.87	17	67.4	28700	577	6520	20.3	4270	27100	63.6
REF4BCALRAD6AL	4B	CAL	3.422	0.6	1.71	18.2	63	31000	501	6730	21.6	4240	26000	45.3
REF4BCALRAD7AL	4 B	CAL	2.183	0.5	1.75	14.3	51.5	24400	457	5990	19.6	4630	28900	61.6

Year 2001 Field Studies - C2 Site - Parameters in Radish (Basal Leaves)

Sample Code	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Nİ	Ca	Fe	Mg	Mn	Р	ĸ	Zn
		Units	g	0.2	0.01	0.05	0.1	50	5	5	0.5	5	. 10	0.5
REFIAUNRADIAL	1A	UN	1.616	0.6	1.00	11.40	53.6	49400	265	6010	11.6	1010	16800	22,4
REF1AUNRAD2AL	18	UN	1.436	0.5	0.84	12.20	47.6	45300	251	5960	9.7	874	17000	17.9
REFIAUNRAD3AL	1A	UN	1.858	0.6	0.84	10.10	51.4	38000	211	5350	13.4	1060	24400	18.1
REFIAUNRAD4AL	1Å	UN	2.458	0.6	0.96	8.06	50.2	41300	225	5490	17.9	1100	17600	18
REFIAUNRAD5AL	1A	UN	1.841	0.5	0.93	16.00	52.1	46600	227	4965	13.15	1020	16100	16.3
REFIAUNRAD6AL	1A -	UN	2.020	0.5	0.90	9.89	50.6	43600	226	5010	11.3	984	17300	18.4
REFIAUNRAD7AL	1A	UN	1.967	0.6	1.06	11.70	56.6	42800	259	5070	11.9	1150	15100	18.6
REFIAUNRAD8AL	1A	ÛN	1.440	0.5	1.02	11.40	50.7	42900	248	5200	11.4	1060	20200	16.3
REFIAIXRADIAL	1A	1X	1.406	0.5	0.83	13.10	46.6	48000	242	6140	8.4	1050	19000	18.9
REFIA1XRAD2AL	14	1X	1.532	0.4	0.75	11.60	37.5	43400	177	4800	10.2	1210	19100	19.9
REFIAIXRAD3AL	1A	1X	2.043	0.5	0.94	12.20	49.0	41400	220	5450	9.8	1150	20700	16.8
REFIA1XRAD4AL	1A A	12	2.043	0.4	0.79	8.87	34.9	38400	185	5500	9.5	1010	22900	20.4
REFIAIXRADSAL	14	IX	2.371	0.5	0.91	11.60	44,5	45600	230	5850	12.4	1100	20000	20.1
REFIAIXRAD6AL	1A	1X	2.059	0.4	0.97 1.08	12.50 11.70	50.2 44.1	48600 31500	251 204	6530 3870	10.4 15.3	1240 2150	17000 21000	22.9 25.1
REFIAIXRAD7AL	1A	1X 1X	2.893	0.3 0.4	0.81	9.46	38.9	45900	204 201	5910	8.3	1030	15000	19.3
REFIAIXRAD8AL	14	1X 2X	1.703	0.4	1.23	9.46 14.90	53.4	43900	201	10100	8.5 10.8	1030	14300	27.9
REF1A2XRADIAL REF1A2XRAD2AL	1A 1A	2X	1.185 1.400	0.6	1.23	14.90	55.4 59.2	51100	254	8320	10.8	1470	13100	27.9
REF1A2XRAD3AL	14	2A 2X	1.698	0.6	1.33	9.84	44.8	52400	204	7720	9.9	1340	16700	23.5
REF1A2XRAD4AL	IA IA	2A 2X	0.785	0.6	1.10	18.20	59.3	55700	242	9380	9.3	1190	10700	28.6
REFIA2XRAD5AL	1A 1A	2A 2X	1.461	0.5	1.23	12.50	48.6	48800	266	7760	8.5	1320	18600	19.5
REF1A2XRAD6AL	18	2A 2X	1.389	0.6	1.05	20.20	48.0	50700	245	7670	10	1090	15500	19.7
REF1A2XRAD7AL	10	2X	1.720	0.5	1.05	12.00	51.4	47900	243	7390	8.3	1130	15100	22
REF1A2XRAD8AL	1A	2X	1.740	0.6	1.07	12.00	44.0	48300	255	9080	9.4	1260	14700	21.1
REF2AUNRADIAL	2A	ŨN	1.562	0.5	0.88	8.27	51.4	41600	220	4870	11.2	1130	15700	18.4
REF2AUNRAD2AL	2A	UN	2.390	0.5	1.00	10.10	51.2	43600	215	5250	13.6	1200	13500	19.6
REF2AUNRAD3AL	2Å	UN	1.804	0.5	1.03	8.95	57.8	42800	199	4970	10.8	1070	19000	17.1
REF2AUNRAD4AL	2A	UN	1.975	0.5	1.01	11.30	57.0	40200	262	3880	14.6	1120	17400	20.3
REF2AUNRAD5AL	2Å	UN.	1.476	0.5	0.97	8.63	52.7	41100	221	5040	15.4	1150	15100	21.3
REF2AUNRAD6AL	2A	ŪN	2.176	0.7	1.56	12.60	86.6	55600	369	5960	24.2	1220	17200	22.4
REF2AUNRAD7AL	2A	ŪN	1.767	0.5	0.87	8.98	43.9	38900	236	4700	10.9	1130	16800	18.3
REF2AUNRAD8AL	2A	UN	1.374	0.5	0.98	8.87	49.2	43300	245	4670	12.7	1100	12900	19.8
REF2A1XRADIAL	2A	iX	1.843	0.6	1.32	13.50	66.8	51300	230	6360	11.4	1140	15700	28.5
REF2A1XRAD2AL	2A	IX	1.607	0.6	1.56	17.80	68.2	54500	204	6110	13	1290	16800	28.1
REF2A1XRAD3AL	2A	IX	1.040	0.6	1.62	14.80	83.5	59400	303	7040	13.3	1170	12100	28.4
REF2A1XRAD4AL	2A	1X	1.747	0.6	1.11	12.90	55.0	50300	199	6610	10.3	1230	15500	22.8
REF2A1XRAD5AL	2A	1X	1.748	0.5	1.26	11.10	54.2	52200	188	6280	12.6	1300	18400	21.4
REF2A1XRAD6AL	2A	1X	1.856	0.6	1.27	12.30	60.7	51500	232	7065	9.5	1410	17100	24.75
REF2A1XRAD7AL	2A	IX	1.633	0.6	1.31	16.20	74.9	50100	248	6870	12.5	1230	17100	22
REF2A1XRAD8AL	2A	JX	1.495	0.4	1.28	11.30	61.9	53500	227	6440	12.8	1160	13900	23
REF2A2XRAD1AL	2A	2X	2.009	0.4	0.77	7.58	31.8	43500	234	6590	8.5	923	11900	13.5
REF2A2XRAD2AL	2A	2X	1.554	0.5	0.94	9.57	45.1	48500	291	7820	8.7	850	14800	16.5
REF2A2XRAD3AL	2A	2X	1.583	0.4	0.72	7.44	34.8	34700	239	5690	10.4	1150	16300	17.6
REF2A2XRAD4AL	2A	2X	1.611	0.5	1.20	9.10	55.5	44000	368	7070	9.5	1120	16900	21.1
REF2A2XRAD5AL	2A	2X	1.880	0.4	0.89	7.94	43.8	32800	287	5400	9.3	1010	16900	17.6
REF2A2XRAD6AL	2A	2X	1.266	0.5	1.00	7.19	42.2	39900	321	7320	8.5	1040	16900	16.8
REF2A2XRAD7AL	2A	2X	1.681	0.5	0.88	7.92	37.1	38600	302	6340	8.4	1060	13600	16.6
REF2A2XRAD8AL	2A	2X	1.719	0.5	0.98	7.38	37.4	40600	306	6660	9.8	1030	14000	17.4

Year 2001 Field Studies - C2 Site - Parameters in Radish (Basal Leaves)

Sample Code	plot	treat	Sample Dry . Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	P	K	Zn
			weight (g)						10000					
and the second second	1.1	Units	g	0.2	9.01	6.05	0.1	50	5	5	0.5	5	10	0.5
RERIAUNRADIAL	3A	UN	1.608	0.6	1.46	12.90	58.9	40900	277	4510	10.4	1680	14700	20.7
REF3AUNRAD2AL	3A	UN	1.547	0.8	1.59	16.50	70.6	38500	349	5350	10.6	1800	15700	26.9
REF3AUNRAD3AL	- 3A	UN	2.165	0.7	1.65	9.87	63.9	37600	325	4560	12.7	1830	20500	25.3
REF3AUNRAD4AL	3A	UN	1.519	0.7	1.63	15.60	77.2	42700	343	5090	12.7	2050	17800	28.6
REF3AUNRAD5AL	3A	UN	1.690	0.5	1.34	11.30	60.9	47600	306	5630	12.9	1790	16600	16.6
REF3AUNRAD6AL	3A	UN	1.442	0.9	2.23	18.30	110.0	43400	598	5320	14.5	2390	20300	24.7
REF3AUNRAD7AL	3A	UN	1.387	0.6	1.34	11.00	60.5	33500	299	4370	10.9	1980	21300	15.9
REF3AUNRAD8AL	. 3A	UN	1.381	0.8	1.77	13.70	71.7	44000	379	5620	12.3	1870	22200	26.5
REF3A1XRADIAL	3A	1X	1.656	0.9	1.47	12.80	64.5	38500	391	5950	10.6	2430	17900	21.9
REF3A1XRAD2AL	3A	1X	1.782	0.8	1.62	13.50	73.5	39800	401	6120	9.5	2200	17000	30.6
REF3A1XRAD3AL	3A	1X	2.360	0.9	1.86	14.70	98.4	44400	444	6430	9.9	1720	12600	19.7
REF3A1XRAD4AL	3A	1X	2.984	1.0	1.99	16.20	94.2	41700	481	5870	9.4	1900	12500	26.6
REF3A1XRAD5AL	-3A	IX	2.335	0.8	1.49	16.30	79.1	44900	378	6240	8.6	1750	11200	31.7
REF3A1XRAD6AL	3A	IX	1.279	0.8	1.46	14.10	58.3	36600	358	5660	9.8	2050	14900	24
REF3A1XRAD7AL	3A	1X	1.604	0.6	1.18	14.90	52.0	38800	248	6820	8.8	2340	22900	31.9
REF3A1XRAD8AL	3A	1X	1.805	1.0	1.51	16.90	80.4	41900	345	5760	9.3	1750	11000	37.5
REF3A2XRADIAL	3A	. 2X	1.125	i.1	2.07	16.60	100.0	45000	509	6420	11.3	2040	12900	28.1
REF3A2XRAD2AL	3A	2X	1.108	1.0	2.10	17.90	88.2	47800	440	5480	12.1	1870	8180	30.1
REF3A2XRAD3AL	3A	2X	1.313	1.1	2.25	17.10	99.6	54300	480	6880	13.2	2360	11200	31.8
REF3A2XRAD4AL	3A	2X	1.372	0.8	1.62	12.90	68.3	35900	325	4570	9.5	1470	7960	20.6
REF3A2XRAD5AL	3A	2X	0.734	1.0	1.69	15.40	60.8	40400	366	5470	12.1	2070	11200	28.2
REF3A2XRAD6AL	3A	2X	0.923	1.1	2.01	18.80	77.8	41600	401	5000	11.4	1760	12300	27.7
REF3A2XRAD7AL	3A	2X	1.352	0.9	2.60	18.50	121.0	22600	525	3430	12.8	3190	18600	29.6
REF3A2XRAD8AL	3A	2X	0.628	0.8	2.20	18.00	105.0	17400	411	3330	10.9	3630	24400	26.9
REF4AUNRADIAL	4A	UN	1.597	0.3	0.76	8.38	27.9	40800	174	5390	8.3	1660	18500	22.9
REF4AUNRAD2AL	44	UN	1.165	0.6	1.13	17.00	56.7	33700	24 1	4270	9.2	1550	22500	28.5
REF4AUNRAD3AL	4A	UN	1.798	0.5	0.98	8.09	45.1	41400	223	5410	8.6	1560	18600	24.4
REF4AUNRAD4AL	4A	UN	1.597	0.5	0.89	7.38	34.9	43500	206	6140	8.7	1550	24700	25.7
REF4AUNRAD5AL	4A	UN	2.046	0.5	1.20	11.00	43.4	41800	253	5630	8.8	1640	21200	25.6
REF4AUNRAD6AL	4A	UN	1.960	0.4	0.88	9.21	35.4	40200	218	5840	8.6	1680	18500	23.7
REF4AUNRAD7AL	4A	UN	1.912	0.4	0.94	9.80	35.2	39000	203	5380	9.2	1710	20800	22.4
REF4AUNRAD8AL	4A	UN	1,648	0.5	0.79	8.61	36.7	44500	209	5710	9.2	1540	19900	26.9
REF4A1XRADIAL	4A -	1X	1.966	0.5	0.99	10.50	41.1	49900	273	6870	8.7	1810	22400	26.9
REF4A1XRAD2AL	4A	iX	2.107	0.5	0.90	10.20	37.5	39700	245	5400	7.8	2100	27900	24,5
REF4A1XRAD3AL	44	ix.	2.032	0.4	0.81	9.04	31.3	41200	233	6630	7.8	2310	30600	26.5
REF4AIXRAD4AL	44	1X	2.273	0.5	1.00	9.28	41.3	44400	280	6580	8	1820	25800	27,3
REF4A1XRAD5AL	4A	1X	2.210	0.4	0.91	8.54	31.1	41900	178.5	6150	8.45	1755	22350	27.3
REF4A1XRAD6AL	4A	ix	1.343	0.5	0.81	8.65	38.1	38200	242	6250	7.4	1720	23100	22.3
REF4A1XRAD7AL	4A	ix	1.688	0.6	0.78	8.34	35.3	46000	249	6610	7.8	1730	23200	21
REF4A1XRAD8AL	4A	1X	1.549	0.5	1.06	9.60	37.5	42900	226	7040	9.6	1460	21700	23.1
REF4A2XRADIAL	4A	2X	1.409	0.4	0.84	7.79	30.0	40100	244	5800	8.4	1320	19900	16.3
REF4A2XRAD2AL	4A	2X	1.709	0.4	0.78	8.36	24.2	38300	181	5620	7.7	1580	20400	20.4
REF4A2XRAD3AL	4Å	2X	1.626	0.4	0.83	9.91	24.8	41900	200	5510	10.3	1550	16200	18.7
REF4A2XRAD4AL	44	2X	1.299	0.4	0.80	7.66	26.5	39700	176	6170	7.4	1380	11600	21.4
REF4A2XRAD5AL	4A	2X	1.594	0.4	0.89	8.01	25.6	42300	235	7000	8.9	1690	21400	30.5
REF4A2XRAD6AL	44	2X	1.744	0.4	0.77	6.86	26.1	35800	255	6040	7.6	1530	23400	26.4
REF4A2XRAD7AL	44	2X	2.058	0.4	0.69	6.68	26.6	34300	193	5550	6.8	1410	17300	25.9
REF4A2XRAD8AL	4A	2x	1.460	0.4	0,79	9,23	34.6	36600	287	6410	7	1410	24100	19.5

Year 2001 Field Studies - C2 Site - Parameters in Radish (Basal Leaves)

Sample Code	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	P	ĸ	Zn
and the second second		Units	g	0.2	0.01	0,05	0,1	50	5	5	0.5	5	10	0.5
REFIBCALRADIAL	1 B	CAL	1.253	0.7	1.89	25.4	94.4	40900	494	6910	14.5	2250	22900	31.8
REFIBCALRAD2AL	18	CAL	1.815	0.8	2.53	21.4	121	48600	671	7750	17.2	2590	21000	40.8
REFIBCALRAD3AL	1 B	CAL.	2.362	0.8	2.4	25.45	125.5	51800	589	7950	14.65	2560	21450	28.65
REFIBCALRAD4AL	1 B	CAL	1.591	1.1	2.82	28.2	141	47000	699	8790	15.8	2310	18200	32.5
REFIBCALRADSAL	1 B	CAL	2,155	1	3.01	26.3	159	40600	823	7080	18	2410	21900	34.4
REFIBCALRAD6AL	18	CAL	1.008	1.2	2.75	25.8	131	49400	767	8420	18.5	2080	12500	37.7
REF1BCALRAD7AL	· 1B	CAL	1.514	1.3	3.02	32.8	171	44600	826	8240	20.1	2070	19100	31.9
REF2BCALRADIAL	28	CAL	1.594	1.2	2.98	23.6	149	48200	924	8070	22.7	2240	17900	36.6
REF2BCALRAD2AL	2B	CAL	1.417	1.1	3.03	31.3	149	38200	917	7750	21.6	2760	25400	43.2
REF2BCALRAD3AL	2B	CAL	1.165	1.1	2.9	32.2	140	44900	911	9440	23	2890	18700	51.9
REF2BCALRAD4AL	2B	CAL	1.157	1.4	3.47	29.9	173	49200	1080	8710	23.6	2170	18200	37.3
REF2BCALRAD5AL	2B	CAL	2.038	1.2	3.35	30.6	164	46000	1030	8410	24	2450	21200	42.9
REF2BCALRAD6AL	2B	CAL	1.727	1.35	3.81	35.45	190.5	40600	1155	8725	26.3	3320	22950	47.6
REF2BCALRAD7AL	2B	CAL	2.436	1.5	4.44	38.3	228	50400	1380	8190	30.3	2190	20200	43.7
REF3BCALRADIAL	3B	CAL	4.594	0.7	2.41	21.8	114	52100	542	8580	17.6	2820	18000	37.5
REF3BCALRAD2AL	3B	CAL	1.855	0.8	2.27	23.9	100	57600	476	7370	15.5	2340	14300	48
REF3BCALRAD3AL	3B	CAL	2.005	0.8	2.32	23.3	116	48300	542	6800	15.2	2330	17000	35.5
REF3BCALRAD4AL	3B	CAL	4.422	0.8	2.58	23.7	132	54900	629	7900	15.9	2330	16500	40.2
REF3BCALRAD5AL*	3B	CAL	3.045	0.8	2.21	22.9	106	50900	525	7470	17.6	2400	18200	41.9
REF3BCALRAD6AL	3B	CAL	3.533	0.8	2.07	20.1	106	60200	519	7960	14	1830	11600	32.8
REF3BCALRAD7AL	3B	CAL	3.761	0.9	2.82	23	152	59800	732	8990	17.6	2130	16000	39.3
REF4BCALRADIAL	4B	CAL	0.641	1	2.24	27.6	88.8	38900	801	8910	21.1	3140	25000	44.7
REF4BCALRAD2AL	4B	CAL	1.165	0.9	2.33	23.7	87.3	47500	898	9150	22.8	2740	15300	40.7
REF4BCALRAD3AL*	4B	CAL	1.195	1.2	3.47	32.5	148	46900	1240	8540	29	2180	15500	41.1
REF4BCALRAD4AL	4B	CAL	0.985	0.8	1.86	20.2	66.1	50900	746	9200	20.7	2010	15900	27.9
REF4BCALRAD5AL	4B	CAL	1.928	0.8	2.22	18.1	77.2	43400	856	8620	22.4	2270	19700	38.8
REF4BCALRAD6AL	4B	CAL	1.627	0.9	2.01	20.3	74.5	47000	741	8720	23.2	2240	17100	34.1
REF4BCALRAD7AL	4B	CAL	1.521	0.8	1.91	16.2	68.5	46100	776	9260	20.7	2440	19300	48.1

16 of 18

Sample Code	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	Р	к	Zu
a Company of the		Units	B	0.2	0.01	0.05	0.1	50		5	0.5	5	10	0.5
REFIAUNRADIAL	1A	UN	4.868	0.4	1.05	8.65	45.4	8990	79	3030	7.85	3265	51650	27.2
REFIAUNRAD2AL	IA	UN	4.157	0.4	1.02	10.70	46.9	8530	68	3010	7.4	3170	59000	25
REFIAUNRAD3AL	1Å	UN	4.798	0.4	0.92	8.51	54.4	8210	64	2670	6	3780	51100	24.
REFIAUNRAD4AL)A	UN	7.513	0.3	0.86	6.40	42.7	7350	52	2250	7.3	3560	54800	23
REFIAUNRAD5AL	ÌA	UN	6.584	0.3	0.77	9.27	40.6	7570	64	2580	6.2	2880	49200	23
REFIAUNRAD6AL	1A	UN	7.254	0.3	0.78	7.76	44.3	7110	67	2080	6.2	3150	43800	19
REFIAUNRAD7AL	1A ·	UN	5.362	0.3	0.85	6.88	43.0	8460	59	2710	5.9	3080	47800	21
REFIAUNRAD8AL	1A	UN	4.270	0.3	0.74	8.93	35.8	7850	60.5	2620	5.75	2735	45450	16.
REFIAIXRADIAL	14	1X	5.251	0.3	0.80	7.50	29.9	7810	63	2480	5.7	3200	50600	21
REFIAIXRAD2AL	14	1X	4.650	0,3	0.81	8.32	34.8	7880	77	2770	5.7	3060	46200	24
REFIAIXRAD3AL	1A	1X	7.391	0,3	0.69	8.23	27.4	7080	53	2410	5.3	3060	42700	21
REFIAIXRAD4AL	ÌA	1X	6.785	0.2	0.64	7.31	22.9	6615	56.5	2240	5.3	2930	41800	21
REFIAIXRAD5AL	1A	1X	8.993	0.2	0.75	5.83	24,1	7880	57	2570	6.4	2900	48500	20
REFIAIXRAD6AL	1A	1X	8.085	0.2	0.70	6.28	22.1	7460	51	2575	5.25	3160	49550	22
REFIAIXRAD7AL	1A	1X	12.309	0.2	0.56	5.77	20.4	7010	53	2320	4.5	2620	49600	20
REFIAIXRAD8AL	1Å	ix	7.539	0.2	0.62	7.06	24.8	7170	52	2290	5	3000	43200	19
REFIA2XRADIAL	18	2X	2,918	0.3	1.16	8.78	38.3	8080	59	3500	5.1	3940	54100	27
REF1A2XRAD2AL	1A	2X	3.245	0.3	1.07	8.20	40.6	7670	52	3230	4.9	3240	54600	27
REF1A2XRAD3AL	· iA	28	5.996	0.3	0.99	5.98	32.1	7300	56	3150	4.2	3470	57100	27
REFIA2XRAD4AL	1A	2X	2.063	0.4	1.37	11.20	54.0	9360	81	4770	6	4080	59300	32
REF1A2XRAD5AL	iA	2X	4.090	0.3	0.93	8.39	27.8	7300	53	3490	4.7	3550	63300	27
REF1A2XRAD6AL	1A	2X	4,327	0.2	0.79	6.93	32.6	6820	44	2950	4	3330	50800	2
REF1A2XRAD7AL	ÌÀ	2x	3.996	0.2	0.99	6.90	33.1	7030	52.5	3115	4.35	3210	50200	28
REFIA2XRAD8AL	18	2X	5.506	0.2	0.90	5.97	25.7	6300	43	3010	4.1	3240	56200	25
REF2AUNRADIAL	2A	ÛN	3.873	0.3	0.93	7.50	43.0	6730	60	2340	5.1	3040	45700	20
REF2AUNRAD2AL	2A	UN	7.889	0.3	0.93	8.24	46.6	6550	52.5	2050	5.8	3110	49050	22
REF2AUNRAD3AL	2A	UN	4.464	0.3	1.17	7.98	57.3	8430	57	2680	5.3	2860	47100	22
REF2AUNRAD4AL	2A	UN UN	7.989	0.3	0.81	7.83	41.7	6130	51	2030	5.4	2710	45800	20
REF2AUNRAD5AL	24	UN	3.553	0.2	0.81	7.83	43.5	6000	59.5	2055	5.05	2580	36300	20
	2A 2A	UN	15.540	0.2	1.10	7.58	45.5	7770	57	2003	7.8	2970	54700	20
REF2AUNRAD6AL			7.383		0.90			7150	59	2280		3860	50700	22
REF2AUNRAD7AL	2A	UN		0.3 0.2	0.90	8.66 6.38	45.1 40.2	6560	59	2480	5.7 4.5	2390	42300	19
REF2AUNRAD8AL	2A	UN	4.686					6550	60	2640	4.5	2390	43500	25
REF2A1XRAD1AL	2A	1X	5.234	0.3	1.02	6.53	37.3							19
REF2A1XRAD2AL	2A	1X	5.791	0.2	0.84	7.51	32.8	5890	50	2140	3.8	2340	38700	
REF2A1XRAD3AL	2A	1X	4.430	0.3	1.32	7.18	58.0	8380	76	3070	5.6	3260	43900	26
REF2A1XRAD4AL	2A	18	6.775	0.3	1.06	9.19	44.5	7630	72	2680	4.7	3010	39900	24
REF2A1XRAD5AL	2A	IX	5.620	0.3	1.14	7.73	41.6	7090	58	3050	4.8	3330	48300	30
REF2A1XRAD6AL	2A	1X	5.723	0.2	0.91	7.53	35.9	6120	49	2420	4	2830	38800	· 23
REF2A1XRAD7AL	2A	1X	5.284	0.3	1.10	10.10	41.1	7810	62	2860	4.9	2720	42300	27
REF2A1XRAD8AL	2A	1X .	5.775	0.2	1.07	7.00	44.3	7290	60	2840	4.8	2770	49100	24
REF2A2XRADIAL	2A	2X	6.058	0.3	0.91	6.51	30.8	7660	76	2720	5.6	2660	43100	1
REF2A2XRAD2AL	24	2X	4.358	0.3	1.04	8.35	35.4	8920	89	3200	7.1	3290	47100	20
REF2A2XRAD3AL	2A	2X	4.282	0.2	0.87	7.37	33.4	6850	69	2335	5.45	3295	39600	18
REF2A2XRAD4AL	2A	2X	4.930	0.1	0.78	5.16	25.6	6820	53	2380	4.8	2890	39400	19
REF2A2XRAD5AL	2A	2X	5.799	0.1	0.76	6.50	27.4	6310	49	2360	4.9	3220	42900	21
REF2A2XRAD6AL	2A	2X	4.121	0.1	0.95	4.90	24.5	6750	60	2590	6	3300	39900	2
REF2A2XRAD7AL	,2A	2X	5.069	0.3	1.11	7.65	32.5	8665	76.5	2865	6.55	3425	44500	23
REF2A2XRAD8AL	2A	2X	5,237	0.3	0.93	6.13	26.8	7585	134.5	2705	6.05	4225	44650	28

Year 2001 Field Studies - C2 Site - Parameters in Radish (Globes)

18	of 18
----	-------

Sample Code	plot	treat	Sample Dry Weight (g)	As	Co	Cu	NI	Ca	Fe	Mg	Mn	P	к	Zn
		Units	g	0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0,5
EF3AUNRADIAL	3A	UN	5.396	0.3	1.04	9.29	42.6	6340	68.5	2160	3.85	3585	39500	28.8
EF3AUNRAD2AL	3A	UN	5.795	0.4	1.11	9.74	46.9	5700	96	1830	4.5	3480	42400	26.
EF3AUNRAD3AL	3A	UN	7.196	0.4	1,09	6.78	46.4	6310	85	2020	4.8	3700	51800	25.
EF3AUNRAD4AL	3A	UN	5.683	0.4	1,14	9.34	48.6	7180	69.5	2420	4.25	3875	49800	29.
EF3AUNRAD5AL	3A	UN	5.679	0.4	1.53	9.11	63.6	8500	112	3320	6.9	5850	50900	30
EF3AUNRAD6AL	3A	UN	6.045	0.6	1,75	12.60	67.5	8760	126	3030	6.2	5090	55900	34
EF3AUNRAD7AL	3A	ŪN	4,421	0.4	1.14	8.40	49.0	6440	76	2260	4.1	4210	51600	23.
EF3AUNRAD8AL	3A	UN	7.056	0.3	1.00	6.80	43.9	5680	69	1940	4.2	4000	45800	24.
EF3A1XRADIAL	3A	IX	7.340	0.4	1.19	7.32	36.2	6310	81	2250	3.9	4910	48100	34.
REF3A1XRAD2AL		ix i	4.812	0.5	1.31	10.50	46.4	7340	124	2810	4.4	5290	44100	31.
EF3A1XRAD3AL	3A	iX	8.249	0.4	1.17	9.18	35.4	6270	90	2300	3.7	4520	47600	30
EF3A1XRAD3AL	3A	ix	10.897	0.5	1.35	9.48	41.0	6050	92	2240	4,1	4480	48600	34.
		ix		0.5	1.16	9.56	36.2	5570	79	2260	3.7	4100	45900	30.
REF3A1XRAD5AL	3A 74		9.167	0.4	1.18	8.69	34.0	5760	103	2100	3.8	4030	38200	30.
REF3A1XRAD6AL	3A	1X	5.860						61	2160	3.4	4030	37850	24.
REF3A1XRAD7AL	3A	1X	5.407	0.3	1.01	9.74	32.5 35.9	5885 6010	77	2300	3.4 4.1	4460	46200	31.
REF3A1XRAD8AL	34	1X	7.104	0.5	1.10	10.30								42.
EF3A2XRADIAL	<u>3</u> A	2X	3.732	0.8	1.97	12.90	71.4	9860	135	4080	5.5	5130	53400	
EF3A2XRAD2AL	• 3A	2X	2.366	0.7	1.93	11.10	54.8	8290	122	3240	4.8	5580	50200	36
EF3A2XRAD3AL	3A	2X	3.999	0.6	1.84	9.53	55.9	7450	99	2490	4.4	4540	45600	31.
EF3A2XRAD4AL	3A	2X	5.709	0.5	1.30	9.36	45.2	7350	106	2650	4.5	4850	43500	30
EF3A2XRAD5AL	3A	2X	2.238	0.6	1.75	10.12	45.1	7700	119.5	3060	4.95	4750	49450	36.
EF3A2XRAD6AL	3A	2X,	2.233	0.7	2.08	13.40	62.9	7800	119	2570	4.4	5130	50400	37.
EF3A2XRAD7AL	3A	2X	4.024	0.6	1.54	10.10	49.1	6480	109	2590	4.1	4130	42900	29.
EF3A2XRAD8AL	3A	2X	2.194	0.6	1.46	10.08	50.8	6690	128	2620	4.4	4340	44800	30.
EF4AUNRAD1AL	4A	UN	3.353	0.1	0.81	7.10	23.3	6520	54	2640	3.5	3570	42500	22.
EF4AUNRAD2AL	4A	UN	2.882	0.2	1.00	8.41	37.5	6110	56	2230	4.5	3440	37100	23.
EF4AUNRAD3AL	4A	UN	5.408	0.2	1.03	4.75	33.1	5830	56	2090	4.2	3280	41100	22.
EF4AUNRAD4AL	4A	UN	5.073	0.2	0.77	5.69	26.2	5610	55	2140	3.7	2620	34800	19.
EF4AUNRAD5AL	4A	UN	7,496	0.2	0.83	7.35	24.8	5030	53	2120	4	3150	39100	21.
EF4AUNRAD6AL	4A	UN	5.075	0.2	0.78	6.87	26.5	5910	59	2240	4.1	3130	41100	22
EF4AUNRAD7AL	4A	UN	4,329	0.1	0.75	7.37	22.5	6160	64	2180	3.9	3030	34300	22.
EF4AUNRAD8AL	4 A	UN	4,128	0.3	0.94	13.00	31.9	7370	91	2870	5	3300	45900	26.
EF4A1XRADIAL	44	iX	7.752	0.2	0.52	5,53	19.1	5180	55	2230	3.2	2810	38000	23
EF4A1XRAD2AL	4A	ix	5.047	0.3	0.69	6.67	23.3	5310	61	2230	3.7	3300	39300	23
EF4A1XRAD3AL	44	ix	5.290	0.3	0.74	6.26	21.8	6340	70	2330	3.6	3440	44100	25.
EF4A1XRAD4AL	-4A	ix	6.621	0.2	0.67	6.14	22.4	5390	69	2240	4.2	3570	42800	22.
EF4A1XRAD4AL	4A	ix	5.987	0.2	0.76	6.37	22.7	5300	58	2300	3.2	3760	42400	25
		ix	2,769	0.2	0.86	7.92	26.6	6240	93	2620	4.4	4080	40600	25
REF4A1XRAD6AL	4A				0.80		20.0	5750	60	2020	3.7	3600	47200	23
EF4A1XRAD7AL	4A	1X	5.390	0.3		6.53				1950		3040	47200	19.
EF4A1XRAD8AL	4A	1X	4.742	0.3	0.78	8.25	26.6	5270	76		4.4			
EF4A2XRADIAL	44	2X	2.762	0.3	0.68	6.15	20.8	6370	70	2570	4.8	2920	45400	17.
EF4A2XRAD2AL	4A	2X	5.055	0.2	0.66	6.00	16.3	5690	41	2110	3.4	2880	39200	16.
EF4A2XRAD3AL	- 4A	2X	4.935	0.2	0.70	7.26	21.2	5290	70	2140	4.1	2940	37900	15.
EF4A2XRAD4AL	4A :	2X	3.099	0.2	0.69	6.22	19.3	6740	51	2690	4.1	2990	40400	25
EF4A2XRAD5AL	4A	2X	4.525	0.2	0.69	5.44	15.6	5760	61	2530	4.1	3110	42100	22.
EF4A2XRAD6AL	4A	2X	3.489	0.3	0.70	5.09	21.9	5720	106	2730	4	3280	35300	24.
EF4A2XRAD7AL	4A	2X	3.720	0.3	0.73	7.13	21.7	5175	73	2335	4.2	3020	37450	21.
EF4A2XRAD8AL	4A	2X	2.793	0.2	0.68	6.63	22.1	5680	59	2620	3.3	2780	34900	17

Sample Code	plot	treat	Sample Dry Weight (g)	As	Co	Cu	Ni	Ca	Fe	Mg	Mn	Р	К	Zn
		Units	g	0.2	0.01	0.05	0.1	50	5	5	0.5	5	10	0.5
REF1BCALRAD1AL	1B	CAL	2.553	0.4	0.8	10.3	36.9	9300	58	4010	5.9	3350	52100	47.7
REFIBCALRAD2AL	1B	CAL	5.235	0.4	0.95	6.77	28.5	8410	61	3230	5.8	3730	54000	38.7
REF1BCALRAD3AL	1B	CAL	5.323	0.4	0.95	8.63	36.3	9140	76	3140	5.4	3680	61400	42.9
REFIBCALRAD4AL	1B	CAL	4.195	0.6	0.96	9.79	39.4	9350	96	2760	5.7	3910	61200	46.1
REF1BCALRAD5AL	1B	CAL	5.497	0.5	1.06	8.95	42.4	9620	104	3480	6.5	3930	51300	38.6
REFIBCALRAD6AL	1B	CAL	2.874	0.6	1.01	7.18	38.5	8500	88	3230	6.4	4080	55500	43.8
REFIBCALRAD7AL	1B	CAL	4.379	0.5	1.07	9.93	46.8	10300	98	3550	7.9	3560	60200	40
REF2BCALRADIAL	2B	CAL	3.386	0.6	1.18	7.78	39.5	9790	105	3930	8.1	3970	57500	54
REF2BCALRAD2AL	2B	CAL	2.911	0.7	1.35	10,7	49	10300	121	3990	8.6	4570	65300	51.2
REF2BCALRAD3AL	2B	CAL	2.378	0.6	1.39	10.9	51	9160	104	3450	8.6	4490	66100	61.5
REF2BCALRAD4AL	2B	CAL	2.321	0.7	1.31	7.87	51.1	9120	130	3940	8.1	3490	64600	42.9
REF2BCALRAD5AL	2B	CAL	3.747	0.6	1.44	12.3	51.2	10600	138	4540	9.6	4140	63200	58.8
REF2BCALRAD6AL	2B	CAL	2.706	0.75	1.59	12.15	54.85	10850	130.5	3770	11.05	4530	70500	56.75
REF2BCALRAD7AL	2B	CAL	5.510	0.5	1.36	10.5	48.9	9910	94	3870	8.8	3730	74000	60.2
REF3BCALRAD1AL	3B	CAL	11.882	0.6	1.22	11.1	48	11700	106	4690	8.5	3500	76200	50.2
REF3BCALRAD2AL	3B	CAL	6.165	0.6	1.22	12.5	57.5	13100	119	4360	9.1	4030	66300	51.3
REF3BCALRAD3AL	3B	CAL	5.063	0.6	1.51	13.6	64.2	14600	163	4480	9.5	3630	67400	48.3
REF3BCALRAD4AL	3B	CAL	8.891	0.6	1.305	12.25	59.3	11300	151	4335	8.2	3165	63750	49.85
REF3BCALRAD5AL*	3B	CAL	8.950	0.5	1.05	10.8	43.2	12200	102	4390	7.3	3260	60900	47.8
REF3BCALRAD6AL	3B	CAL	9.048	0.5	0.89	9.81	43.1	12500	91	4490	6.4	3200	64600	39.9
REF3BCALRAD7AL	3B	CAL	10.675	0.6	1.2	10.3	52.9	12200	112	4910	8	3820	70100	52.8
REF4BCALRAD1AL	4B	CAL	2.060	0.6	1.1	10,1	31.4	7970	141	2790	7.8	4660	57100	47.7
REF4BCALRAD2AL	4B	CAL	3.021	0.6	1.14	10.7	33.6	6350	171	2810	8.8	5360	45700	57.3
REF4BCALRAD3AL*	4B	CAL	3.372	0.6	1.26	10.3	43.2	8070	181	3500	10	4040	54700	46.2
REF4BCALRAD4AL	4B	CAL	2.753	0.5	1.06	9.28	30.4	8200	162	3350	9	4460	48700	36.6
REF4BCALRAD5AL	4B	CAL	4.839	0.5	0.97	7.23	25.1	7000	114	2930	7.3	4030	55700	48
REF4BCALRAD6AL	4B	CAL	4.263	0.5	1.04	9.25	32.6	6560	137	2540	7.7	4460	56700	40.1
REF4BCALRAD7AL	4B	CAL	2,935	0.6	1.14	7.82	30	7330	162	3290	8.1	4610	63500	48

Year 2001	Field Trials	Soil Cha	racteristics	for C2 Site

Sample Code	Plot	Treatment	OATS	SOYBEAN	RADISH	CORN
Sample Code	1 100		pH (H2O)	pH (H2O)	pH (H2O)	pH (H2O)
		EQL	0.01	0.01	0.01	0.01
		Units	Units	Units	Units	Units
REF1AUN1	1A	UN	6.36	6.36	6.36	6.36
REF1AUN2	1A	UN	6	6	6	6
REF1AUN3	1A	UN	5.96	5.96	5.96	5.96
REF1AUN4	1A	UN	6.125	6.125	6.125	6.125
REF1AUN5	1A	UN	6.21	6.21	6.21	6.21
REF1AUN6	1A	UN	6.11	6.11	6.11	6.11
REF1A1X1	1A	1X	6.315	6.315	6.315	6.315
REF1A1X2	1A	1X	6.58	6.58	6.58	6.58
REF1A1X3	1A	1X	6.57	6.57	6.57	6.57
REF1A1X4	1A	1X	6.64	6.64	6.64	6.64
REF1A1X5	1A	1X	6.77	6.77	6.77	6.77
REF1A1X6	1A	1X	6.8	6.8	6.8	6.8
REF1A2X1	1A	2X	6.6	6.6	6.6	6.6
REF1A2X2	1A	2X	6.61	6.61	6.61	6.61
REF1A2X3	1A	2X	6.87	6.87	6.87	6.87
REF1A2X4	1A	2X	7.11	7.11	7.11	7.11
REF1A2X5	1A	2X	6.88	6.88	6.88	6.88
REF1A2X6	1A	2X	6.9	6.9	6.9	6.9
REF2AUN1	2A	UN	6.53	6.53	6.53	6.53
REF2AUN2	2A	UN	5.88	5.88	5.88	5.88
REF2AUN3	2A	UN	6	6	6	6
REF2AUN4	2A	UN	6.63	6.63	6.63	6.63
REF2AUN5	2A	UN	6.13	6.13	6.13	6.13
REF2AUN6	2A	UN	6.64	6.64	6.64	6.64
REF2A1X1	2A	1X	6.64	6.64	6.64	6.64
REF2A1X2	2A	1X	6.49	6.49	6.49	6.49
REF2A1X3	2A	1X	6.66	6.66	6.66	6.66
REF2A1X4	2A	1X	6.68	6.68	6.68	6.68
REF2A1X5	2A	1X	6.71	6.71	6.71	6.71
REF2A1X6	2A	1X	6.7	6.7	6.7	6.7
REF2A2X1	2A	2X	6.84	6.84	6.84	6.84
REF2A2X2	2A	2X	6.89	6.89	6.89	6.89
REF2A2X3	2A	2X	6.87	6.87	6.87	6.87
REF2A2X4	2A	2X	7.005	7.005	7.005	7.005
REF2A2X5	2A	2X	6.97	6.97	6.97	6.97
REF2A2X6	2A	2X	7.05	7.05	7.05	7.05
REF3AUN1	3A	UN	6.28	6.28	6.28	6.28
REF3AUN2	3A	UN	6.35	6.35	6.35	6.35
REF3AUN3	3A	UN	6.36	6.36	6.36	6.36
REF3AUN4	3A	UN	6.22	6.22	6.22	6.22
REF3AUN5	3A	UN	6.16	6.16	6.16	6.16
REF3AUN6	3A	UN	6.74	6.74	6.74	6.74
REF3A1X1	3A	1X	6.67	6.67	6.67	6.67
REF3A1X2	3A	1X	6.71	6.71	6.71	6.71
REF3A1X3	3A	1X	6.7	6.7	6.7	6.7
REF3A1X4	3A	1X	6.66	6.66	6.66	6.66
REF3A1X5	3A	1X	6.71	6.71	6.71	6.71
REF3A1X6	3A	1X	7.08	7.08	7.08	7.08
REF3A2X1	3A	2X	7.02	7.02	7.02	7.02
REF3A2X2	3A	2X	6.97	6.97	6.97	6.97
REF3A2X3	3A	2X	6.88	6.88	6.88	6.88
REF3A2X4	3A	2X	7.05	7.05	7.05	7.05
REF3A2X5	3A	2X	6.87	6.87	6.87	6.87
REF3A2X6	3A	2X	6.87	6.87	6.87	6.87

•

٨

Samula Cada	Dla4	Tuestment	OATS	SOYBEAN	RADISH	CORN
Sample Code	Plot	Treatment	рН (H2O)	pH (H2O)	pH (H2O)	pH (H2O)
		EQL	0.01	0.01	0.01	0.01
		Units	Units	Units	Units	Units
REF4AUN1	4A	UN	7.05	7.05	7.05	7.05
REF4AUN2	4A	UN	6.37	6.37	6.37	6.37
REF4AUN3	4A	UN	6.71	6.71	6.71	6.71
REF4AUN4	4A	UN	6.62	6.62	6.62	6.62
REF4AUN5	4A	UN	6.48	6.48	6.48	6.48
REF4AUN6	4A	UN	6.52	6.52	6.52	6.52
REF4A1X1	4A	1X	6.88	6.88	6.88	6.88
REF4A1X2	4A	1X	6.83	6.83	6.83	6.83
REF4A1X3	4A	1X	6.8	6.8	6.8	6.8
REF4A1X4	4A	1X	6.77	6.77	6.77	6.77
REF4A1X5	4A	1X	6.82	6.82	6.82	6.82
REF4A1X6	4A	1X	6.79	6.79	6.79	6.79
REF4A2X1	4A	2X	6.98	6.98	6.98	6.98
REF4A2X2	4A	2X	6.82	6.82	6.82	6.82
REF4A2X3	4A	2X	7.02	7.02	7.02	7.02
REF4A2X4	4A	2X	6.83	6.83	6.83	6.83
REF4A2X5	4A	2X	6.82	6.82	6.82	6.82
REF4A2X6	4A	2X	6.95	6.95	6.95	6.95
REF1BCAL1	1 B	CAL	6.92	6.92	6.92	6.92
REF1BCAL2	1 B	CAL	6.82	6.82	6.82	6.82
REF1BCAL3	1 B	CAL	7.01	7.01	7.01	7.01
REF1BCAL4	1B	CAL	7.04	7.04	7.04	7.04
REF1BCAL5	1 B	CAL	7.035	7.035	7.035	7.035
REF1BCAL6	1 B	CAL	7.02	7.02	7.02	7.02
REF2BCAL1	2B	CAL	7.15	7.15	7.15	7.15
REF2BCAL2	2B	CAL	6.99	6.99	6.99	6.99
REF2BCAL3	2B	CAL	6.84	6.84	6.84	6.84
REF2BCAL4	2B	CAL	6.85	6.85	6.85	6.85
REF2BCAL5	2B	CAL	7.07	7.07	7.07	7.07
REF2BCAL6	2B	CAL	6.93	6.93	6.93	6.93
REF3BCAL1	3B	CAL	6.98	6.98	6.98	6.98
REF3BCAL2	3B	CAL	6.93	6.93	6.93	6.93
REF3BCAL3	3B	CAL	7.09	7.09	7.09	7.09
REF3BCAL4	3B	CAL	7.03	7.03	7.03	7.03
REF3BCAL5	3B	CAL	6.795	6.795	6.795	6.795
REF3BCAL6	3B	CAL	7.1	7.1	7.1	7.1
REF4BCAL1	4B	CAL	7.15	7.15	7.15	7.15
REF4BCAL2	4B	CAL	7.04	7.04	7.04	7.04
REF4BCAL3	4B	CAL	6.98	6.98	6.98	6.98
REF4BCAL4	4B	CAL	6.89	6.89	6.89	6.89
REF4BCAL5	4B	CAL	6.92	6.92	6.92	6.92
REF4BCAL6	4 B	CAL	6.96	6.96		6.96

•

Year 2001 Field Trials Soil Characteristics for C2 Site

Sample Code	Plot	Treatment EQL	Antimony 0.2	Arsenic 0.2	Selenium 0.2	Aluminum 20	Barium 5	Beryllium 0.2	Cadmium 0.5	Chromium 1	Cobalt 2	Copper 1	Iron 50	Lead 5	Manganese 1	Molybdenum 3
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
REF1AUN1	1A	UN	0.7	27.8	5.65	25300	181	1.3	1.3	32	82.5	657	24000	42	260	1.5
REF1AUN2	1A	UN	0.4	25.4	6.1	24300	171	1.2	1.1	31	82	636	23100	37	225	1.5
REF1AUN3	1A	UN	0.7	33.1	6.3	25000	191	1.4	1.4	32	96	797	25700	44	272	1.5
REF1AUN4	1A	UN	0.7	27.3	7.2	24500	174	1.2	1.2	31	83	639	23300	40	244	1.5
REF1AUN5	1A	UN	0.7	27.3	6.1	24900	175	1.2	1.5	32	88	679	23300	38	258	1.5
REF1AUN6	1A	UN	0.8	36.1	7.4	24900	189	1.4	1.5	34	108	952	25300	54	245	1.5
REF1A1X1	1A	1X	0.6	31.15	6.25	24400	186.5	1.25	1.3	32	80.5	680	22900	40	229	1.5
REF1A1X2	1A	1X	0.6	26.4	5.4	24000	175	1.2	1	30	80	639	22000	34	232	1.5
REF1A1X3	1A	1X	0.6	26.4	5.7	23700	172	1.2	0.8	32	79	611	22300	45	224	1.5
REF1A1X4	1A	1X	0.7	31.2	6.6	24200	176	1.3	1.4	31	90	704	22600	40	220	1.5
REF1A1X5	1A	1X	0.7	32.1	5.6	26000	184	1.3	1.4	33	89	714	25500	43	286	1.5
REF1A1X6	1A	1X	0.9	32.1	6.4	28100	197	1.4	1.6	35	93	794	26100	40	277	1.5
REF1A2X1	1A	2X	0.7	36.1	6.9	24400	182	1.3	1.5	32	108	850	24200	46	267	1.5
REF1A2X2	1A	2X	0.9	47.2	9.2	26200	192	1.4	2.3	35	133	1010	25500	53	244	1.5
REF1A2X2	1A 1A	2X 2X	0.7	29.2	6.9	25400	175	1.4	1.5	33	93	682	23800	46	264	1.5
REF1A2X5 REF1A2X4	IA 1A	2X 2X	0.7	30.2	6.5	23700	170	1.5	1.3	30.5	92	688	22750	41	236.5	1.5
REF1A2X4 REF1A2X5	1A 1A	2X 2X	0.7	23.5	6.1	23700	170	1.2	0.6	32	75	557	21900	31	250.5	1.5
							170	1.2	1.3	31	90	637	23000	40	234	1.5
REF1A2X6	1A 2A	2X	0.7	27.3	7.2 6.45	24400 25050	174	1.2	1.5	31.5	90 87.5	674	23050	40	241.5	1.5
REF2AUN1	2A	UN		32.45							72	504	23050	43	212	
REF2AUN2	2A	UN	0.8	24.9	6	24000	161	1.1	1.2	31					212	1.5
REF2AUN3	2A	UN	1	27	6.9	24000	166	1.2	0.9	30	79	592	22600	33		1.5
REF2AUN4	2A	UN	1.1	32.4	6.1	26600	186	1.3	1.1	32	84	659	23400	39	244	1.5
REF2AUN5	2A	UN	1	30.3	6.3	25500	179	1.2	0.9	32	80	625	23000	41	238	1.5
REF2AUN6	2A	UN	1	31.4	6.1	26300	183	1.3	1.3	32	86	707	24000	39	254	1.5
REF2A1X1	2A	1X	0.8	26	6.1	23700	166	1.1	1	30	71	550	22200	38	221	1.5
REF2A1X2	2A	1X	0.9	32.9	6.15	25950	194	1.35	1.25	31.5	76.5	680	24500	42	240.5	1.5
REF2A1X3	2A	1X	0.9	28.1	5.9	24000	171	1.2	1.1	31	75	563	22500	38	242	1.5
REF2A1X4	2A	1X	1	32.4	6.4	25000	179	1.2	1.2	31	76	650	23200	36	240	1.5
REF2A1X5	2A	1X	0.8	26	5.8	23900	165	1.1	1	30	68	546	22100	37	209	1.5
REF2A1X6	2A	1X	1.1	28.1	6	24700	172	1.2	1.1	30	77	586	22900	33	247	1.5
REF2A2X1	2A	2X	1	30.3	6.7	25400	179	1.2	1.2	32	84	622	24300	40	260	1.5
REF2A2X2	2A	2X	1	32.4	6.1	25400	176	1.2	0.8	31	77	629	22300	39	221	1.5
REF2A2X3	2A	2X	1	32.4	6	23900	171	1.2	1.2	31	87	641	21900	45	224	1.5
REF2A2X4	2A	2X	0.8	27.55	5.9	24650	174.5	1.25	1.2	31.5	79	610.5	22250	41.5	222	1.5
REF2A2X5	2A	2X	0.8	26	5.9	24300	165	1.2	0.7	30	72	547	21800	34	210	1.5
REF2A2X6	2A	2X	0.8	27	6.1	25500	174	1.2	0.7	32	76	544	23900	38	245	1.5
REF3AUN1	3A	UN	0.75	30.3	5.3	23650	173.5	1.15	1.55	30	71.5	558	22250	40.5	237	1.5
REF3AUN2	3A	UN	0.6	23	4.3	22100	153	1.1	1.7	30	58	422	21700	39	217	1.5
REF3AUN3	3A 3A	UN	0.5	21.9	4.5	22100	155	1.1	1.2	29	58	422	21300	36	208	1.5
REF3AUN3	3A 3A	UN	0.3	20.9	3.8	22000	151	1	1.2	29	53	390	20800	33	200	1.5
						22000	166	1.1	1.2	30	69	514	21800	38	200	1.5
REF3AUN5	3A	UN	0.7	28.2	4.7			1,1		28	58	445	19900	37	219	1.5
REF3AUN6	3A	UN	0.6	26.1	3.9	20700	146	1	1.1	28 30	58 67		22100	41	219	
REF3A1X1	3A	1X	0.8	30.3	4.7	22700	167	1.2	1.8			531	21850	41 37	209	1.5 1.5
REF3A1X2	3A	1X	0.6	25.2	4.95	22350	162	1.1	1	29 20	65 71	495 576				
REF3A1X3	3A	1X	0.7	33.4	4.8	23100	171	1.2	1.5	30	71	576	22000	42	224	1.5
REF3A1X4	3A	1X	0.7	29.2	4	20900	155	1.1	1.3	29 20	63	478	20700	37	215	1.5
REF3A1X5	3A	1X	0.6	21.9	4	22500	151	1	0.9	30	58	417	22100	38	225	1.5
REF3A1X6	3A	1X	0.6	23	4	22100	156	1	1.5	29	62	471	21700	36	237	1.5
REF3A2X1	3A	2X	0.5	21.9	4	22700	153	1.1	0.9	32	54	384	23000	36	203	1.5
REF3A2X2	3A	2X	0.8	31.3	4.6	24800	177	1.2	1.6	32	73	593	24500	41	246	1.5
REF3A2X3	3A	2X	0.9	31.3	4.5	23700	173	1.2	1.2	31	67	558	22200	36	232	1.5
REF3A2X4	3A	2X	0.7	26.6	4.9	22500	156.5	1.1	1.15	30	60	450	22650	37	225	1.5
REF3A2X5	3A	2X	0.8	31.3	4.5	22700	164	1.2	1.5	30	67	512	20500	42	221	1.5
REF3A2X6	3A	2X	0.7	25.1	4.3	23400	156	1.1	1.1	32	60	441	22300	37	212	1.5

1	of	4
---	----	---

Sample Code	Plot	Treatment	Antimony	Arsenic	Selenium	Aluminum	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybdenum
		EQL	0.2	0.2	0.2	20	5	0.2	0.5	1	2	1	50	5	1	3
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
REF4AUN1	4A	UN	0.7	31.95	5.6	23150	179	1.2	1.4	30	74.5	642.5	24800	45	270.5	1.5
REF4AUN2	4A	UN	0.5	28.2	4.8	20900	151	1.1	1.4	28	63	509	21400	40	211	1.5
REF4AUN3	4A	UN	0.5	33.3	5.7	22900	167	1.1	1.2	29	69	530	23900	34	308	1.5
REF4AUN4	4A	UN	0.7	30.2	4.9	22400	170	1.2	1.4	29	68	551	23400	38	252	1.5
REF4AUN5	4A	UN	0.5	29.2	5.7	21800	164	1.2	1.3	29	69	611	22800	44	215	1.5
REF4AUN6	4A	UN	0.5	32.2	4.9	22300	168	1.2	0.9	29	71	582	23800	39	239	1.5
REF4A1X1	4A	1X	0.7	27.3	4.9	24900	187	1.3	1.5	33	82	704	25600	47	261	1.5
REF4A1X2	4A	1X	0.5	25.3	4.8	22300	163	1.1	1.1	28	60	499	21900	38	230	1.5
REF4A1X3	4A	1X	0.5	24.3	4.4	23800	167	1.2	1	29	62	532	22300	33	232	1.5
REF4A1X4	4A	1X	0.5	30.2	4.4	23000	161	1.1	1	29	58	504	22400	36	228	1.5
REF4A1X5	4A	1X	0.725	26.75	5.35	23275	174.25	1.175	0.975	30.25	70.5	573	23675	39.5	235.5	1.5
REF4A1X6	4A	1X	0.6	26.3	4	21800	152	1.1	1	28	60	510	20700	38	221	1.5
REF4A2X1	4A	2X	0.7	25.3	4.8	21900	159	1.1	1.2	28	. 66	520	22900	39	224	1.5
REF4A2X2	4A	2X	0.5	25.3	4	21600	155	1.1	1.3	27	60	530	21300	36	225	1.5
REF4A2X3	4A	2X	0.6	24.3	4.1	22900	160	1.1	0.7	28	60	533	22500	31	227	1.5
REF4A2X4	4A	2X	0.65	28.8	5.35	22400	163	1.2	1.15	29	64	582.5	22700	42.5	205.5	1.5
REF4A2X5	4A	2X	0.7	25.3	5.1	21700	156	1.1	1.3	28	65	557	21900	42	220	1.5
REF4A2X6	4A	2X	0.8	28.2	5.6	23200	170	1.2	1	29	73	624	24300	36	236	1.5
REF1BCAL1	1 B	CAL	0.7	28.3	6.1	22100	159	1.1	1.1	28	81	654	21400	45	265	1.5
REF1BCAL2	1 B	CAL	0.6	22.6	4.9	21000	150	1	1.1	28	68	487	19700	36	240	1.5
REF1BCAL3	1 B	CAL	0.7	20.7	4.8	21100	151	1	0.6	27	64	467	20900	33	272	1.5
REF1BCAL4	1 B	CAL	0.5	19.7	4.1	20400	143	1	0.8	27	61	420	19900	38	257	1.5
REF1BCAL5	1B	CAL	0.65	31.2	5.4	22550	169	1.1	1.2	29	78	641	23600	43	292.5	1.5
REF1BCAL6	1B	CAL	0.5	20.7	4.6	20700	145	1	1	27	64	452	20200	39	274	1.5
REF2BCAL1	2B	CAL	0.6	18.5	4.1	23100	153	1.1	0.6	29	57	396	20900	34	236	1.5
REF2BCAL2	2B	CAL	1	30.3	5.9	25900	181	1.2	1.4	32	79	615	23600	38	269	1.5
REF2BCAL3	2B	CAL	0.6	18.6	3.7	22900	155.5	1.05	0.6	28.5	46	321.5	21050	30.5	202	1.5
REF2BCAL4	2B	CAL	1	30.2	5.3	25000	175	1.2	1.3	31	74	595	23100	42	278	1.5
REF2BCAL5	2B	CAL	0.6	18.4	3.8	22800	151	1	0.7	29	52	368	20800	32	220	1.5
REF2BCAL6	2B	CAL	0.8	24.9	5	25200	172	1.2	0.8	31	64	476	22800	35	247	1.5
REF3BCAL1	3B	CAL	0.7	27.1	3.9	22900	158	1,1	1.3	30	64	477	21500	40	257	1.5
REF3BCAL2	3B	CAL	0.8	32.4	4.9	23700	163	1.1	1.3	30	71	524	22400	43	280	1.5
REF3BCAL3	3B	CAL	0.7	26.1	4	23100	157	1.1	1.5	30	58	418	21700	39	262	1.5
REF3BCAL4	3B	CAL	0.8	34.5	4.9	24300	169	1.2	1.9	32	78	584	23500	45	274	1.5
REF3BCAL5	3B	CAL	0.75	32.35	4.35	24950	176	1.2	1.45	30	69.5	595	22850	37	259.5	1.5
REF3BCAL6	3B	CAL	0.8	29.2	4.4	22900	159	1.1	1.7	31	69	526	21600	44	278	1.5
REF4BCAL1	4B	CAL	0.75	27.25	4.5	24050	176.5	1.25	1	31.5	61.5	517	24700	38.5	278.5	1.5
REF4BCAL2	4B	CAL	0.6	24.3	4.2	24800	178	1.2	. 1	30	54	454	23600	30	240	1.5
REF4BCAL2	4B 4B	CAL	0.7	21.3	4.3	23500	170	1.1	0.6	29	54	449	23400	31	224	1.5
REF4BCAL5	4B 4B	CAL	0.6	20.4	4.4	23500	173	1.1	0.8	30	54	434	23800	35	230	1.5
REF4BCAL4	4B 4B	CAL	0.5	25.3	4.8	23700	169	1.1	0.6	29	53	446	24000	33	229	1.5
REF4BCAL5	4B 4B	CAL	0.5	23.3	5	23500	172	1.1	1.2	29	54	448	23500	34	238	1.5

2 of 4

Year 2001 Field Trials Soil Characteristics for C2 Site

Sample Code	Plot	Treatment	Nickel	Phosphorus	Silver	Titanium	Vanadium	Zinc	Conductivity -	Loss on Ignition	Cation Exchange	Moisture		Total Carbon(as	Total Organic
		EQL	2	20	1	5	1	5	@25øC 0.01	0.01	Capacity(as Na) 0.01	Content 0.01	Carbon(as C) 0.05	C) 0.05	Carbon 0.05
		Units	- mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mS/cm	%	meq100	%	%	%	%
REF1AUN1	1A	UN	5755	1475	1	124.5	43.5	160.5	0.34	11.5	37.5	17.4	0.32	4.8	4.48
REF1AUN2	1A	UN	5570	1330	1	125	40	148	0.44	13.8	40	17.4	0.56	6	5.44
REF1AUN3	1A	UN	7110	1610	1	133	45	170	0.56	14.5	47	15.6	0.32	6.8	6.48
REF1AUN4	1A	UN	5660	1380	1	122	41	150	0.47	13	39 20	18.8	1.2	5.84	4.64
REF1AUN5	1A	UN	6030	1440	2	130	42 43	156	0.44	11.9 16.4	39 45	19 14.6	0.4 0.4	5.2 6.8	4.8 6.4
REFIAUN6	1A	UN 1V	8100	1530 1450	2	130 105.5	43 39.5	175 152.5	0.38 0.57	14.35	43 44.5	14.0	0.4	6.62	6.56
REF1A1X1 REF1A1X2	1A	1X 1X	5470 5370	1350	2	105.5	40	132.5	0.37	13.2	44.5	22.2	0.32	5.52	5.24
REF1A1X2	1A 1A	1X 1X	5390	1280	1	121	40	146	0.57	11.5	35	17.5	0.20	4.88	4.68
REF1A1X4	1A 1A	1X 1X	6450	1230	2	109	39	159	0.45	15.3	42	19.8	1.32	7.52	6.2
REF1A1X5	1A 1A	1X 1X	6170	1430	2	130	46	166	0.55	12.1	35	20.4	0.64	5.04	4.4
REF1A1X6	1A 1A	1X 1X	6790	1580	1	141	47	175	0.39	11.8	38	21	0.16	5.04	4.88
REF1A2X1	1A	2X	7750	1480	2	131	41	174	0.59	16.2	45	14.9	0.8	7.32	6.52
REF1A2X2	1 A	2X	9860	1600	3	135	44	199	0.48	14.5	41	19.8	0.84	6.2	5.36
REF1A2X3	1A	2X	6260	1450	2	130	44	159	0.43	12.5	38	16.2	0.12	5.72	5.6
REF1A2X4	1 A	2X	6225	1435	2	121	40	155.5	0.43	13.75	41	12.1	0.025	5.52	5.66
REF1A2X5	1A	2X	5040	1190	1	122	40	140	0.57	12.7	39	20.9	0.025	5.4	5.48
REF1A2X6	1A	2X	6050	1300	1	125	40	153	0.41	13	39	16.4	0.025	5.44	5.32
REF2AUN1	2A	UN	5910	1455	1.5	121.5	42	163.5	0.45	12.9	397	14.35	0.025	5.62	5.84
REF2AUN2	2A	UN	4510	1210	1	118	41	152	0.42	14.4	397	15.2	0.025	5.92	6.04
REF2AUN3	2A	UN	5400	1300	1	123	40	150	0.37	13.3	381	17.6	0.025	5.56	5.64
REF2AUN4	2A	UN	5520	1440	1	122	42	163	0.45	13	385	16.6	0.48	5.68	5.2
REF2AUN5	2A	UN	5140	1470	1	129	42	155	0.51	13.2	432	14.7	0.025	5.96	5.96
REF2AUN6	2A	UN	5860	1640	1	140	44	167	0.74	12.5	479	16.7	0.025	5.12	5.16
REF2A1X1	2A	1X	4580	1220	1	115	40	138	0.47	12.8	494 249.5	18.8	0.025 0.025	5.8 6.58	5.64 6.48
REF2A1X2	2A	1X	5115	1565	1	125.5 111	42.5 41	158 143	0.43 0.43	14.35 13.3	422	18.55 12.7	0.025	6.4	6.24
REF2A1X3	2A	1X 1X	4700 5090	1330 1430	1	117	41 42	143	0.45	14.2	600	13.3	0.025	6.08	6.2
REF2A1X4 REF2A1X5	2A 2A	1X 1X	4440	1230	1	117	42	130	0.45	15.1	488	15.6	0.025	5,96	6.08
REF2A1X5	2A 2A	1X 1X	5140	1350	1	112	41	149	0.42	14.9	555	18.6	0.025	6.28	6.56
REF2A1X0	2A 2A	2X	5570	1480	2	124	44	158	0.49	13.6	508	16.4	0.025	6.24	6.28
REF2A2X2	2A	2X 2X	5080	1550	1	121	41	156	0.5	15.3	471	18.7	0.025	6.48	6.48
REF2A2X3	2A	2X	5830	1560	2	126	41	160	0.45	12.7	417	16.1	0.025	5.92	6.12
REF2A2X4	2A	2X	5205	1525	1	116.5	41.5	154	0.485	15.5	55	15.95	0.24	6.4	6.2
REF2A2X5	2A	2X	4700	1330	1	118	41	143	0.49	14	677	19.1	0.025	6.16	6.32
REF2A2X6	2A	2X	4850	1270	1	124	46	147	0.46	13.6	515	20.6	0.025	5.76	5.76
REF3AUN1	3A	UN	4510	1210	2	115	41	143	0.32	11.3	38.5	17.6	0.025	4.9	4.76
REF3AUN2	3A	UN	3390	1050	2	123	40	126	0.42	10.9	43	13.4	0.025	4.4	4.48
REF3AUN3	3A	UN	3460	1010	2	120	39	127	0.44	10.4	35	20.5	0.025	4.24	4.16
REF3AUN4	3A	UN	3050	1000	2	115	38	122	0.47	11.7	43	16.7	0.32	5.2	4.88
REF3AUN5	3A	UN	4380	1170	2	117	40	139	0.3	11.5	42	20.3	0.025	4.92	5.16
REF3AUN6	3A	UN	3630	1010	2	111	36	128	0.41	10.1	40	11.8	0.025	4.72	4.64
REF3A1X1	3A	1X	4320	1360	3	120	41	138	0.37	13	46	10.4	0.025	5.36	5.4
REF3A1X2	3A	1X	4095	1145	1.5	120.5	39.5	131.5	0.465	12.15	35.5	21.6	0.2	4.94	4.92
REF3A1X3	3A	1X	4600	1320	2	122	41	143	0.47	12.9	47	20.7	0.025	5.36 5.24	5.36
REF3A1X4	3A	1X	3910 2250	1180	2 1	116	38 41	131	0.48 0.49	12 11.4	38 45	17.8 17.4	0.025 0.025	5.24 4.76	5.28 4.6
REF3A1X5	3A 2 A	1X 1X	3350 3880	1050 1080	1 2	130 116	41 38	127 138	0.49	11.4	43 38	17.4	0.023	5.44	4.0 5.2
REF3A1X6 REF3A2X1	3A 3 A	1X 2X	3880	903	2	133	38 41	138	0.32	11.4	35	10.5	0.025	4.68	4.84
REF3A2X1 REF3A2X2	3A 3A	2X 2X	3050 4790	1350	2	133	41 44	122	0.43	12.1	46	16.7	0.025	5.48	5.4
REF3A2A2 REF3A2X3	3A 3A	2X 2X	4790	1280	2	133	44	134	0.42	.14	40	15.9	0.025	5.8	5.84
REF3A2A5 REF3A2X4	3A 3A	2X 2X	3635	1030	2	122	41	129.5	0.45	11.25	40	8.4	0.025	4.58	4.48
REF3A2X4	3A 3A	2X 2X	4360	1160	2	125	42 40	129.5	0.25	13.8	40	15.7	0.025	5.76	5.6
REF3A2X6	3A 3A	2X 2X	3500	990	2	134	42	132	0.42	11.1	40	14.4	0.025	4.76	4.76

**

Year 2001 Field Trials Soil Characteristics for C2 Site

Sample Code	Plot	cteristics for C2 Site	Nickel	Phosphorus	Silver	Titanium	Vanadium	Zinc	Conductivity - @25øC	Loss on Ignition	Cation Exchange Capacity(as Na)	Moisture Content	Total Inorganic Carbon(as C)	Total Carbon(as C)	Total Organic Carbon
		EQL	2	20	1	5	1	5	0.01	0.01	0.01	0.01	0.05	0.05	0.05
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	<u> </u>	<u>%</u>	<u>meq100</u>	%	<u>%</u>	%	%
REF4AUN1	4A	UN	4630	1450	2	120.5	43	155.5	0.36	12.8	37.5	9.7	0.025	5.3	5.52
REF4AUN2	4A	UN	3930	1190	2	114	37	137	0.45	12.8	36	13	0.025	5.56	5.6
REF4AUN3	4A	UN	4170	1320	2	124	41	148	0.63	12.9	37	15.7	0.025	5.08	5.32
REF4AUN4	4A	UN	4080	1380	2	122	40	143	0.34	12.9	38	11.5	0.025	5.4	5.64
REF4AUN5	4A	UN	4450	1410	1	125	39	146	0.51	13.5	38	14	0.025	6	6.04
REF4AUN6	4A	UN	4510	1320	1	128	40	148	0.44	12.4	39	14	0.025	5.2	5.32
REF4A1X1	4A	1X	5390	1510	2	135	43	169	0.38	13.5	42	13.1	0.025	5.4	5.64
REF4A1X2	4A	1X	3570	1190	1	107	39	134	0.43	12.6	37	15.2	0.24	5.4	5.16
REF4A1X3	4A	1X	3940	1260	1	125	39	143	0.4	12.5	36	13.4	0.025	4.88	4.96
REF4A1X4	4A	1X	3580	1200	2	117	38	154	0.44	12.5	38	11.2	0.025	5.6	5.56
REF4A1X5	4A	1X	4350	1322.5	1	121.75	39.75	144.75	0.53	12.525	38	15.55	0.025	5.36	5.37
REF4A1X6	4A	1X	3720	1180	2	107	37	136	0.48	12	37	14	0.28	5.36	5.08
REF4A2X1	4A	2X	4120	1250	1	122	38	139	0.39	12.1	35	13.7	0.025	4.88	4.88
REF4A2X2	4A	2X	3720	1310	1	114	37	140	0.54	13.1	40	15.8	0.025	5.88	6
REF4A2X3	4A	2X	3780	1300	1	123	39	140	0.4	13.5	38	14.6	0.025	5.72	5.56
REF4A2X4	4A	2X	4065	1430	2	115.5	39.5	142	0.53	13.85	42.5	15.8	0.025	6.46	6.64
REF4A2X5	4A	2X	4130	1220	-	121	38	138	0.51	13.5	39	15.1	0.025	5.6	5.68
REF4A2X6	4A	2X 2X	4760	1310	î	125	40	152	0.4	11.8	37	14.3	0.025	4.92	5.08
REF1BCAL1	1B	CAL	5690	1290	1	110	36	161	0.46	12.4	36	12.2	0.025	5.52	5.36
REF1BCAL2	1B 1B	CAL	4290	1200	1	118	34	143	0.52	13.7	36	16.3	0.025	5.64	5.52
REF1BCAL3	1B 1B	CAL	4080	1080	1	119	36	146	0.53	10.2	32	13	0.025	4.4	4.68
REF1BCAL4	1B 1B	CAL	3780	964	1	105	35	135	0.49	10.7	32	10.4	0.025	4.44	4.56
REF1BCAL5	1B 1B	CAL	5235	1410	1	115	39	166.5	0.49	11.25	33.5	12.2	0.2	4.72	4.76
		CAL	4140	1040	1	106	35	143	0.53	11.25	32	10.7	0.025	4.88	4.88
REF1BCAL6	1B 2B	CAL	3400	981	1	122	40	138	0.33	11.5	432	11.9	0.025	4.96	5
REF2BCAL1			5320	1340	2	122	40	158	0.45	13.3	414	14.6	0.48	5.72	5.24
REF2BCAL2	2B	CAL	2550	933	2	105.5	37	126	0.515	11.25	184.5	12.1	0.3	4.86	4.56
REF2BCAL3	2B	CAL		1330	1	118	43	120	0.43	12.9	433	12.1	0.025	5.84	5.68
REF2BCAL4	2B	CAL	4910		1	109	43 39	130	0.43	11.5	389	12.7	0.28	4.88	4.6
REF2BCAL5	2B	CAL	3000	938	1			150		10.3	357	10.8	0.025	4.88	4.96
REF2BCAL6	2B	CAL	3920	1130	1	117	42		0.44		35	13.8	0.025	5	5.12
REF3BCAL1	3B	CAL	4110	1150	1	112	38	146	0.49	11.6				4.8	4.64
REF3BCAL2	3B	CAL	4340	1180	2	120	41	147	0.48	11.5	46	11	0.025		5.24
REF3BCAL3	3B	CAL	3570	1180	2	117	38	140	0.42	11.5	39	10	0.025	5.4	
REF3BCAL4	3B	CAL	5150	1210	3	120	42	159	0.37	11.8	40	13.5	0.025	4.8	4.88
REF3BCAL5	3B	CAL	4640	1380	1.5	105.5	39.5	153	0.55	12.4	41.5	16.95	0.24	5.24	5.16
REF3BCAL6	3B	CAL	4490	1260	2	98	39	159	0.53	11.6	37	12.4	0.025	5.28	5.32
REF4BCAL1	4B	CAL	3725	1220	1.5	127	42	151	0.47	11.4	36	15.4	0.4	4.76	4.56
REF4BCAL2	4B	CAL	3280	1130	1	115	40	155	0.46	11.6	37	11	0.32	4.96	4.64
REF4BCAL3	4B	CAL	3290	983	1	114	40	134	0.46	11.3	37	12.1	0.025	4.32	4.52
REF4BCAL4	4B	CAL	3200	1050	1	117	40	132	0.45	11.4	35	12.5	0.28	4.64	4.36
REF4BCAL5	4B	CAL	3160	1060	1	118	41	134	0.46	11.1	37	10.2	0.025	4.64	4.64
REF4BCAL6	4B	CAL	3250	1040	1	119	41	137	0.49	10.8	35	11.7	0.32	4.6	4.28

4 of 4

2001 Field Trials	
Plant Data	
C3 Test Site	

Image: marks	ecies Plot	t Treatment	Replicate	Sample	Sample Dry Weight	Al	Sb	As	Ba	Be	Bi	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Мо	Ni	Р	к	Se	Ag	Sr	Tm	Ti	U	Vd	Zn
Image 1 Approx N N N N N N <th></th> <th></th> <th></th> <th></th> <th>(g)</th> <th>mg/kg</th>					(g)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1 1 0. 2 Approxima 1.03 a <			1					0.1-			-	00	11000		1.01			0.00	0010					10000	0.1-				2		0.120	17.8
By 1 N 1 Approx 4.5 N0 0 N0 N0 </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>07.00</td> <td></td> <td></td> <td></td> <td>-0-0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>0.1-7</td> <td>18.4 17.6</td>			1									0							07.00				-0-0						3		0.1-7	18.4 17.6
by b			1																										2			15.2
Descr Approx Approx Box ox Box Box<			2			146			13.3			0.19	13000		0.88	7.11	127	0.98		21.9			2770	16400			43.2		2		0.21	16.9
By 1 Control 1 Add No o No No No No No No No	/		-																										-			15.1
Image Image Approx pprox Approx						0.0						0									0.0		0.00									19.3
Tety Y N 1 Approx																																20 18.6
by b				ŏ																												21
Term Control Approx Set et Set	Soy 2		2	Agronomic		11.7	nd	nd		nd	nd			nd			68			19.3	4				nd	nd		nd	nd	nd	nd	19
by 2 Concerned A A A A </td <td></td> <td></td> <td>-</td> <td>ŏ</td> <td></td> <td>20.7</td>			-	ŏ																												20.7
Open Processor 2 Control open Processor No o No No			1																													24.9 25.9
by by by by< <			3	ŏ																												23.9
Solv S UN C Algebrain Columbra olumbra			1	v																												20.0
Sys 1 Agences 790 80 al al< al< al< <		UN	2		1.333	193		0.3				0.13					315	0.98	2790	36	0.7		2090	16000	0.3		40.2	0.005	3	0.01	0.29	21.9
Sb S VX 2 Approxime Solut al. al. </td <td></td> <td></td> <td>2</td> <td></td> <td>0.000</td> <td></td> <td></td> <td>0.2.</td> <td>21</td>			2																									0.000			0.2.	21
Sign 3 N M Ageorge Sign 3 Sign 4 A M M M M			1									0			0.0			01.10														20 22.5
Object S Celescend 1 Agronomic 6.40 18.5 add 1.50 1.50 1.50 <			2																										2			22.5
Single state Single state<			1	v																									nd			19.1
Sp: Calegroom 5.80 1.40 col 1.50 col 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.50 1.50 1.60 1.50 1.60 1.50 1.50 1.60 1.50 1.50 1.50 <th< td=""><td>) -</td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0-0</td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td>32.4</td><td></td><td></td><td></td><td></td><td>34.2</td><td></td><td></td><td></td><td></td><td>20.7</td></th<>) -		2									0.0-0			0.00							32.4					34.2					20.7
Solv 4 UN 2 Approxem EXP 10 eta eta 10 <td>Soy 3</td> <td></td> <td>-</td> <td></td> <td>0110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.,,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19.8</td>	Soy 3		-												0110									.,,								19.8
Sys 4 IX 1 Agenome 382 19. nd 185 28. 180 106 383 284 74. 74. 74. 75. 780 780 nd nd <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0=</td> <td></td> <td>-</td> <td>0.0.</td> <td>0.20</td> <td>18.2</td>			1					0.0										0=											-	0.0.	0.20	18.2
Sys 4 NX 2 Agroenes 3.2 N 1 N 3 Agroenes 3.2 N 1 N 3 N 3 N 1 N N			2																													16.4 26
Sop 4 Ottow 3 Approxime 3.23 3.53 at at< at at at<			2																													25.7
Syst 4 Cheareaus 2 Approxim EAS nd			3	Agronomic		20.4	nd	nd			nd	0.25		nd	1.05			0.32	5500			67.2	5960	22200	0.2		45.3				nd	25.4
Soy 4 Chalareeus 3 Approxime 6.640 8 int no 8 int no 8 1 8 2 4 1 8 1 1 1	Soy 4																		5000					1//00							0.07	25.1
Out 1 UN 2 Agron 0.72 0.73 0.8 0.8 0.73 0.7 0.4 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 1.2 0.64 0.64 0.75 0.64 0.64 0.75 0.64 0.64 0.75 0.64 0.64 0.75 0.64 0.75 0.64 0.75 0.64 0.75 0.64 0.75 0.64 0.75 0.64 0.75 0.75 0.75 0			2			9.9									0.00																	70.8
Out 1 UN 2 Agronomic 1.102 5.4 mid 0.10 0.10 0.00 1.1 mid 0.10 0 1.1 mid 0.10 0.00 1.1 mid 0.10 1.1 mid 0.10 2.7 1.5 1.00 1.00 0.00 0.00 0.00 0.00 0.01 <td></td> <td></td> <td>3</td> <td>v v</td> <td></td> <td>8</td> <td></td> <td>nd</td> <td></td> <td></td> <td>23.1</td>			3	v v		8																							nd			23.1
Oat 1 UN 3 Agenome 1.373 88.7 nd 0.16 6.06 6.07 7.44 88.0 0.22 1.49 1.00 0.20 1.01 1.01 0.01 0.02 2.87 0.01 </td <td></td> <td></td> <td>2</td> <td></td> <td>1</td> <td></td> <td></td> <td>15.5</td>			2																										1			15.5
Datt 1 X Agencenic 2.284 9.24 nd 0.07 0.54 0.54 0.24 0.24 0.24 0.25 0.55 0.25 0			3	ŏ																									1			12.6
Oat 1 1X 3 Agronomic 200 nd 0.3 nd 0.3 nd 0.3 nd 0.01 0.08 0.00 0.5 0.43 0.10 0.00 0.3 nd 0.3 nd 0.3 0.1 0.00 0.01 0.11 0.00 0.01 0.14 0.01 0.14 0.01 0.14 0.01 0.14 0.01 0.14 0.01 0.00 0.14 0.01 0.14 0.01 0.00 0.01 0.14 0.01 0.14 0.01 0.			1	Agronomic							nd	0.07	0010	0.0										-0.00	0.0	0.00		01007			00	18.2
Cett 1 XX 4 Agronomic nu 248 nu 0.3 4.4 nu 0.3 4.4 nu 0.3 6.4 nu 0.3 0.5 0.75 0.15 0.50 0.75 0.15 0.10 <th< td=""><td></td><td></td><td>2</td><td>ŏ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>17.5</td></th<>			2	ŏ																												17.5
Cat 1 VX 4 Agronomic 242 84. nd 0.3 620 nd 0.53 9.77 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.78 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.74 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 63. 9.70 <td></td> <td></td> <td>-</td> <td></td> <td>20.6</td>			-																													20.6
Oat 1 VX 4 Agronomic inv 26.5 nd odd 0.3 6.80 nd 0.03 10.3 10.0 11.5 6.83 0.10 0.14 55.0 0.01 0.02 22.6 nd nd nd 0.01 11 Calcareous 3 Agronomic 1.46 rdd 0.03 0.05 21.2 0.08 ed. nd 0.03 0.01 11 Calcareous 3 Agronomic 1.562 3.8 0.8 0.3 21.0 11.6 rdd. 0.03 0.02 21.4 nd 0.00 Oat 1 Calcareous 4 Agronomic 1.568 3.6 nd 0.03 5.9 nd 0.03 0.02 21.4 nd nd nd 0.03 0.02 12.4 nd nd nd nd 0.03 0.03 0.03 0.01 23.4 nd nd nd nd 0.03 0.01 <																																21.2
Oat 1 Calcareous 1 Agronomic 1.487 1.42 n.d 0.14 57.0 n.d 0.15 57.0 n.d 0.15 57.0 n.d 0.15 57.0 0.05 0.05 0.05 0.06 0.00 0.00 0.00 n.d 0.05 0.05 0.05 0.05 0.05 0.00 0.00 0.00 n.d 0.00 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.03 0.01																																22.2
Oat 1 Calcareous 3 Agronomic 1502 38.5 and			1																													17.5
Oat 1 Calcareous 4 Agronomic 1554 21.6 nd 0.0 0.7 0.88 nd nd 0.07 680 nd 0.04 7.9 610 0.35 0.01 <td></td> <td></td> <td>2</td> <td></td> <td>16.6</td>			2																													16.6
Oat 2 1X 1 Agronomic 1963 21.6 nd 0.02 7.3 nd nd 0.07 680 nd 0.33 2730 17.7 8.8 9.38 7080 31200 0.3 0.01 24.1 nd nd nd nd Odd 2 17.8 8.8 0.2 17.7 8.8 0.2 2400 17.8 8.7 85.9 0.33 0.01 24.1 nd nd nd 0.06 72.0 17.7 6.8 0.2 2540 17.8 8.8 72.8 17.7 8.8 72.8 17.8 8.8 72.8 17.8 8.8 72.8 17.8 8.8 72.8 17.8 8.8 72.8 17.8 8.8 72.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 17.8 18.2 17.8 18.8 17.8 18.2 17.8 18.3 18.9 18.8																															0.01	17.9
Oat 2 1X 2 Agronomic 1.666 20.9 nd 0.02 7.7 nd nd 0.06 630 nd 0.42 7.9 58 0.2 2.18 3.3 0.00 3.3 0.02 2.4 nd nd nd 0.06 7.70 nd nd 0.06 7.70 nd nd 0.07 7.70 1.50 1.66 2.80 1.9 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 1.55 8.4 3.57 1.70 1.20 0.3 1.61 nd 0.01 8.30 1.16 2.36 0.17 1.23 7.1 6.41 3.00 0.3 2.71 nd nd nd 0.11 3.00 1.17 7.3 6.3 1.32 7.11 6.13 1.32 7.11 6.13 1.32 7.11 6.13 1.32 7.11 3.00 3.03			4					0.0				0.07						0.12.1							0.0							20.4
Oat 2 1X 3 Agronomic 1.989 25.6 nd 0.02 7.1 nd nd 0.06 420 nd 0.37 17.47 63 0.26 2800 19 9.1 89.1 6160 28100 0.3 0.01 24 nd nd <td></td> <td></td> <td>2</td> <td></td> <td>13.4</td>			2																													13.4
Oat 2 Calcareous 2 Agronomic 1.675 25 nd 0.2 8.3 nd nd 0.10 26400 27.7 12.3 75 5400 28000 0.4 0.05 23.5 nd nd nd 0.1 5800 nd 0.03 911 nd nd 0.01 5800 nd 0.03 911 nd 0.01 911 910 911 910 912 910 912 910 910 910 911 910 911 910 911 910 911 910 911 910	Oat 2		3	Agronomic					7.1	nd	nd																		nd			14.8
Oat 2 Calcareous 3 Agronomic 2.460 27.7 nd nd 0.1 5810 nd 0.11 73 0.3 270 16.3 13.2 71.2 6410 3100 0.03 0.31 21.1 nd nd nd 0.01 Calcareous 3 UN 2 Agronomic 1.427 56.9 nd nd 0.11 6320 nd 0.05 5.38 67 0.34 1940 21.3 2.7 118 5130 2180 0.3 2.5.9 nd nd 0.01 6680 nd 0.11 6320 nd 0.03 5.2 nd nd 0.01 6680 nd 0.11 4.97 63 0.42 18.70 24.2 2.6 128 590 0.3 0.20 2.00 2.00 2.00 2.00 0.01 2.00 0.01 2.00 0.01 2.00 0.01 2.00 0.01 0.02 2.60 0.01<			1																													10.1
Oat 3 UN 1 Agronomic 1.368 82.9 nd 0.3 6.5 nd 0.11 7080 nd 0.11 6300 71 0.36 210 21.5 2.5 128 5090 2200 0.3 0.03 22.1 nd 0.10 21.3 2.7 18 5100 0.3 0.03 22.9 nd nd 0.10 6300 nd 0.01 6300 nd 0.01 6300 14.97 63 0.42 1870 24.2 2.6 129 4990 21900 0.3 0.30 22.1 nd nd 0.09 3 1.4 1.4 Agronomic 1.532 3.0 nd 0.30 5.4 nd nd 0.08 5100 nd 0.35 8.41 0.33 7.5 7.4 7.4 7.40 7.40 0.30 0.30 2.2 nd nd nd 0.07 52.0 7.00 7.40 nd 0.07			2			20			8.3			0.00.																				16.5
Oat 3 UN 2 Agronomic 1.459 5.69 nd 0.3 5.9 nd nd 0.11 6520 nd 0.65 5.38 67 0.34 1940 21.3 2.7 118 5130 21800 0.3 0.03 25.9 nd nd 0.09 Oat 3 1X 1 Agronomic 1.520 30 nd 0.03 5.2 nd nd 0.08 5160 nd 0.44 6.49 6.3 0.52 2.58 19.3 7.1 7.1 7.7 7.10 7.74 9.30 0.03 0.03 2.02 nd nd 0.08 580 nd 0.35 8.88 10 0.35 8.88 10 0.35 8.88 10 0.35 8.88 118 23 21800 0.33 0.00 3.00 3.27 0.00 3.00 3.27 0.00 3.00 3.28 0.01 0.03 0.18 0.01			1					0.0	6.5			0.12						0.0	-0.0				00		0.0						0.00	9.3
Oat 3 1X 1 Agronomic 1.52 30 nd 0.3 5.2 nd nd 0.08 5.60 nd 0.44 6.95 55 0.26 2880 19.3 7.1 77.2 930 37800 0.3 0.02 2.6 0.01 nd nd nd 0.09 5870 nd 0.35 8.91 0.33 2.57 13.3 7.5 7.1 77.2 930 37800 0.3 0.02 2.2.7 0.005 nd nd 0.07 Oat 3 1X 3 Agronomic 1.83 3.8.4 nd 0.35 5.8.1 63 0.35 2.60 13.6 7.5 7.2.4 7.60 37.00 0.3 0.02 2.7.7 0.005 nd nd 0.06 35 8.38 57 0.27 2.480 14.4 7.4 7.60 6.6 7.830 3700 0.3 0.02 2.7.7 0.005 nd nd <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>8.7</td>																										0.00			-			8.7
Oat 3 1X 2 Agronomic 2.158 37.2 nd 0.4 0.56 8.39 59 0.37 2570 13.3 7.5 71.6 77.40 37600 0.3 0.02 22.6 0.011 nd 0.07 Oat 3 1X 2 Agronomic 1.80 37. nd 0.3 5.4 nd 0.08 5780 nd 0.35 8.41 63 0.35 7.5 71.6 77.40 37600 0.3 0.02 22.7 0.005 nd 0.06 Oat 3 Calcareous 1 Agronomic 2.347 2.2.6 nd 0.3 8.4 nd 0.05 6490 nd 0.4 5.8 67 0.27 2480 1.4 7.8 63.0 22.4 8.1 61.6 7.58 840 0.33 84 nd 0.04 0.05 640 0.04 0.4 8.41 0.04 0.4 0.46 8.2			3	Agronomic										nd																	0.09	7.9
Oat 3 1X 2 Agronomic n/a 37 nd 0.3 5.4 nd nd 0.08 5780 nd 0.35 8.41 63 0.35 2600 13.6 7.5 72.4 7600 37400 0.3 0.03 22.7 0.005 nd nd 0.07 5680 nd 0.35 8.48 57 0.27 2480 14.4 7.8 75.5 8.40 3700 0.3 0.02 20.7 nd nd 0.06 Oat 3 Calcareous 1 Agronomic 1.850 31.4 nd 0.40 5.8 nd 0.05 71.40 nd 0.44 7.5 72.4 7600 37.00 0.03 0.02 20.7 nd nd 0.05 71.40 nd 0.44 7.5 nd nd 0.05 71.40 nd 0.45 5.7 10.6 25.1 6.50 25.6 6.50 26.50 0.6 71.6			1																													11.8
Oat 3 1X 3 Agronomic 1.830 38.8 nd 0.3 5.2 nd nd 0.07 5680 nd 0.35 8.38 57 0.27 2480 14.4 7.8 75.5 8340 3970 0.3 0.02 20.7 nd nd nd 0.05 Galar Calcareous 2 Agronomic 1.830 38.8 nd nd 0.05 6490 nd 0.4 7.68 62 0.28 2840 22 8.1 61.6 65.7 6030 0.01 24.7 0.005 nd nd 0.05 7140 nd 0.45 901 80 0.24 25.7 63.0 0.61 85.5 52.2 62.0 26.00 0.01 24.7 0.005 nd nd 0.05 7140 nd 0.45 90.01 130 0.5 1630 26.4 1.9 125 3600 0.4 nd 0.03 14 10			2																													12.7
Oat 3 Calcareous 1 Agronomic 2.87 2.26 nd 0.3 8.4 nd nd 0.0 7.68 6.2 0.28 2850 22 8.1 61.6 7.390 29000 0.4 0.02 2.4.7 0.005 nd nd 0.04 7.68 62 0.28 2850 22 8.1 61.6 7.390 29000 0.4 0.02 2.4.7 0.005 nd nd 0.04 7.68 62 0.28 2850 22.8 8.5 55.2 6260 25.30 0.4 nd 0.05 nd 0.04 0.45 9.01 80 0.24 25.7 70.0 23.0 7700 0.3 0.01 24.7 0.005 nd 0.03 Oat 4 UN 1 Agronomic 0.810 112 nd 0.4 0.45 5.34 90 0.41 15.70 2.6 2.60 2.6 0.03 2.64 1.0			2							-																						13
Oat 3 Calcareous 2 Agronomic 1850 31.4 nd 0.4 5.8 nd nd nd 0.45 9.01 80 0.24 2670 25.4 9.6 56.7 6030 27700 0.3 0.01 24.7 0.005 nd nd 0.05 Oat 4 UN 1 Agronomic 0.811 1.0 0.4 7.2 nd nd 0.05 7140 nd 0.46 8.25 74 0.29 28.00 27.8 8.5 55.2 6300 0.4 26.00 nd nd 0.05 Oat 4 UN 2 Agronomic 0.864 81.6 nd 0.3 5.8 nd nd 0.15 5400 nd 0.73 5.34 90 0.41 1570 29.9 1.9 120 3480 18700 0.2 0.02 0.02 2.88 nd 1.0 0.05 0.04 0.05 0.04			1																													14.2
Oat 4 UN 1 Agronomic 0.860 112 nd 0.3 6.1 nd 0.14 5600 nd 0.8 5.3 103 0.5 1630 2.4 19 125 330 1770 0.2 nd 0.2 nd 0.16 0.16 Oat 4 UN 2 Agronomic 0.664 81.6 nd 0.3 5.4 nd 0.15 5460 nd 0.3 5.7 0.0 1.5 0.0 1.0 0.70 0.2 0.2 0.2 0.3 0.7 0.0 0.16 0.16 Oat 4 1X 1 Agronomic 1.340 0.3 7.7 0.10 1.4 0.00 3.60 0.49 8.22 62 0.3 2.10 1.0 0.40 0.05 0.40 0.43 6.4 51 0.23 2.40 1.7 9.7 59.9 733 3800 0.3 1.0 0.05 0.06 <td>Oat 3</td> <td>Calcareous</td> <td>2</td> <td></td> <td>1.850</td> <td></td> <td>2670</td> <td>25.4</td> <td></td> <td>14.4</td>	Oat 3	Calcareous	2		1.850														2670	25.4												14.4
Oat 4 UN 2 Agronomic 0.664 81.6 nd 0.3 5.8 nd nd 0.15 5460 nd 0.73 5.34 90 0.41 1570 29.9 1.9 120 3480 1870 0.2 2.8. nd 1 nd 0.13 Oat 4 1X 1 Agronomic 1.30 26.3 nd 0.3 5.7. nd nd 0.1 5670 0.5 0.49 8.22 62 0.3 268 14.7 10.8 76 7530 3300 0.3 nd 1.0 0.13 Oat 4 1X 2 Agronomic 1.251 42 nd 0.3 7 nd nd 0.09 5360 nd 0.38 6.06 55 0.35 2130 14.6 8.4 59.9 6330 3570 0.3 0.00 1.0 0.05 nd nd nd 0.09 5670																																15.1
Oat 4 1X 1 Ågronomic 1.30 26.3 nd 0.3 7.7 nd 0.1 5670 0.5 0.49 8.22 62 0.3 280 1.7 10.8 7.6 7.40 3.40 0.3 nd 0.4 nd 0.1 5700 0.5 0.49 8.22 62 0.3 280 1.7 10.8 7.6 7.50 3400 0.3 nd 0.4 nd 0.1 4700 nd 0.4 0.4 0.47 0.47 0.23 2240 17.7 9.9 730 3300 0.3 nd 0.05 nd nd 0.05 nd 0.35 6.06 5 0.55 0.35 130 14.6 8.4 9.03 3300 0.3 nd nd nd nd 0.05 500 nd 0.35 620 510 51.3 10.4 8.43 9.0 630 630 630 630 630 630		-	1																										2		00	11
Oat 4 1X 2 Agronomic 1.077 19.8 nd 0.2 9 nd nd 0.1 4700 nd 0.43 6.4 51 0.23 22.0 17.7 9.7 59.9 7330 3390 0.3 nd 0.1 nd nd Oat 4 1X 3 Agronomic 1.281 42 nd 0.3 7 nd nd 0.09 5360 nd 0.38 6.6 55 0.35 2130 1.46 8.4 59.9 6330 3700 0.3 0.2 1.00 nd nd 0.00 Oat 4 1X 4 Agronomic 1.422 1.0 0.3 7.7 nd nd 0.09 5700 nd 9.6 7.530 3870 0.3 0.1 1.0 0.0 0.01 nd 0.01 nd 0.01 7.0 nd 0.1 5700 nd 0.35 8.63 <h< td=""><td></td><td>-</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I nd</td><td></td><td></td><td>9</td></h<>		-	<u> </u>																										I nd			9
Oat 4 1X 3 Agronomic 1.251 42 nd 0.3 7 nd nd 0.9 5360 nd 0.38 6.06 55 0.35 2130 1.6 8.4 59.9 6330 3570 0.3 0.02 20.2 nd nd nd 0.09 5360 nd 0.38 6.06 55 0.35 2130 1.46 8.4 59.9 6330 3570 0.3 0.02 2.02 nd nd nd 0.09 5070 nd 0.35 7.0 nd 0.09 5070 nd 0.35 7.0 nd 0.09 5070 nd 0.36 210 1.0 0.90 57.0 0.35 8.0 210 1.0 51.2			-																-000					0.000				01000			0.06	10.5
Oat 4 1X 4 Agronomic 1.424 22 nd 0.3 7.9 nd nd 0.09 5070 nd 0.39 7.44 49 0.36 2500 15.1 9.9 69.7 7.530 36800 0.3 0.01 21 0.005 nd nd nd 0.1 57.0 nd 0.3 2.70 nd 0.1 57.0 nd 0.3 0.1 57.0 nd nd nd 0.1 57.0 nd 0.3 2.70 nd 0.35 8.63 69 0.32 27.0 1.85 10.4 51.3 6100 31.00 0.3 nd 0.07 0.35 86.3 69 0.3 27.7 1.8 11.1 57.2 610 31.00 0.3 nd		1X	3		-				7																		20.2					9.4
Oat 4 Calcareous 2 Agronomic 1.750 34.6 nd 0.3 7.9 nd nd 0.1 5490 nd 0.35 8.63 69 0.36 2750 18.5 10.4 51.3 6200 3120 0.3 nd 24.6 0.07 Oat 4 Calcareous 3 Agronomic 1.606 40 nd 0.3 8.2 nd nd 0.01 5490 nd 0.41 8.79 77 0.3 2770 19.8 11.1 57.2 6120 31000 0.3 nd 0.40 0.07 Oat 4 Calcareous 4 Agronomic 1.746 34.6 nd 0.3 6.5 nd nd 0.12 5960 nd 0.42 9.47 71 0.34 2740 18.8 10.6 53.1 5190 2.700 0.30 2.71 0.34 2.71 0.34 2.74 18.8 10.6 53.1			4					0.0		nd	nd	0.07		nd	0.00.5			0.000	-000					00000	0.00	0.0.		01000				12.5
Oat 4 Calcareous 3 Agronomic 1.766 40 nd 0.3 8.2 nd 0.09 6050 nd 0.3 77 0.3 270 1.8 1.1 57.2 6120 3100 0.3 nd 2.57 0.09 nd nd 0.07 Oat 4 Calcareous 4 Agronomic 1.746 3.4 0.0 0.3 0.01 0.25 0.09 nd 0.07 Oct 4 Calcareous 4 Agronomic 1.746 3.4 0.0 0.3 0.10 2.57 0.09 nd 0.07 Oct 4 Calcareous 4 Agronomic 1.746 3.4 0.0 0.3 0.10 2.57 0.09 nd nd 0.07 Cor 1 Magnonic 1.438 1.4 nd 0.6 0.40 0.42 2.70 0.3 2.70 1.88 1.10 5.13 5.10 5.10 5.10 6.10 5.13 5.10 5.10 5.10 5.10 5.10 5.10			1			-/		0.0				0.12				, .e												01011				12.1
Oat 4 Calcareous 4 Agronomic 1.746 34.6 nd 0.3 6.5 nd nd 0.12 596 nd 0.42 9.47 71 0.34 2740 18.8 10.6 53.1 5190 2570 0.3 0.01 26 0.009 nd nd 0.07 Com 1 UN 1 Agronomic 1.438 1.3.4 nd nd 1.6 nd 0.04 2720 nd 0.23 5.49 72 0.38 1120 2.38 0.8 13.2 13.0 0.01 12 nd			-																													13.4
Com 1 UN 1 Agronomic 1.438 1.3. nd nd 1.6 nd 0.4 2720 nd 0.23 5.49 72 0.38 1.12 0.38 1.3. 1.4 nd nd nd nd nd nd 1.6 nd 1.6 nd 0.4 2.72 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5								0.0				0.07	0000					0.0					0.120	0.000	0.00			01007			0.00.	13.2
			1																													25.2
Com 1 UN 1 Agronomic n/a 15.2 nd nd 1.6 nd 0.05 2800 nd 0.25 5.8 78 0.35 1210 24.1 0.8 13.5 1410 13100 0.3 0.02 12 nd nd nd 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0			1			15.2									0.25	5.58	78	0.35		24.1		13.5					12					24.5

Page 1 of 4

2001 Field Trials	
Plant Data	
C3 Test Site	

Species Plo	t Treatment	Replicate	Sample	Sample Dry Weight	Al	Sb	As	Ba	Be	Bi	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Мо	Ni	Р	к	Se	Ag	Sr	Tm	Ti	U	Vd	Zn
				(g)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Corn 1 Corn 1	UN	2	Agronomic Agronomic	1.597	7.4	nd nd	nd nd	1.4	nd nd	nd nd	0.03	2450 2360	nd nd	0.18	4.73 4.56	69 58	0.22	1270 1380	22.8 25.6	0.4	9.1 9.4	1980 1990	14600 14800	0.3	nd nd	9.7 9.2	nd nd	nd nd	nd nd	nd nd	22.5 18.6
Corn 1	UN	4	Agronomic	1.315	8.8	nd	nd	1.2	nd	nd	0.02	2400	nd	0.17	4.83	59	0.33	1270		0.5	11.3	1450	13800	0.2	nd	10.4	nd	nd	nd	0.05	22
Corn 1	1X	1	Agronomic	1.529	13.5	nd	nd	1.3	nd	nd	0.07	3460	nd	0.2	5.93	81	1.06	1850	13.7	0.7	6	2230	13500	nd	0.01	12.3	nd	nd	nd	0.07	28.7
Corn 1 Corn 1	1X 1X	2	Agronomic Agronomic	1.753 2.090	10.2	nd nd	nd nd	1.5	nd nd	nd nd	0.04	3030 2840	nd nd	0.19	5.74	74 68	0.34 0.44	1860 1710	14.1 10.5	0.7	5.9 6.3	2540 2300	14900 15400	0.2	nd nd	11.6	nd nd	nd nd	nd nd	0.05	27.2
Corn 1	1X	4	Agronomic	1.228	12.1	nd	nd	1.0	nd	nd	0.05	2840	nd	0.17	5.76	75	0.44	1900	20.1	0.6	0.5	2300	13400	0.2	0.01	11.1	nd	nd	nd	0.08	29.9
Corn 1	Calcareous	1	Agronomic	2.617	7.9	nd	nd	1.5	nd	nd	0.05	3060	nd	0.15	5.35	67	0.29	1980	12.5	0.8	3.3	2330	14300	nd	nd	11.7	nd	nd	nd	0.07	27.4
Corn 1	Calcareous	2	Agronomic	2.080	6.8	nd	nd	1.3	nd	nd	0.05	2470	nd	0.14	4.92	61	0.33	1740	15	0.7	4.2	2160	15200	nd	nd	9.6	nd	nd	nd	0.08	20.2
Corn 1 Corn 1	Calcareous Calcareous	3	Agronomic Agronomic	1.789	5.3	nd nd	nd nd	1	nd nd	nd nd	0.04	2780 2770	nd nd	0.13	5.74 4.73	64 55	0.28	1790 1750	15.4 13.2	0.7	3.2 4.3	2320 2130	14400 13300	nd nd	nd nd	10	nd nd	nd nd	nd nd	0.08	28.7
Corn 2	UN	1	Agronomic	0.455	12.5	nd	nd	1.5	nd	nd	0.03	2710	nd	0.71	5.01	67	0.51	1360	25.5	0.8	28.7	1880	12600	0.2	0.01	13.2	nd	nd	nd	0.1	15.8
Corn 2	UN	2	Agronomic	0.737	9.9	nd	nd	1.4	nd	nd	0.03	2480	nd	0.62	5.24	60	0.36	1250	28	1	22.4	2230	13700	0.3	nd	11.7	nd	nd	nd	0.09	15.1
Corn 2 Corn 2	UN	3	Agronomic Agronomic	0.830	13.6	nd nd	nd nd	1.4	nd nd	nd nd	0.02	2380 2670	nd nd	0.55	5.05 5.29	69 70	0.33	1060 1250	25.8 27.8	0.9	23 23.9	2100 2280	13300 15100	0.2	nd nd	11.3 12.5	nd nd	nd nd	nd nd	0.1 0.09	14.8
Corn 2	UN	4	Agronomic	n/a	11.7	nd	nd	1.8	nd	nd	0.04	2670	nd	0.41	5.44	70	0.47	1230	27.8	0.5	23.9	2340	14900	0.3	nd	13.1	nd	nd	nd	0.09	15.9
Corn 2	1X	1	Agronomic	1.731	10	nd	nd	1.3	nd	nd	0.03	3360	nd	0.23	4.95	57	0.32	1870	24.4	0.3	6.5	1970	12200	0.2	nd	14.2	nd	nd	nd	0.06	26.4
Corn 2 Corn 2	1X 1X	2	Agronomic Agronomic	1.621	10.8 10.5	nd 0.05	nd nd	1.1	nd nd	nd nd	0.03	3450 3160	nd nd	0.25	5.85 5.87	80 74	0.32	1990 1970	26 23	0.5	5.6 5.3	1950 1940	11500 12900	0.2	nd nd	12.8	nd nd	nd nd	nd nd	0.07	33.6 41.6
Corn 2	1X	4	Agronomic	1.417	8.6	0.05	nd	1.1	nd	nd	0.05	2450	nd	0.24	4.71	56	0.29	1580	19.9	0.0	6.8	1940	12900	0.2	nd	10.8	0.008	nd	nd	0.09	26.3
Corn 2	Calcareous	1	Agronomic	1.540	8.2	nd	nd	1.1	nd	nd	0.06	3510	nd	0.22	7.05	72	0.3	1780	17.9	1.2	5.6	2220	12800	nd	nd	13.8	nd	nd	nd	0.08	40.7
Corn 2 Corn 2	Calcareous	2	Agronomic	1.844	6.9	nd	nd	0.8	nd	nd	0.04	3390 2520	0.6	0.17	7.89 5.44	76	0.33	1780 2150	16	1.2	6.6 4	2100 2030	12100 14500	nd	nd	12.9 11.5	nd	nd	nd	0.08	38.6
Corn 2 Corn 2	Calcareous Calcareous	3	Agronomic Agronomic	1.953	6.3 8.3	nd nd	nd nd	1.1 0.9	nd nd	nd nd	0.05	3430	nd nd	0.13 0.18	7.08	56 71	0.27 0.32	2150	13.3	0.5	4.3	2030	12300	nd nd	nd nd	11.5	nd nd	nd nd	nd nd	0.1	45.8
Corn 3	UN	1	Agronomic	0.286	12.9	nd	nd	1.5	nd	nd	0.02	1510	nd	0.39	3.91	41	0.28	823	15.3	0.2	20.3	1110	11800	nd	nd	8.2	nd	nd	nd	0.08	9.1
Corn 3	UN	2	Agronomic	0.334	24.5	nd	nd	1.4	nd	nd	0.02	1510	nd	0.39	4.32	64	0.27	865	17.9	0.3	23.6	1820	17200	nd	nd	8.1	nd	nd	nd	0.12	13
Corn 3 Corn 3	UN	3	Agronomic Agronomic	0.260	26.9 15.4	nd nd	nd nd	1.2	nd nd	nd nd	0.02	1740 1820	nd nd	0.37	4.68 7.96	72 49	0.55	838 990	26 20.6	0.3	25.9 22.9	2250 2220	16900 16300	nd nd	nd nd	7.7 9.8	nd nd	nd nd	nd nd	0.13	13.8
Corn 3	1X	1	Agronomic	2.346	7.6	nd	nd	1.1	nd	nd	0.02	2140	nd	0.17	4.76	53	0.28	1620	13.2	0.3	7.1	2320	14600	nd	nd	9.6	nd	nd	nd	0.08	21.3
Corn 3	1X	2	Agronomic	3.368	8.6	nd	nd	1.4	nd	nd	0.04	3370	nd	0.16	6.02	69	0.28	2030	19.3	0.5	6.1	2620	14300	nd	nd	14.8	nd	nd	nd	0.08	35.1
Corn 3 Corn 3	1X 1X	3	Agronomic	1.682 1.952	5	nd nd	nd nd	1.1 0.9	nd nd	nd nd	0.02	2230	nd nd	0.2	4.2	45 48	0.22	1460 1610	17.1 15.9	0.3	7.3 5.7	2290 2300	13200	0.2 nd	nd nd	9.9 9.4	nd nd	nd nd	nd nd	nd nd	24.9 25.4
Corn 3	Calcareous	1	Agronomic Agronomic	1.795	10.3	nd	nd	1	nd	nd	0.03	2200	nd	0.12	4.70	60	0.43	1690	24	0.3	3.5	2300	14700	nd	nd	9.4	nd	nd	nd	0.08	23.4
Corn 3		2	Agronomic	1.597	9.2	nd	nd	0.8	nd	nd	0.03	2470	nd	0.18	4.5	51	0.51	1770	22.4	0.4	3.7	2330	13800	nd	nd	8.8	nd	nd	nd	0.07	24.6
Corn 3 Corn 3	Calcareous	3 4	Agronomic	2.311 2.031	9.1	nd nd	nd	1	nd	nd	0.04	2460 1700	0.7	0.15	25.2 4.2	51 55	1.76 0.49	1700 1470	16.8	0.4	3.4 3.3	2070 2420	13400 15100	nd nd	nd	9.7 6.9	nd nd	nd	nd	0.07	34.7 22.3
Corn 3 Corn 4	Calcareous	4	Agronomic Agronomic	0.931	0	nd	nd nd	0.8	nd nd	nd nd	0.03	1940	nd nd	0.15	6.02	63	0.49	1470	16.2 35.5	0.4	3.5	2420	15700	0.3	nd nd	9.2	nd	nd nd	nd nd	0.08	22.3
Corn 4		2	Agronomic	1.573	9.4	nd	nd	1.8	nd	nd	0.03	2560	nd	0.37	5.29	73	0.42	1150	32.2	0.5	20.2	2080	14500	0.3	nd	14.4	nd	nd	nd	0.09	15.1
Corn 4	UN	3	Agronomic	0.910	9.8	nd	nd	1.3	nd	nd	0.02	2240	nd	0.44	5.14	72	0.4	1050	26	0.4	24.2	2330	13900	0.3	nd	11.7	nd	nd	nd	0.09	14.4
Corn 4 Corn 4	UN 1X	4	Agronomic Agronomic	0.722	7.1	nd nd	nd nd	1.2	nd nd	nd nd	0.03	2620 2410	nd nd	0.4 0.21	5.4 7.18	67 54	0.8	1410 1970	35.8 16	0.6	20.6	2300 2220	13400 13000	0.3 nd	nd nd	12.6	nd nd	nd nd	nd nd	0.09	15.7 23.7
Corn 4	1X	2	Agronomic	1.239	6.9	nd	nd	0.8	nd	nd	0.03	2130	nd	0.15	4.61	49	0.25	1910	19	0.4	5.1	1840	11900	0.2	nd	10.5	nd	nd	nd	0.05	22.6
Corn 4		3	Agronomic	2.084	9.1	nd	nd	0.9	nd	nd	0.03	2500	nd	0.19	5.26	68	0.41	2060	17.9	0.4	4.7	2220	12400	nd	nd	10.9	nd	nd	nd	0.08	30.8
Corn 4 Corn 4		4	Agronomic Agronomic	1.968 n/a	9.9 8.7	nd nd	nd nd	1	nd nd	nd nd	0.03	2750 2790	nd nd	0.21	4.9 5.16	63 68	0.41	1690 1720	14.7 14.9	0.4	6.3 6.2	2060 2120	12400 12600	nd nd	nd nd	12.2	nd 0.006	nd nd	nd nd	nd nd	29.2 29.8
Corn 4		1	Agronomic	1.030	7.5	nd	nd	0.7	nd	nd	0.04	2790	nd	0.13	5	56	0.36	2110	19.7	0.3	3.5	2520	14400	nd	nd	12.2	nd	nd	nd	nd	27.2
Corn 4	Calcareous	2	Agronomic	1.554	8	nd	nd	0.9	nd	nd	0.04	2720	nd	0.12	4.78	55	0.43	2200	15.1	0.4	2.4	2180	13900	nd	nd	12.1	nd	nd	nd	nd	24.4
Corn 4 Corn 4		3	Agronomic Agronomic	2.168	9 7.9	nd nd	nd nd	1.1	nd nd	nd nd	0.04	3100	nd nd	0.17	5.49 4.93	75 60	0.5	2230 1910	17	0.6	2.8	2330 2480	13000 13800	nd nd	nd nd	13.8	nd nd	nd nd	nd nd	nd nd	31.1
Soy 1	UN	-+	Toxicological	1.370	422	nd	nd 0.3	17.9	nd	nd	0.04	10500	0.7	2.77	9.84	306	1.01	3220	30.4	1.2	176	2480	13800	0.3	0.02	45	0.009	nd 6	nd 0.02	na 0.76	18.1
Soy 1	UN	1	Toxicological	n/a	439	nd	0.3	17.4	nd	nd	0.21	10300	0.8	2.74	9.79	309	0.9	3310	30.5	1.2	173	2010	15400	0.2	0.02	44.5	0.009	6	0.02	0.75	17.5
Soy 1 Soy 1	UN 1X	2	Toxicological Toxicological	1.662 4.309	214 323	nd nd	0.2	15 16.2	nd nd	nd nd	0.15	10500 13500	0.5	1.97	8.77 10	220 259	0.72	3240 4320	26 25.4	1.1	128 115	1750 2500	14900 12400	0.3	nd 0.02	45.3 51.4	0.006	3	0.02	0.41 0.58	17 22.5
Soy 1 Soy 1	1X	2	Toxicological	3.538	486	nd	0.5	16.2	nd	nd	0.19	13500	0.6	2.33	10	340	1.13	4320	29.5		135	1950	12400	0.2	0.02	52.8	0.01	6	0.02	0.58	22.5
Soy 1	1X	3	Toxicological	3.597	434	0.1	0.4	16.8	nd	nd	0.18	11600	0.8	2.14	11.7	301	0.97	3890	27.2	2.4	130	1980	12800	0.3	0.02	47.3	0.013	6	0.02	0.75	20.2
Soy 1	Calcareous	1 2	Toxicological		109	0.19	0.3	14.2	nd	nd	0.31	15700	nd	1.58	8.95	218	0.78	4790	36.6	1.8	48.5	2770	10600	nd	nd	61.5	0.01	2	0.01	0.24	30
Soy 1 Soy 1	Calcareous Calcareous	_	Toxicological Toxicological	4.771 5.969	111 143	nd nd	0.3	13 14.8	nd nd	nd nd	0.33	14700 16500	nd nd	1.41	8.22 8.88	191 246	0.92	4400 4920	39.8 39.3	2.2	42.9 54.1	2410 2870	12400 11800	nd nd	0.01 0.02	56.5 63.4	0.01	2	nd 0.01	0.24	26.6
Soy 2	1X	-	Toxicological	2.072	56	nd	0.2	16.3	nd	nd	0.30	15400	nd	2.21	8.75	115	0.86	4390	22.6	1.9	94.6	4080	14800	0.2	nd	59.9	0.005	2	nd	0.15	34.3
Soy 2	1X		Toxicological	3.524	63.9	nd	nd	14.5	nd	nd	0.28	14300	nd	2.15	8.65	136	0.73	4090	21	1.4	101	3800	13900	nd	nd	52.1	0.005	1	nd	0.17	32.4
Soy 2 Soy 2	1X Calcareous	3	Toxicological Toxicological	3.067	59.9 57.4	nd nd	0.2 nd	15.9 12.5	nd nd	nd nd	0.33	16100 16700	nd nd	2.71	7.71	137 120	5.18 0.85	4890 4970	27.4 20.1	2	97.9 49.1	4390 3670	15300 13000	nd nd	nd 0.01	60.4 59.4	0.006	1	nd nd	0.15 0.14	36.8 40.1
Soy 2		2	Toxicological	3.653	55.2	nd	nd	12.5	nd	nd	0.44	16000	nd	1.39	6.87	113	0.85	4740	17.6	3.8	46.6	3750	13900	nd	nd	58.3	0.007	1	nd	0.14	37.3
Soy 2	Calcareous	3	Toxicological	3.780	58.7	nd	nd	12.4	nd	nd	0.45	16600	nd	1.18	6.82	108	0.5	5070	17.3	4	49.4	3840	15000	nd	nd	59	0.007	1	nd	0.14	38
Soy 3 Soy 3	1X 1X	1 2	Toxicological Toxicological	4.897	95.9 119	nd nd	nd nd	14	nd nd	nd nd	0.24	13400	nd nd	1.25	6.96 7.15	129	0.5	4200 4470	19.3	3.6 3.6	65.7 66.9	3830 3680	12400	0.2 nd	0.01	52.1	0.008	2	nd nd	0.21	28.7
Soy 3 Soy 3	1X 1X	2	Toxicological	4.529 n/a	119	nd	nd	13.5	nd	nd	0.24	13300	nd	1.35	6.88	138	0.73	4470	19.6	3.6	63.8	3630	11300	nd	0.03	53.4	0.009	2	nd	0.25	27.6
Soy 3	1X	3	Toxicological	5.809	121	nd	0.2	14.4	nd	nd	0.26	14000	nd	1.58	7.74	154	1.16	4390	21.5	4.3	74.2	4250	10800	0.2	nd	56.4	0.008	2	0.01	0.27	33
Soy 3 Soy 3		1	Toxicological	3.989 5.714	70.1	nd	nd 0.2	14	nd	nd	0.49	14400 15500	nd	1.25	7.22	156	2.38	4630 5030	27	5.6	35.9 40.7	3460 3460	11600 12100	nd nd	nd 0.02	55.7 59	0.01	1	nd 0.01	0.17	36.1 38.2
Soy 3 Soy 3	Calcareous Calcareous	2	Toxicological Toxicological	5.714 3.120	88.8 82.6	nd nd	0.2 nd	13.8	nd nd	nd nd	0.47	15500 13800	nd nd	1.65	7.13 6.49	197	0.68	5030 4520		3	40.7 33.3	3460 3120	12100	nd nd	0.02	59	0.011 0.01	1	0.01 nd	0.2	38.2
Soy 3			Toxicological	1.627	203	nd	0.2	11.8	nd	nd	0.38	10700	nd	2.75	6.93	235	0.80	3280	44.5	1.9	164	2180	12300	nd	0.01	47.5	0.001	3	0.01	0.17	16.6
Soy 4	UN	2	Toxicological	2.069	199	nd	0.2	14.2	nd	nd	0.15	10100	nd	3.07	7.43	247	0.79	2980	41.1	1.5	181	2180	16800	nd	0.02	42.6	0.006	3	0.01	0.39	19

Page 2 of 4

2001 Field Trials	
Plant Data	
C3 Test Site	

Species	Plot	Treatment	Replicate	Sample	Sample Dry	Al	Sb	As	Ba	Be	Bi	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Мо	Ni	Р	к	Se	Ag	Sr	Tm	Ti	U	Vd	Zn
•			•	•	Weight														0							0						
					(g)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg		mg/kg		mg/kg	mg/kg						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Soy Sov	4	1X 1X	1	Toxicological Toxicological	3.154 4.294	66.2 105	nd nd	nd nd	13 14.5	nd nd	nd nd	0.3	12700 14000	nd nd	1.81	7	116 145	0.52	4030 4160	28.3 26.8	4.8 4.3	71.9 81.2	4700 4750	14100 13600	0.2	0.02	53.2 56.6	0.007	1	nd 0.01	0.16	39
Soy	4	1X 1X	3	Toxicological	3.405	118	nd	nd	14.5	nd	nd	0.26	14000	nd	2.02	7.57	159	0.70	4230	23.1	6.2	95.3	5210	13800	0.2	0.02	56.1	0.007	2	nd	0.26	39.2
Soy	4	Calcareous	1	Toxicological		96.2	nd	nd	12.7	nd	nd	0.41	15600	nd	1.54	7.28	136	0.79	5090	26.5	3.5	51.7	4460	10700	nd	0.03	64.2	0.01	2	0.01	0.22	40.7
Soy Soy	4	Calcareous Calcareous	2	Toxicological Toxicological	5.280 5.563	89 84.7	0.1 nd	nd nd	12.6 12.3	nd nd	nd nd	0.42	14900 15300	nd nd	1.77	6.74 6.34	152	0.53	4740 4600	30 25.1	2.8	57.9 50.3	4260 4070	12500 11000	nd nd	0.02	60.9 60.4	0.01	1	nd nd	0.2	38.1
Oat	1	UN	1	Toxicological	1.333	55.9	nd	0.3	5.1	nd	nd	0.12	6770	nd	0.59	8.83	58	0.6	2210	15.7	2.7	130	2400	22600	nd	nd	26.6	0.006	nd	nd	0.07	18
Oat	1	UN UN	1	Toxicological Toxicological	n/a	57.3 225	nd nd	0.3	5	nd	nd nd	0.11	6810 8400	nd	0.59	8.84	62	2.02	2220 2070	16.3 17.5	2.7	126	2370 1800	22700 18500	0.2	nd 0.03	26.2	0.006	1	nd 0.01	0.09	18.2
Oat Oat	1	UN	2	Toxicological Toxicological	0.858	193	nd	0.4	8.6 9.1	nd nd	nd	0.16	8400 7860	nd nd	0.89	9.42 8.46	157	1.82	1880	21.5	1.6	150 143	1410	13900	0.3	0.03	34.2 35.7	0.006	3	0.01 nd	0.31	14.9
Oat	1	1X	1	Toxicological	1.329	46.1	nd	0.3	5.9	nd	nd	0.12	5200	nd	0.55	11.3	73	1.47	2530	15.9	9.1	91.2	5730	36300	0.3	0.04	19.4	0.007	nd	nd	0.07	26
Oat Oat	1	1X 1X	2	Toxicological Toxicological	1.980 1.747	57.4 34.5	nd nd	0.4	5.5 5.9	nd nd	nd nd	0.37	6440 6340	nd nd	0.54	11.3	73	2.08	2830 2800	14.2 16.2	9.4 8.3	88.4 91.2	7100 6780	37400 35800	0.3	0.01	23.4 22.8	0.009	1 nd	nd nd	0.1	21.9 21.8
Oat	1	1X 1X	4	Toxicological	1.356	34.5	nd	0.3	5.3	nd	nd	0.12	5090	nd	0.47	10.3	64	0.48	2480	16	8.3	87.1	5500	32700	0.3	0.01	19.2	0.007	nd	nd	0.05	22.5
Oat	1	Calcareous	1	Toxicological	1.008	56.9	nd	0.4	5.7	nd	nd	0.11	5140	nd	0.5	11.5	92	1.24	2270	18	12.6	78.6	6540	32700	0.3	0.01	21.3	0.007	1	nd	0.09	16.4
Oat Oat	1	Calcareous Calcareous	2	Toxicological Toxicological	1.112	34.4 32.1	nd nd	0.3	6.8 6.2	nd nd	nd nd	2.92 0.55	5040 4760	nd nd	0.47	10.4 10.8	71 74	1.23	2140 2490	16.6 16.3	11.3 10.9	70.7 80.3	6070 6590	30500 40400	0.4	0.02	21.1 18.4	0.006	nd 1	nd nd	0.06	20.9 20.6
Oat	1	Calcareous	4	Toxicological	1.374	26.2	nd	0.3	6	nd	nd	0.21	5280	nd	0.42	11.7	68	1.71	2520	18.8	11.8	77.5	5590	36400	0.4	0.02	20.3	0.007	nd	nd	nd	20.6
Oat	2	UN	1	Toxicological	0.586	109	nd	0.3	5.6	nd	nd	0.16	6360	nd	0.73	7.13	123	1.96	1800	19.8	3.4	122	2890	15600	0.3	0.02	27.9	0.008	2	nd	0.18	13.7
Oat Oat	2	1X 1X	1	Toxicological Toxicological	1.786	24.6 25.9	nd nd	0.3	5.2	nd nd	nd nd	0.07	6170 6280	nd nd	0.37	8 7.2	54 44	1.87	2420 2460	12.6	9.1 9.7	65.7 75.5	5850 6870	27800 34400	0.2	0.02 nd	24.6	0.006	nd nd	nd nd	nd nd	11.3
Oat	2	1X 1X	3	Toxicological	1.551	33.8	nd	0.3	5.7	nd	nd	0.08	6250	nd	0.39	7.81	54	1.84	2460	12.2	9.6	71.6	7230	33200	0.4	nd	22.7	0.005	nd	nd	0.06	11.5
Oat	2	Calcareous	1	Toxicological	1.899	25.1 24	nd	0.3	5.5 5.6	nd	nd	0.1	5530 5720	nd	0.37	9.52 9.63	66 63	2.52 0.88	2410 2450	16.1 15	12.8 13.2	65.9 67	6790 7040	31600 33600	0.3	nd	21.8 21.9	0.006	nd	nd	nd	16.3
Oat Oat	2	Calcareous Calcareous	1	Toxicological Toxicological	n/a 2.282	24	nd nd	0.3	5.6	nd nd	nd nd	0.09	5720	nd nd	0.37	9.63 8.98	63	2.77	2450	13.2	13.2	69.8	7040 5950	33600 29700	0.4	0.02 nd	21.9	0.006	nd nd	nd nd	0.06	16.7
Oat	2	Calcareous	3	Toxicological	2.042	24.7	nd	0.3	6.1	nd	nd	0.09	5660	nd	0.4	8.95	64	2.23	2380	14	12.1	72.8	5960	29500	0.4	nd	22.2	0.007	nd	nd	nd	15
Oat	2	Calcareous	4	Toxicological	2.242	30	nd	0.3	5.3	nd	nd	0.08	5820	nd	0.37	8.86	70	2.34	2380	11.4	12.9	62.2	4660	27200	0.2	nd	23.2	0.007	nd	nd	0.05	12.9
Oat Oat	3	UN UN	1	Toxicological Toxicological	1.419 1.159	51.2 56	nd nd	0.4	5.6 5.4	nd nd	nd nd	0.12 0.16	7150 6800	nd nd	0.63	5.84 5.64	60 56	2.44 2.6	2080 2020	18.4 17.1	3.3 3.2	95.8 97.3	5870 5770	22200 22900	0.2	0.02	29.7 27.3	nd nd	nd 1	nd nd	0.09	9.5 9.9
Oat	3	UN	3	Toxicological	1.174	88.8	nd	0.4	6.8	nd	nd	0.15	7400	nd	0.73	6.07	86	2.17	1890	19.7	2.5	99.2	3930	14300	0.3	0.02	33.6	0.006	2	nd	0.15	9.2
Oat	3	1X	1	Toxicological	2.198	38.3	nd	0.4	4.7	nd	nd	0.1	5900	nd	0.39	7.29	52	1.72	2410 2580	14.9	7	62.6	7030	34400 35900	0.3	nd 0.03	23	0.005	nd	nd	0.07	10.4
Oat Oat	3	1X 1X	2	Toxicological Toxicological	1.590 1.471	28.2	nd nd	0.4	5.6 5.7	nd nd	nd nd	0.16	5770 5810	nd nd	0.45	9.35	51 54	3.3	2580	17.5	7.7 6.8	73.3 90.9	8220 7560	35900	0.3	0.03	23.2	0.005	nd nd	nd nd	0.06	14.2
Oat	3	Calcareous	1	Toxicological	1.480	31.3	nd	0.3	6.4	nd	nd	0.1	5160	nd	0.41	7.9	62	2.42	2340	21.9	7.4	52.6	6500	29000	0.4	0.03	20.8	0.007	nd	nd	0.05	14.3
Oat Oat	3	Calcareous Calcareous	2	Toxicological Toxicological	2.051 1.649	58.8 30.9	nd 0.12	0.4	5.8 6.5	nd nd	nd nd	0.11 0.08	5500 5330	nd nd	0.5	9.44 7.88	79 60	2.88	2280 2310	22.8 22.9	8.4 7.4	57.9 48.3	6390 6430	34700 27600	0.4	nd 0.01	22.4 21.9	0.009	1 nd	nd nd	0.1	14.7
Oat	4	UN	1	Toxicological	1.289	138	nd	0.4	7.4	nd	nd	0.00	6340	nd	0.92	5.93	101	2.48	1860	20.5	1.9	96.2	2750	11600	0.3	nd	30	0.007	2	nd	0.21	10.7
Oat	4	UN	2	Toxicological	1.130	115	nd	0.3	6.6	nd	nd	0.18	6440	nd	0.66	5.41	84	2.41	1760	18.1	1.8	97.2	2660	12500	0.2	0.01	29.2	0.006	2	nd	0.17	8.7
Oat Oat	4	1X 1X	1	Toxicological Toxicological	0.777	49 53.8	nd 0.13	0.3	7.4 8.2	nd nd	nd nd	0.23	6100 7520	nd nd	0.59	7.28 8.94	62 68	0.41	2270 3210	14.8 11.6	7.9	59.4 59.7	5100 7080	26000 30100	0.3	0.02	26.8 31.5	0.008	1	nd nd	0.08	11.1 11.7
Oat	4	1X	3	Toxicological	0.923	41.4	nd	0.3	8.9	nd	nd	0.14	5600	nd	0.46	7.14	62	0.34	2500	15	9.8	60.8	7150	31800	0.4	nd	25.9	0.008	nd	nd	0.06	10.7
Oat	4	1X	4	Toxicological	1.265	43.3	nd	0.4	8.2	nd	nd	0.16	7870	nd	0.51	8.17	62	0.34	3150	12	11.6	60.9	7470	29300	0.3	nd	34.7	0.014	nd	nd	0.07	11.6
Oat Oat	4	Calcareous Calcareous	1	Toxicological Toxicological	1.626	67.1 38.5	nd nd	0.3	5.4 4.9	nd nd	nd nd	0.23	6940 5460	nd nd	0.51	10.2 8.82	97 87	0.51 0.42	2960 2210	14.6 15.4	10.7	45.3 38.8	4410 3920	24700 22100	0.3	0.02	29.4 26.3	0.017	I nd	nd nd	0.12 0.07	13.2
Oat	4	Calcareous	3	Toxicological	1.325	45.9	nd	0.3	8.2	nd	nd	0.16	5730	nd	0.44	9.51	88	0.66	2580	18.1	11.9	51.8	5760	26300	0.3	nd	25.1	0.012	nd	nd	0.1	18.7
Oat Corn	4	Calcareous UN	4	Toxicological Toxicological	1.328	21.2	nd nd	0.2	10.6	nd nd	nd nd	0.11	4360 5680	nd nd	0.41	8.29 5.43	60 109	0.28	2260 2510	25.6	9.7	51.5 32.2	5680 1160	25700 17900	0.2 nd	0.01 nd	24.2	0.009 nd	nd 1	nd nd	nd 0.15	14.4
Corn	1	UN	2	Toxicological	1.664	87.8	nd	0.5	4	nd	nd	0.11	5880	nd	0.41	6.19	109	0.43	2670	14.8	1.5	34.6	1360	16600	nd	nd	26.3	0.005	1	nd	0.13	9.6
Corn	1	UN	3	Toxicological	1.137	143	nd	0.6	5.2	nd	nd	0.18	6580	nd	0.71	7.49	162	0.71	2910	22.6	1.2	53.8	824	15600	nd	0.01	28.7	0.008	2	nd	0.25	11.3
Corn Corn	1	UN 1X	4	Toxicological Toxicological	1.510 1.071	122 50.1	0.06	0.5	4.8 4.4	nd nd	nd nd	0.17 0.17	6610 8240	nd nd	0.65	8.1 7.65	156 121	0.51 0.66	3120 4240	23.6 8.2	1.4 2.2	50.9 21.2	785 1510	11800 14500	nd nd	nd 0.02	28.3 31.3	0.009	2 nd	nd nd	0.23 0.13	12.1
Corn	1	1X 1X	2	Toxicological	1.726	51.5	nd	0.3	4.3	nd	nd	0.17	7490	nd	0.34	6.23	95	0.68	4640	7.9	2.3	17	1190	10900	nd	0.02	31	0.007	nd	nd	0.15	11.5
Corn	1	1X	3	Toxicological	1.576	65.2	0.08	0.5	4.9	nd	nd	0.16	8700	nd	0.63	7.65	126	0.57	4740	8.9	2.2	21.7	1390	11800	nd	0.01	32.7	0.011	1	nd	0.14	12.6
Corn Corn	1	1X Calcareous	4	Toxicological Toxicological	1.547 1.978	41.6 31.5	nd nd	0.3	3.5 2.5	nd nd	nd nd	0.13 0.12	7010 7880	nd nd	0.38	7.12	104 94	0.42	4050 4980	10.1 11.6	1.7	19.5 10.5	1390 1300	8930 8230	nd nd	nd 0.01	29.1 28.9	0.008	nd nd	nd nd	0.09	10.2
Corn	1	Calcareous	2	Toxicological	1.833	51.1	nd	0.4	3.8	nd	nd	0.19	8520	nd	0.43	7.87	118	0.65	4800	10.3	3.2	12.8	1340	11300	nd	nd	32.3	0.011	nd	nd	0.1	12.9
Corn	1	Calcareous	2	Toxicological	n/a	52.2	nd	0.5	3.5 2.5	nd	nd	0.18	8470	nd	0.47	8.3	127	0.61	4710	10.8	3.5 2.3	13.7	1410	10300	nd	0.01	31.2 25.7	0.009	nd	nd	0.11	15.6
Corn Corn	1	Calcareous Calcareous	3 4	Toxicological Toxicological	1.616 1.837	32.6 60.2	nd nd	0.3	2.5	nd nd	nd nd	0.12 0.18	6880 8000	nd nd	0.29	7.07 8.41	100	0.61 0.86	4490 5010	9.3 9.9	2.3	10.2 12.5	1350 1070	10400 8990	nd nd	0.02	25.7	0.006	nd 1	nd nd	0.06 0.12	9.8 10.7
Corn	2	UN	1	Toxicological	0.567	180	nd	0.8	4.8	nd	nd	0.11	7360	nd	1.17	8.62	250	0.77	2810	19.5	3.1	89	1820	10900	0.3	nd	29.7	0.014	3	0.01	0.34	12.3
Corn Corn	2	UN UN	2	Toxicological Toxicological	0.859	133 87.4	nd nd	0.4	3.4 3.7	nd nd	nd nd	0.04	4190 4250	nd nd	0.78	5.27 5.16	171	0.46	1940 1900	18.8 21.8	2.1	64.5 47.9	1400 1520	11400 11200	nd nd	nd nd	20.7	0.006	2	nd nd	0.25	7.9
Corn	2	UN	3	Toxicological		87.4	nd	0.5	5	nd nd	nd	0.04	4250 8030	nd	0.83	5.16	163	0.49	2440	32.8	3.3	47.9	2790	16000	nd	nd	36.9	0.005	2	nd	0.17	10.1
Corn	2	1X	1	Toxicological	2.466	45.1	nd	0.4	3.8	nd	nd	0.12	6270	nd	0.37	4.38	81	0.87	4030	8.9	1	17.9	1100	10400	nd	nd	27.1	0.009	nd	nd	0.1	8.2
Corn Corn	2	1X 1X	2	Toxicological Toxicological	3.342 2.711	40.8 36	0.09 nd	0.4	3.5	nd nd	nd nd	0.1	6580 6030	nd nd	0.43	5.09 5.9	98 118	0.47	3910 4190	8.6 9.5	1.2	21.3 13.9	1420 969	12200 7960	nd nd	nd nd	28 24.4	0.007	nd nd	nd nd	0.11 0.12	9.7 10.9
Corn	2	1X 1X	4	Toxicological	3.527	32.5	nd	0.5	3.2	nd	nd	0.13	8300	nd	0.40	8.36	126	1.00	4190	9.5	2	17.4	1080	8280	nd	0.02	30.2	0.008	nd	nd	0.12	14.7
Corn	2	Calcareous	1	Toxicological	1.108	54	nd	0.4	3.4	nd	nd	0.29	9620	nd	0.71	10.2	132	0.6	4610	12.6	3	14.3	1410	14300	nd	nd	34.3	0.012	nd	nd	0.12	14.3
Corn Corn	2	Calcareous Calcareous	2	Toxicological Toxicological	1.679	60.9 39	nd nd	0.5	3.8	nd nd	nd nd	0.27	10200 8930	nd nd	0.75	9.8 8.61	144	0.51	4640 5480	16.4 11.4	2.9 2.5	14.8	1380 1030	13000 7180	nd nd	0.01	35.2 36.5	0.01	1 nd	nd	0.13	14.2
Corn	2	Calcareous	3	Toxicological	n/a	37.9	nd	0.3	3.6	nd	nd	0.28	9140	nd	0.46	9.08	103	0.54	5460	11.4	2.5	9.4	1030	7260	nd	0.01	37.2	0.014	nd	nd	0.08	12.5
Corn	2	Calcareous	4	Toxicological		26.3	nd	0.2	2.7	nd	nd	0.15	6770	nd	0.32	7.11	86	0.52	4530	9.4	2	6.5	896	7100	nd	0.02	28.7	0.006	nd	nd	0.07	9.4
Corn	3	UN	1	Toxicological	0.908	83.2	nd	0.4	4.5	nd	nd	0.08	4730	nd	0.63	5.15	105	0.4	2340	14.3	0.9	58.4	1710	11900	nd	nd	29.3	0.009	1	nd	0.15	7.5

Page 3 of 4

2001 Field Trials	
Plant Data	
C3 Test Site	

Species	Plot	Treatment	Replicate	Sample	Sample Dry Weight	Al	Sb	As	Ba	Be	Bi	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Мо	Ni	Р	к	Se	Ag	Sr	Tm	Ti	U	Vd	Zn
					(g)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Corn	3	UN	2	Toxicological	0.638	98.8	0.07	0.4	4.6	nd	nd	0.08	4930	nd	0.63	5.13	106	0.47	2230	19.3	0.7	55.9	1780	11700	nd	nd	31.3	0.009	2	0.01	0.17	7.6
Corn	3	UN	3	Toxicological	0.276	82.2	nd	0.3	3.2	nd	nd	0.03	2700	nd	0.68	4.65	127	0.42	1350	17.2	0.6	45	940	11400	0.2	nd	18.2	0.005	1	nd	0.17	8
Corn	3	UN	4	Toxicological	0.368	57.8	nd	0.3	3.3	nd	nd	0.04	3430	nd	0.73	5.26	100	0.54	1750	17.4	0.6	58.7	1190	12400	nd	0.01	20.3	0.005	1	nd	0.12	10.7
Corn	3	1X	1	Toxicological	1.921	52.9	nd	0.4	3	nd	nd	0.12	5320	nd	0.36	5.21	86	0.48	2930	9.4	1.2	20.8	2620	15500	nd	0.02	26.3	nd	nd	nd	0.14	9.1
Corn	3	1X	2	Toxicological	2.719	22.9	nd	0.4	3.3	nd	nd	0.2	6690	nd	0.26	5.45	69	0.46	3980	7.2	1.6	15.9	1920	12800	nd	nd	33.2	0.007	nd	nd	0.07	10.7
Corn	3	1X	3	Toxicological	2.813	19.7	nd	0.3	3	nd	nd	0.15	5160	nd	0.3	5.46	74	0.34	3380	11.2	1.5	12.5	1420	12300	nd	nd	26.6	0.006	nd	nd	0.06	9
Corn	3	1X	4	Toxicological		29.3	nd	0.3	3.1	nd	nd	0.18	5560	nd	0.3	6.8	91	0.42	3790	11.1	1.7	12.7	1000	8010	nd	0.01	28.7	0.008	nd	nd	0.08	9.7
Corn	3	Calcareous	1	Toxicological	2.092	36.1	nd	0.3	3.5	nd	nd	0.23	6060	nd	0.37	4.05	74	0.77	3800	14.2	1.7	11	2200	16800	nd	0.02	29.8	0.008	nd	nd	0.09	7.9
Corn	3	Calcareous	2	Toxicological	3.155	34.3	nd	0.2	2.9	nd	nd	0.14	4810	nd	0.27	4.29	77	0.7	3110	10.3	1.1	8.5	1820	13700	nd	0.03	23.4	nd	nd	nd	0.09	8.6
Corn	3	Calcareous	3	Toxicological	2.968	31.9	nd	0.3	2.4	nd	nd	0.14	4510	nd	0.23	4.82	87	0.64	2960	10.5	1.1	7.8	2110	13100	nd	0.02	22	nd	nd	nd	0.09	8.9
Corn	3	Calcareous	4	Toxicological		36.8	nd	0.3	2.9	nd	nd	0.2	5890	nd	0.26	4.28	72	0.46	3680	12.9	1.6	8.2	2030	13000	nd	0.03	28.5	0.006	nd	nd	0.1	8.5
Corn	4	UN	1	Toxicological		83.2	nd	0.4	3.4	nd	nd	0.05	4520	nd	0.67	5.31	129	0.57	2030	17.3	1.7	48.8	1940	11700	nd	nd	25.8	0.007	1	nd	0.19	10.1
Corn	4	UN	2	Toxicological	0.983	77.7	nd	0.5	4.2	nd	nd	0.1	5260	0.5	0.63	7.15	120	0.89	2080	24.9	1.5	46.2	2240	14600	0.3	0.01	30.2	nd	1	nd	0.19	10.8
Corn	4	UN	2	Toxicological	n/a	80.8	nd	0.5	4.5	nd	nd	0.11	5130	nd	0.62	7.08	120	0.64	2090	24.3	1.5	44	2260	15500	0.3	nd	31.2	0.005	2	nd	0.19	10.8
Corn	4	UN	4	Toxicological	0.978	58.5	nd	0.5	4	nd	nd	0.06	5460	nd	0.65	6.51	111	0.89	2100	14.8	1.4	64.8	2210	15100	0.3	nd	29.4	0.006	nd	nd	0.14	9.3
Corn	4	1X	1	Toxicological		39.2	nd	0.3	4	nd	nd	0.19	7580	nd	0.36	7.1	87	0.45	5370	8.1	1.3	15.9	1760	8050	nd	0.02	38.4	0.015	nd	nd	0.08	9.2
Corn	4	1X	2	Toxicological		27.2	nd	0.2	3.4	nd	nd	0.14	5890	nd	0.25	5.84	93	0.83	4080	8.2	1.4	10.8	1790	6700	nd	0.01	31	0.008	nd	nd	0.05	9.8
Corn	4	1X	3	Toxicological	2.537	30	nd	0.2	3	nd	nd	0.13	5010	nd	0.29	4.99	79	1.23	3860	7.4	1.2	10.8	2090	10100	nd	0.02	26.4	0.008	nd	nd	0.07	10.9
Corn	4	1X	4	Toxicological		30.4	nd	0.3	3.2	nd	nd	0.13	6610	nd	0.32	6.37	92	0.61	4030	7.3	1.6	13.3	1280	8050	nd	0.01	31.1	0.009	nd	nd	0.06	11.1
Corn	4	Calcareous	1	Toxicological	2.705	30.1	nd	nd	3.1	nd	nd	0.16	6840	nd	0.25	5.33	79	0.5	5310	8.1	1.2	5.7	1450	5090	nd	0.03	36.3	0.01	nd	nd	0.07	8.2
Corn	4	Calcareous	2	Toxicological	2.547	52.4	nd	0.3	3.7	nd	nd	0.28	6630	nd	0.48	6.32	107	0.6	4430	13.7	1.6	9.3	1820	7710	nd	0.03	35.1	0.011	nd	nd	0.13	12
Corn	4	Calcareous	3	Toxicological	1.975	31.1	nd	0.2	3.6	nd	nd	0.21	7640	nd	0.36	5.45	67	0.52	5340	8.7	1.7	8.2	2250	7930	nd	0.02	39.6	0.011	nd	nd	0.07	8.3
Corn	4	Calcareous	4	Toxicological	1.345	47	nd	nd	3.6	nd	nd	0.22	7280	nd	0.35	5.43	85	0.58	5290	10.4	1.2	9.3	1580	5300	nd	0.02	40.1	0.012	nd	nd	0.08	10.4

Page 4 of 4

	,			C5 Test 5																					
Sample Code	Dupl	Site	Plot	Treat	Repl	Sb 0.2	As 0.2	Se 0.2	Al 20	Ba 5	Be 0.2	Cd 0.5	Cr 1	Со 2	Cu 1	Fe 50	Pb 5	Mn 1	Mo 3	Ni 2	P 20	Ag	Ti 5	Vd 1	Zn 5
HRUIUNI HRUIUN2 HRUIUN3 HRUIUN4 HRUIUN5 HRUIUN6 HRUIUN7 HRUIUN8 HRUIUN8 HRUIUN9 HRUIUN10	n=2 n=3 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	1 1 1 1 1 1 1 1 1 1	UN UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	mg/kg 0.3 0.4 0.3 0.3 0.5 0.4 0.3 0.3 0.3 0.3	mg/kg 15.3 17.6 17.9 17.1 18.3 18.75 15.3 15.9 18.2 17.1	mg/kg 5.1 5.3 5.45 5.1 4.5 5.25 5.2 5.2 4.5 5.3	mg/kg 23500 23900 23150 22100 21333 24650 22600 22800 22800 22700 22700	mg/kg 162 164 157 152 152 167.5 155 155 152 149 161	mg/kg 1.1 1.2 1.15 1.1 1.25 1.1 1.1 1.1 1.1 1.1 1.2	mg/kg 1.00 0.80 1.00 0.90 0.73 1.00 0.80 0.70 0.60 0.90	mg/kg 28 29 29 27 26 30.5 27 28 27 27 27	mg/kg 57 52 55 51 45 54.5 51 51 44 54	mg/kg 460 424 437 414 365 438 424 416 357 451	mg/kg 20500 21300 21550 19600 20033 22750 20100 20900 21100 20400	mg/kg 31 31 33 32 34 55 29 27 28 33	mg/kg 177 181 176 176 173 176.5 173 164 165 181	mg/kg 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	mg/kg 3880 3430 3645 3350 2847 3710 3440 3560 3000 3490	mg/kg 987 1010 972 970 877 1050 956 883 850 1040	mg/kg 2.0 1.0 2.0 1.0 1.5 1.0 1.0 1.0 2.0	mg/kg 75 79 84 70 77 76 72 76 72 76 74 68	mg/kg 33 35 34 32 35 37 32 34 35 34 35 34	mg/kg 128 124 127 121 116 132 123 121 117 125
HRU2UN1 HRU2UN2 HRU2UN3 HRU2UN4 HRU2UN5 HRU2UN6 HRU2UN6 HRU2UN7 HRU2UN8 HRU2UN9 HRU2UN10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.5\\ 0.45\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4$	21.1 18.9 16.7 18.3 17.2 22.0 20 18.3 18.3 18.3	4.2 4.25 3.8 4.1 3.8 5.1 5.2 3.9 4.1 3.9	22000 22050 21900 23500 22100 23500 22100 23700 24000 20600	153 156.5 155 160 162 161 164 163 165 150	1.2 1.25 1.2 1.3 1.25 1.3 1.3 1.3 1.3 1.2	$\begin{array}{c} 0.50\\ 0.80\\ 0.25\\ 0.60\\ 0.50\\ 0.70\\ 0.80\\ 0.25\\ 0.60\\ 0.25\end{array}$	27 27.5 27 29 28 29 28 29 28 29 28 29 25	45 44 45 47 43 52.5 58 46 51 41	354 387 364 333 433.5 454 374 399 366	20500 19300 19500 19500 20400 19650 20100 20200 20300 18500	33 29.5 26 30 27 35 37 30 33 30 33 30	159 164 154 161 164 162.5 169 167 162 151	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2810 3045 2940 3240 2810 3525 3670 3070 3160 2890	843 973 840 916 893 982 1010 937 964 945	$ \begin{array}{c} 1.0\\ 1.3\\ 1.0\\ 1.0\\ 1.5\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ \end{array} $	60 70.5 59 56 59 61.5 63 61 64 57	37 33.5 34 33 37 35 36 38 37 33	115 112 110 112 113 114 124 113 121 103
HRU3UN1 HRU3UN2 HRU3UN3 HRU3UN4 HRU3UN5 HRU3UN6 HRU3UN7 HRU3UN8 HRU3UN9 HRU3UN10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	3 3 3 3 3 3 3 3 3 3 3 3	UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.7 \\ 0.4 \\ 0.6 \\ 0.45 \\ 0.5 \\ 0.6 \\ 0.4 \\ 0.3 \end{array}$	21.2 15.1 18.9 16.7 17.8 17.85 20.6 17.3 14.5 13.4	4.6 4.5 4 4.2 4.8 3.95 5.8 4.4 3.5 3.7	22900 20700 20800 21900 22600 22400 21950 23200 23200 23200 23200	159 152 146 154 156 154 157.5 159 159 157	1.2 1.1 1.1 1.1 1.2 1.15 1.2 1.2 1.2 1.2 1.2	0.80 0.70 0.70 1.00 0.80 0.90 0.90 0.90 0.80 0.70	28 26 27 28 27.5 27.5 28 27 27 27	49 44 45 47 54 44.5 56 47 41 43	420 369 368 369 445 375.5 438 391 341 355	20700 18500 19200 19500 20600 20700 19600 19200 18800	37 32 35 34 39 32 42.5 35 26 28	170 159 158 170 170 166.5 185 167 148 156	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3400 3000 3130 3060 3690 3050 3715 3140 2780 2890	1050 966 1030 1030 1010 1025.5 1150 1100 922 949	$\begin{array}{c} 0.5 \\ 0.5 \\ 0.5 \\ 1.0 \\ 1.0 \\ 0.5 \\ 1.0 \\ 1.0 \\ 0.5 \\ 0.5 \\ 0.5 \end{array}$	73 72 67 67 74 72.5 70.5 73 74 77	35 32 33 34 34.5 35 35 35 33	117 106 118 123 123 111.5 130 124 110 111
HRU4UN1 HRU4UN2 HRU4UN3 HRU4UN4 HRU4UN5 HRU4UN6 HRU4UN7 HRU4UN7 HRU4UN8 HRU4UN9 HRU4UN9	n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	4 4 4 4 4 4 4 4 4 4 4 4	UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.4 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.3 \\ 0.4 \\ 0.35 \end{array}$	15.3 16.3 14.2 21.4 20.9 18.3 17.9 16.1 19.4 14.6	4.2 5.7 4.8 4.5 4.4 4 4.4 4.5 4.3 3.45	23000 21200 19100 22200 20800 22500 19600 17600 19700 18600	170 164 144 157 152 159 153 139 150 136.5	1.4 1.3 1.2 1.3 1.2 1.4 1.1 1.1 1.1 1	$\begin{array}{c} 0.25 \\ 0.70 \\ 0.50 \\ 0.25 \\ 0.25 \\ 0.25 \\ 1.00 \\ 0.25 \\ 0.60 \\ 0.50 \end{array}$	29 28 26 28 27 28 25 23 26 23.5	47 58 51 45 42 39 48 46 47 37	360 410 391 341 364 309 376 382 382 313.5	19200 17800 16400 20200 18900 18900 17500 15800 15800 15800	29 34 30 37 34 33 32 30 33 25	162 153 144 159 168 162 162 162 153 151 141.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3210 3870 3550 2940 2810 2510 3160 3180 3210 2570	1010 1150 980 1220 1110 1070 1100 939 957 868	0.5 2.0 2.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5	69 61 59 70 66 66 62 61 63 65.5	34 32 29 35 35 35 28 26 29 27.5	111 119 104 119 104 108 114 101 111 95.5

	111110,000	Churuete	115465 101	C5 Test SI	iic .																				
Sample Code	Dupl	Site	Plot	Treat	Repl	Sb	As	Se	Al	Ba	Be	Cd	Cr	Со	Cu	Fe	Pb	Mn	Мо	Ni	Р	Ag	Ti	Vd	Zn
						0.2 mg/kg	0.2 mg/kg	0.2 mg/kg	20 mg/kg	5 mg/kg	0.2 mg/kg	0.5 mg/kg	1 mg/kg	2 mg/kg	l mg/kg	50 mg/kg	5 mg/kg	l mg/kg	3 mg/kg	2 mg/kg	20 mg/kg	1 mg/kg	5 mg/kg	1 mg/kg	5 mg/kg
HRU11X1 HRU11X2 HRU11X3 HRU11X4 HRU11X5 HRU11X6 HRU11X7 HRU11X8	n=2	HRU HRU HRU HRU HRU HRU HRU HRU	1 1 1 1 1 1 1	1X 1X 1X 1X 1X 1X 1X 1X	1 2 3 4 5 6 7 8	0.4 0.2 0.35 0.3 0.4 0.2 0.3	17.6 15.3 19.05 14.2 15.9 14.8 18.2	5.1 4.4 5.05 4.1 4.8 4.7 4.2	22700 23500 21700 22900 24200 23100 23800	155 152 150.5 148 165 157 157	1.2 1.1 1.1 1.1 1.2 1.1 1.2	1.00 0.80 0.50 1.00 0.80 1.00	28 28 26.5 28 29 28 28	54 47 52.5 46 53 53 48	421 349 408.5 333 432 431 407	18900 21200 19700 21000 19600 19100 20000	32 25 32.5 27 32 31 31	174 178 180 177 175 168 178	1.5 1.5 1.5 1.5 1.5 1.5 1.5	3510 3000 3495 2940 3460 3560 3320	969 826 933 816 1010 930 974	2.0 2.0 1.0 1.0 2.0 1.0 1.0	71 73 69.5 70 75 73 72	31 36 32.5 35 34 32 33	123 122 125 119 125 121 126
HRU11X3 HRU11X9 HRU11X10		HRU HRU	1 1	1X 1X 1X	9 10	0.4 0.4	18.2 16.5	4.7 4.3	24200 24400	163 162	1.2 1.2	0.90 1.00	29 29	52 52	407 413	20300 20300 19700	31 32	183 173	1.5 1.5	3510 3510	990 971	2.0 2.0	70 78	34 33	126 125
HRU21X1 HRU21X2 HRU21X3 HRU21X4 HRU21X5 HRU21X6 HRU21X7 HRU21X8 HRU21X9 HRU21X10	n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	2 2 2 2 2 2 2 2 2 2 2 2 2	1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.5 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.3 \end{array}$	21.75 23.9 18.3 21.1 20 22.8 22.8 21.1 16.7 15.6	4.5 3.4 3.6 4.5 3.9 3.9 3.9 4.7 4.6 4.8	22450 23000 23100 22600 22600 21100 22100 21100 21200 22100	157 168 157 157 174 158 159 155 150 157	1.15 1.3 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2	$\begin{array}{c} 0.53 \\ 0.60 \\ 0.25 \\ 0.60 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.50 \\ 0.80 \\ 0.90 \end{array}$	28 28 29 28 28 28 28 28 27 27 28	52.5 51 48 53 54 58 50 53 47 49	420.5 434 365 437 445 442 421 429 379 402	20350 20000 19800 19900 19200 19200 20200 19600 20100 21200	33.5 35 29 33 32 35 34 35 33 33 33	174.5 172 164 169 158 165 167 168 177 179	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3585 3400 3070 3570 3640 3640 3350 3500 2970 3210	947.5 1080 838 1050 1160 970 1010 972 947 953	$ \begin{array}{c} 1.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ \end{array} $	70.5 58 61 55 61 57 48 56 76 79	36 36 37 36 35 34 36 34 35 37	119.5 119 110 116 118 114 114 114 112 114 118
HRU31X1 HRU31X2 HRU31X3 HRU31X4 HRU31X5 HRU31X6 HRU31X7 HRU31X8 HRU31X9 HRU31X10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU	3 3 3 3 3 3 3 3 3 3 3 3	1X 1X 1X 1X 1X 1X 1X 1X 1X 1X	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.6 \\ 0.6 \\ 0.45 \\ 0.4 \\ 0.3 \\ 0.5 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$	19.5 14 18.35 16.3 20.3 15.3 18.8 20.3 3.3 18.3	4.9 3.9 4.45 3.8 4 4 4.7 3.8 3.8 3.8 4	22800 21400 19950 19300 19650 19600 19400 20100 19500 20200	158 147 147 148 148 149 150 153 146 150	1.2 1.1 1.15 1.2 1.2 1.1 1.1 1.3 1.2 1.2	$\begin{array}{c} 0.90\\ 0.80\\ 0.70\\ 0.25\\ 0.43\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.60\\ \end{array}$	27 25 25 24 25 25 25 25 25 25 25 25	53 41 42.5 38 38.5 40 48 35 41 38	432 339 359.5 320 326.5 316 391 314 344 347	19900 18000 17450 17700 20050 18000 18000 19100 18000 18700	38 27 31.5 31 37.5 29 33 35 27 31	174 149 151 154 164.5 157 166 157 145 134	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3580 2730 2950 2540 2480 2570 3150 2280 2770 2600	1110 903 983 994 1090 930 1070 1150 879 913	$ \begin{array}{c} 1.0\\ 0.5\\ 0.8\\ 1.0\\ 0.8\\ 0.5\\ 1.0\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ \end{array} $	77 73 66.5 65 64.5 64 61 62 69 69	34 32 31 30 32 30 30 33 31 33	132 104 103.5 101 101.5 97 110 100 95 96
HRU41X1 HRU41X2 HRU41X3 HRU41X4 HRU41X5 HRU41X6 HRU41X7 HRU41X8 HRU41X9 HRU41X10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	4 4 4 4 4 4 4 4 4 4	1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.5 \\ 0.3 \\ 0.5 \\ 0.5 \\ 0.3 \\ 0.35 \\ 0.2 \\ 0.5 \\ 0.3 \\ 0.5 \\ 0.5 \\ \end{array}$	19.4 14.6 21.25 19.4 13.7 14.35 13.2 17.9 14.2 15.1	4.2 3.1 4.6 4.6 4.1 3.65 3.4 4.3 3.7 5.2	18300 18500 19800 20800 18500 19500 17900 20300 20300 20300	145 143 155 157 144 143 134 152 152 153	1 1 1.1 1.2 1 0.9 1.1 1.1 1.1	$\begin{array}{c} 0.70\\ 0.25\\ 0.75\\ 1.00\\ 0.70\\ 0.55\\ 0.60\\ 0.70\\ 0.70\\ 0.70\\ 0.70\end{array}$	24 23 26 26 23 24.5 22 25 25 25 26	45 36 48 45 44 38.5 38 46 42 50	359 304 401 398 348 319.5 296 389 334 420	17300 15900 18850 18700 16000 15900 14600 18400 17100 18000	34 26 37.5 35 25 27.5 26 30 29 34	153 145 165 150 147 141 139 152 155 149	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2950 2430 3275 3190 2890 2600 2440 3250 2870 3530	1050 896 1080 1010 897 867 833 945 995 1000	$ \begin{array}{c} 1.0\\ 0.5\\ 1.0\\ 1.0\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 1.0\\ \end{array} $	63 64 66.5 65 64 69 64 61 63 64	28 27 30.5 31 26 28.5 26 30 29 30	109 91 114 112 98 97.5 92 114 108 113

				C5 Test SI																					
Sample Code	Dupl	Site	Plot	Treat	Repl	Sb	As 0.2	Se 0.2	Al 20	Ba 5	Be	Cd	Cr 1	Co 2	Cu	Fe	Рb 5	Mn	Mo 3	Ni 2	P 20	Ag	Ti 5	Vd 1	Zn 5
HRUICAL1 HRUICAL2 HRUICAL3 HRUICAL4 HRUICAL5 HRUICAL6 HRUICAL6 HRUICAL7 HRUICAL8 HRUICAL9 HRUICAL10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	1 1 1 1 1 1 1 1 1 1	CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	1 2 3 4 5 6 7 8 9 10	mg/kg 0.2 0.4 0.3 0.2 0.35 0.4 0.4 0.4 0.4 0.4 0.4	mg/kg 15.3 16.5 14.2 18.2 18.65 21.7 18.05 17.2 18.3 17.8	mg/kg 4.1 4.7 3.9 4.1 4.65 4.1 4.2 4 4.2 4	mg/kg 21300 22300 22400 21200 21200 22200 21200 22200 23300 23900	mg/kg 141 156 146 150 158 154 158 154 158 162 167	mg/kg 1 1.1 1 1.1 1.05 1.2 1.15 1.2 1.3	mg/kg 0.80 0.80 0.60 0.90 0.80 0.60 0.75 0.70 0.70	mg/kg 26 26 26 26,5 26 26 26 27 27 27 28	mg/kg 45 53 43 44 51.5 47 49.5 45 46 46	mg/kg 340 436 326 366 412 392 401 376 382 394	merke 19900 18800 20300 19900 19000 19300 19000 19000 19600 19300	mg/kg 27 32 25 31.5 30 32 28 29 30	mg/kg 175 166 168 166 166.5 172 178 156 171 161	mg/kg 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	mg/kg 2870 3460 2720 2990 3320 3080 3230 3050 3030 3050 3030 3090	mg/kg 804 982 789 871 855 1050 1010 917 988 1020	mg/kg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	mg/kg 74 73 78 74 68.5 63 64 65 68 65 68 66	mg/kg 33 31 33 32 33 31 32 34 35	mg/kg 116 121 118 116 123 113 118.5 113 116 114
HRU2CAL1 HRU2CAL2 HRU2CAL3 HRU2CAL4 HRU2CAL5 HRU2CAL6 HRU2CAL7 HRU2CAL7 HRU2CAL8 HRU2CAL9 HRU2CAL9 HRU2CAL10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\ \end{array}$	18.9 15.6 21.8 15.6 17.8 16.7 17.8 18.35 17.3 17.8	4.6 4.4 4.7 4.4 4.6 4.6 4.8 4.8 4.8 4 5	23100 21600 20900 21300 21700 21700 21100 21100 21750 22000 22000	164 150 147 145 150 152 143 155.5 147 154	1.3 1.1 1.1 1.1 1.2 1.2 1.1 1.1 1.1 1.1	$\begin{array}{c} 0.90\\ 0.25\\ 0.75\\ 0.60\\ 0.70\\ 0.60\\ 0.80\\ 0.60\\ 0.60\\ 1.00\\ \end{array}$	27 27 26 26 27 28 27 28 27 28 27 27	41 42 44.5 42 48 50 45 49 42 53	361 342 400 319 373 403 362 395 327 428	20300 21400 19850 20300 19500 20400 20100 21200 20900 19700	33 28 36.5 26 34 33 30 33.5 30 34	163 170 167.5 169 162 170 162 171 172 165	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2850 2690 2975 2710 3070 3210 3010 3110 2650 3430	1080 811 983.5 763 924 928 788 855.5 761 964	$ \begin{array}{c} 1.0\\ 0.5\\ 0.8\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.5\\ 1.0\\ \end{array} $	75 77 70.5 70 69 70 77 75 72	36 36 34.5 34 34 36 34 36 37 34	115 107 111 108 114 116 111 113.5 108 124
HRU3CAL1 HRU3CAL2 HRU3CAL3 HRU3CAL4 HRU3CAL5 HRU3CAL6 HRU3CAL7 HRU3CAL8 HRU3CAL9 HRU3CAL9 HRU3CAL10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	3 3 3 3 3 3 3 3 3 3 3 3	CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.5 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.45 \\ 0.6 \\ 0.4 \end{array}$	20.3 13.2 14.8 19.3 18.8 17.3 21.05 22.4 19.3 17.3	4.5 3.3 3.4 4.7 4.3 4.4 4.45 4.8 4.1 4	21200 20300 21200 20200 19600 20000 20000 21450 20000 22200	158 150 154 156 150 154 149 158.5 153 165	1.2 1.2 1.2 1.2 1.1 1.2 1.15 1.2 1.2 1.2 1.4	$\begin{array}{c} 0.50\\ 0.25\\ 0.25\\ 0.70\\ 0.25\\ 0.25\\ 0.48\\ 0.25\\ 0.25\\ 0.70\\ \end{array}$	26 25 26 25 24 25 24.5 26 28 27	43 40 38 50 45 43 42.5 43.5 49 41	380 315 329 409 367 356 374 387.5 387 335	19000 17400 18200 19100 19900 18350 19950 18400 19000	31 23 32 30 32 34 37 34 31	150 146 146 172 160 156 152.5 160.5 166 169	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3010 2550 2510 3320 2930 2880 2915 3015 3240 2710	978 895 915 1150 1010 1060 990 1095 1090 1100	$\begin{array}{c} 0.5 \\ 0.5 \\ 1.0 \\ 1.0 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1.0 \\ 1.0 \\ 1.0 \end{array}$	67 70 74 70 66 69 66 70.5 68 67	32 30 32 31 31 31 31 34.5 31 34	108 96 98 117 103 109 103.5 106.5 113 107
HRU4CAL1 HRU4CAL2 HRU4CAL3 HRU4CAL4 HRU4CAL5 HRU4CAL6 HRU4CAL7 HRU4CAL8 HRU4CAL9 HRU4CAL9 HRU4CAL10	n=3	HRU HRU HRU HRU HRU HRU HRU HRU HRU	4 4 4 4 4 4 4 4 4 4	CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 0.3 \\ 0.6 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.2 \\ 0.3 \\ 0.5 \\ 0.4 \end{array}$	13.3 15.6 15.1 17.9 17 16.1 14.6 15.1 18.9 15.1	3.3 4.4 3.3 4.5 4.6 4.2 3.5 4.4 4.8 3.7	20300 19300 21100 19500 20500 19200 17900 18000 20400 20200	147 146 160 153 148 136 135 155 150	1.1 1.1 1.3 1.2 1.2 1.1 1.1 1.1 1.2 1.1	$\begin{array}{c} 0.60\\ 0.80\\ 0.70\\ 0.70\\ 0.60\\ 0.80\\ 0.25\\ 0.25\\ 0.90\\ 0.60\\ \end{array}$	25 24 27 28 26 25 24 23 27 26	38 46 42 49 42 45 42 45 52 40	305 393 346 421 325 368 323 341 435 333	15700 16800 16600 17000 19000 16200 16100 16000 17700 16700	28 32 34 36 30 33 30 30 40 31	145 144 155 154 171 153 158 150 155 150	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2540 3270 2810 3450 2630 2990 2660 2930 3490 2770	946 960 1030 958 1000 985 912 886 1020 956	$\begin{array}{c} 0.5 \\ 1.0 \\ 0.5 \\ 1.0 \\ 0.5 \\ 1.0 \\ 0.5 \\ 1.0 \\ 0.5 \\ 1.0 \\ 0.5 \end{array}$	69 58 74 65 76 69 71 72 66 67	29 28 31 30 34 29 28 28 31 30	102 105 108 110 119 106 109 109 117 107

Sample Code	Dupl	Site	Plot	Treat	Repl	Conductivity - @25øC	Loss on Ignition	Cation Exchange Capacity (as Na)	рН	Moisture Content	Total Inorganic Carbon (as C)	Total Carbon (as C)	Total Organic Carbon
						0.01 mS/cm	0.01 %	0.01 meq100	0.01 Units	0.01 %	0.05 %	0.05 %	0.05 %
HRU1UN1		HRU	1	UN	1	0.36	16.7	49	5.64	12.9	0.025	7.8	7.8
HRU1UN2		HRU	1	UN	2	0.4	18.7	55	5.68	17.4	0.025	8.76	9
HRU1UN3	n=2	HRU	1	UN	3	0.47	18.25	52	5.66	18.2	0.025	8.66	8.76
HRU1UN4		HRU	1	UN	4	0.39	18.3	53	5.6	12.9	0.025	8.52	8.68
HRU1UN5	n=3	HRU	1	UN	5	0.46	16.1	39 52	5.775	17.5	0.025	7.37	7.36
HRU1UN6	n=2	HRU	1	UN	6	0.38	18.4	53	6.12	13.65	0.025	8.3	8.3
HRU1UN7 HRU1UN8		HRU HRU	1	UN UN	7 8	0.39 0.35	18.2 17.8	53 45	5.58 5.7	16.5 12.7	0.025	8.28	8.36
HRU1UN8 HRU1UN9		HRU	1	UN UN	8 9	0.35	17.8	45 47	5.63	12.7	0.025 0.025	7.6 7.6	7.6 7.88
HRU1UN10		HRU	1	UN	9 10	0.36	20	47 54	5.86	13.8	0.025	9	9.16
IIKOTOWIO		пко	1	UN	10	0.4	20	54	5.80	14.2	0.025	9	9.10
HRU2UN1		HRU	2	UN	1	0.42	16.4	54	5.67	11.8	0.025	7.64	7.72
HRU2UN2	n=2	HRU	2	UN	2	0.465	17.7	46	5.565	18.75	0.025	7.96	8.24
HRU2UN3		HRU	2	UN	3	0.47	16.3	44	5.6	19	0.025 0.025	7.64	7.68
HRU2UN4 HRU2UN5		HRU HRU	2 2	UN UN	4 5	0.44 0.42	17.4 17	55 55	5.76 5.61	15.2 15.4	0.025	7.88 7.6	7.72 7.56
HRU2UN6	n=2	HRU	2	UN	6	0.42	18.1	33 47	5.59	16.2	0.025	8.66	8.74
HRU2UN7	11-2	HRU	2	UN	7	0.54	18.9	55	5.48	18.4	0.025	8.96	8.96
HRU2UN8		HRU	2	UN	8	0.44	17	46	5.57	19.7	0.025	7.64	8
HRU2UN9		HRU	2	UN	9	0.51	17.1	54	5.48	20.5	0.025	8.32	8.36
HRU2UN10		HRU	2	UN	10	0.45	16.8	47	5.63	15.7	0.025	7.64	7.88
HRU3UN1		HRU	3	UN	1	0.38	17.7	49	5.84	15.1	0.025	8.88	8.8
HRU3UN2		HRU	3	UN	2	0.38	17.4	48	5.77	15.6	0.025	8.32	8.44
HRU3UN3		HRU	3	UN	3	0.3	17.3	47	5.6	8.2	0.025	8.28	8.36
HRU3UN4		HRU	3	UN	4	0.37	16.7	46	5.76	13	0.280	8.24	7.96
HRU3UN5		HRU	3	UN	5	0.38	18.2	46	5.88	14.7	0.025	8.2	8.2
HRU3UN6	n=2	HRU	3	UN	6	0.49	17.35	43	5.535	19.35	0.133	7.88	7.78
HRU3UN7	n=2	HRU	3	UN	7	0.32	18.45	49	5.85	11	0.025	8.42	8.52
HRU3UN8		HRU	3	UN	8	0.38	18	47	5.59	13.9	0.025	8.24	8.2
HRU3UN9		HRU	3	UN	9	0.37	15.8	45	5.76	22.8	0.200	7.32	7.12
HRU3UN10		HRU	3	UN	10	0.39	16.4	44	5.68	11.6	0.025	7.24	7.32
HRU4UN1		HRU	4	UN	1	0.45	17.5	38	5.73	16.5	0.025	7.24	7.44
HRU4UN2		HRU	4	UN	2	0.63	19.5	44	5.5	16.3	0.480	8.8	8.32
HRU4UN3		HRU	4	UN	3	0.45	19.3	43	5.61	16.5	0.240	8.48	8.24
HRU4UN4		HRU	4	UN	4	0.58	18.5	45	5.46	18.7	0.025	8.6 7.68	8.6
HRU4UN5 HRU4UN6		HRU HRU	4	UN UN	5	0.41 0.53	18.8 17.1	48 42	5.68 5.54	15.5	0.280	7.68 7.56	8.4 7.28
HRU4UN6 HRU4UN7		HRU	4 4	UN UN	6 7	0.53	17.1 18.8	42 45	5.54 5.05	17.3 15.8	0.280 0.480	7.56 8.56	7.28 8.08
HRU4UN7 HRU4UN8		HRU	4	UN	8	0.33	18.8	43 44	5.13	15.8	0.025	8.6	8.76
HRU4UN9		HRU	4	UN	8 9	0.52	19.4	31	5.09	19.2	0.025	8.28	8.28
HRU4UN10	n=2	HRU	4	UN	10	0.395	16.95	35	5.53	17.35	0.025	7.28	7.32
								-				-	-

Sample Code	Dupl	Site	Plot	Treat	Repl	Conductivity - @25øC	Loss on Ignition	Cation Exchange Capacity (as Na)	рН	Moisture Content	Total Inorganic Carbon (as C)	Total Carbon (as C)	Total Organic Carbon
						0.01 mS/cm	0.01 %	0.01 meq100	0.01 Units	0.01 %	0.05 %	0.05 %	0.05
HRU11X1		HRU	1	1X	1								
HRU11X2		HRU	1	1X	2	0.36	15.5	49	6.02	12.8	0.025	7.6	8.04
HRU11X3		HRU	1	1X	3	0.45	16.5	45	6.21	17.9	0.025	7.28	7.52
HRU11X4	n=2	HRU	1	1X	4	0.51	17	43.5	6.215	19.2	0.025	7.82	7.92
HRU11X5		HRU	1	1X	5	0.45	16.2	41	6.35	16.9	0.025	6.68	6.96
HRU11X6		HRU	1	1X	6	0.48	17.2	50	6.25	18.5	0.025	7.44	7.68
HRU11X7		HRU	1	1X	7	0.44	17.9	51	6.17	18.6	0.025	7.6	7.6
HRU11X8		HRU	1	1X	8	0.4	17.3	51	6.53	14.8	0.025	7.16	7.2
HRU11X9		HRU	1	1X	9	0.48	16.8	49	6.32	20.8	0.025	7.6	7.6
HRU11X10		HRU	1	1X	10	0.46	16.9	49	6.8	17.0	0.025	7.28	7.36
HRU21X1	n=2	HRU	2	1X	1	0.43	18.85	46	6.035	13.75	0.025	8.74	8.9
HRU21X1 HRU21X2	11- <i>2</i>	HRU	2	1X 1X	2	0.45	17.6	40	6.11	17.7	0.025	8.96	8.96
HRU21X2		HRU	2	1X 1X	3	0.52	17.8	47	6.31	17.1	0.025	7.8	8
HRU21X4		HRU	2	1X 1X	4	0.65	20.7	46	6.26	20.9	0.025	9.72	9.6
HRU21X5		HRU	2	1X 1X	5	0.55	19.5	40 50	6.27	14.7	0.025	9.2	9.2
HRU21X6		HRU	2	1X 1X	6	0.53	19.1	48	6.39	17.4	0.320	9.2	8.88
HRU21X0 HRU21X7		HRU	2	1X 1X	7	0.5	19.1	48 50	6.22	12.3	0.025	9.16	9.44
HRU21X8		HRU	2	1X 1X	8	0.57	19.7	49	6.36	17.6	0.025	9.12	9.12
HRU21X9		HRU	2	1X 1X	9	0.56	18.9	49	6.22	17.0	0.280	9.12	8.84
HRU21X10		HRU	2	1X 1X	10	0.53	18.2	49	6.23	15.9	0.025	8.68	8.6
111(021/110		inco	2	174	10	0.55	10.2	40	0.25	15.7	0.025	0.00	0.0
HRU31X1		HRU	3	1X	1	0.41	18.3	48	6.49	14.8	0.200	8.44	8.24
HRU31X2		HRU	3	1X	2	0.46	16.9	50	6.45	13.2	0.025	7.4	7.44
HRU31X3	n=2	HRU	3	1X	3	0.465	17.7	31	6.255	15.6	0.133	8.08	7.94
HRU31X4		HRU	3	1X	4	0.48	17.5	39	6.56	16.7	0.025	7.88	7.8
HRU31X5	n=2	HRU	3	1X	5	0.52	17.35	34	6.4	17.75	0.300	8.12	7.82
HRU31X6		HRU	3	1X	6	0.46	17.4	43	6.36	17.9	0.360	8	7.64
HRU31X7		HRU	3	1X	7	0.43	18.4	44	6.28	15.4	0.320	8.52	8.2
HRU31X8		HRU	3	1X	8	0.51	18	46	6.39	17.7	0.400	8.2	7.8
HRU31X9		HRU	3	1X	9	0.3	17	40	6.45	11	0.025	7.24	7.08
HRU31X10		HRU	3	1X	10	0.4	17.4	43	6.28	12.2	0.025	7.28	7.2
HRU41X1		HRU	4	1X	1	0.51	17.6	40	5.98	11.2	0.025	8.24	8.2
HRU41X2		HRU	4	1X	2	0.35	15.9	37	6.03	10.9	0.025	7.36	7.52
HRU41X3	n=2	HRU	4	1X	3	0.54	19.1	48	5.93	16.55	0.460	8.72	8.26
HRU41X4		HRU	4	1X	4	0.38	18.7	41	5.82	14.8	0.025	8.44	8.28
HRU41X5		HRU	4	1X	5	0.41	17.5	40	6.04	13.5	0.025	7.96	8.04
HRU41X6	n=2	HRU	4	1X	6	0.385	16.8	35.5	5.925	13.85	0.025	7.64	7.6
HRU41X7		HRU	4	1X	7	0.47	16.9	36	6.23	15.7	0.480	7.52	7.04
HRU41X8		HRU	4	1X	8	0.5	19.6	45	5.73	17.3	0.025	8.56	8.72
HRU41X9		HRU	4	1X	9	0.6	17.9	44	6	16.2	0.025	8.04	8.32
HRU41X10		HRU	4	1X	10	0.46	19.6	49	5.86	12.8	0.840	10.2	9.4

Sample Code	Dupl	Site	Plot	Treat	Repl	Conductivity - @25øC	Loss on Ignition	Cation Exchange Capacity (as Na)	рН	Moisture Content	Total Inorganic Carbon (as C)	Total Carbon (as C)	Total Organic Carbon
						0.01 mS/cm	0.01	0.01 meq100	0.01 Units	0.01	0.05	0.05	0.05
HRU1CAL1		HRU	1	CAL	1	0.63	16.2	45	6.84	20	0.025	7.16	70
HRU1CAL2		HRU	1	CAL	2	0.54	18	54	6.77	19.5	0.200	7.32	8.12
HRU1CAL3		HRU	1	CAL	3	0.55	16.3	45	6.7	20.7	0.360	7.16	6.8
HRU1CAL4		HRU	1	CAL	4	0.58	16.3	47	6.68	20.1	0.600	7.6	7
HRU1CAL5	n=2	HRU	1	CAL	5	0.565	16.35	45	6.645	18.75	0.240	7.84	7.6
HRU1CAL6		HRU	1	CAL	6	0.58	18.4	50	6.99	21.4	0.720	8.92	8.2
HRU1CAL7	n=2	HRU	1	CAL	7	0.69	18	51	6.76	21.8	0.700	8.76	8.06
HRU1CAL8		HRU	1	CAL	8	0.59	13.8	47	6.98	21.6	0.320	8.04	7.72
HRU1CAL9		HRU	1	CAL	9	0.62	17.8	46	7.1	22.1	0.360	8.6	8.24
HRU1CAL10		HRU	1	CAL	10	0.57	18.3	49	6.74	21.2	0.025	8.2	8.36
HRU2CAL1		HRU	2	CAL	1	0.62	17.4	51	6.51	20.6	0.800	8.72	7.92
HRU2CAL2		HRU	2	CAL	2	0.76	15.7	42	6.61	17.7	0.025	7.36	7.28
HRU2CAL3	n=2	HRU	2	CAL	3	0.71	18.3	45.5	6.68	21	0.980	9.16	8.18
HRU2CAL4		HRU	2	CAL	4	0.68	16.5	45	6.62	19.6	0.680	7.88	7.2
HRU2CAL5		HRU	2	CAL	5	0.75	18.7	48	6.56	17.4	0.560	8.84	8.28
HRU2CAL6		HRU	2	CAL	6	0.57	17.6	47	5.85	19.6	0.025	8.72	8.6
HRU2CAL7		HRU	2	CAL	7	0.7	16.2	44	6.68	18.8	0.760	8.32	7.56
HRU2CAL8	n=2	HRU	2	CAL	8	0.62	17.8	45.5	6.34	16.1	0.600	8.82	8.22
HRU2CAL9		HRU	2	CAL	9	0.6	16.3	41	6.64	15.8	0.400	7.6	7.2
HRU2CAL10		HRU	2	CAL	10	0.83	18.8	47	6.64	21.9	0.800	9.2	8.4
HRU3CAL1		HRU	3	CAL	1	0.44	16.4	42	6.86	14.7	0.960	7.92	6.96
HRU3CAL2		HRU	3	CAL	2	0.69	15.5	35	6.93	18.6	1.320	7.68	6.36
HRU3CAL3		HRU	3	CAL	3	0.64	14.3	38	6.04	15.9	1.480	7.52	6.04
HRU3CAL4		HRU	3	CAL	4	0.54	17.6	36	6.88	16.3	0.680	8.36	7.68
HRU3CAL5		HRU	3	CAL	5	0.59	16.9	39	7	18.5	0.720	7.92	7.2
HRU3CAL6		HRU	3	CAL	6	0.6	16.3	40	6.95	15.1	0.760	7.72	6.96
HRU3CAL7	n=2	HRU	3	CAL	7	0.425	17	41.5	6.76	12.9	0.300	7.8	7.5
HRU3CAL8	n=2	HRU	3	CAL	8	0.56	16.9	40	7.14	16.6	0.900	8.16	7.26
HRU3CAL9		HRU	3	CAL	9	0.6	16.7	41	6.95	16.9	0.960	8.04	7.08
HRU3CAL10		HRU	3	CAL	10	0.56	15.2	40	6.96	14.2	0.760	7.24	6.48
HRU4CAL1	n=3	HRU	4	CAL	1	0.56	16.3	46	6.52	17.4	0.502	7.71	7.27
HRU4CAL2		HRU	4	CAL	2	0.66	18.7	35	6.38	18	0.025	9.36	9.32
HRU4CAL3		HRU	4	CAL	3	0.48	15.5	44	6.00	13.5	0.025	7.24	7.36
HRU4CAL4		HRU	4	CAL	4	0.63	8.5	48	6.41	16.4	0.320	9.08	8.76
HRU4CAL5		HRU	4	CAL	5	0.62	15.3	36	6.55	16.2	0.360	7.28	6.92
HRU4CAL6		HRU	4	CAL	6	0.68	17.4	41	6.57	20.4	0.200	7.96	7.76
HRU4CAL7		HRU	4	CAL	7	0.55	15.5	37	6.63	15.9	0.280	7.32	7.04
HRU4CAL8		HRU	4	CAL	8	0.64	15.1	41	6.64	15.3	0.400	6.92	6.52
HRU4CAL9		HRU	4	CAL	9	0.56	19.8	45	6.43	14.1	0.025	8.92	8.76
HRU4CAL10		HRU	4	CAL	10	0.67	16.2	41	6.52	15.2	0.025	7.64	7.48

Year 2001 Field T	rials; Soil Charact	eristics for C3 T	est Site			DTPA Extract			Aqueous Extra	et		Ammonium Ox	alate Extraction		Strontium Nitrate	Extract		Dithionate-Citrat	e-Bicarbonate Extra	ct
Sample Code	Dupl	Site	Plot	Treat	Repl	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Aluminum, Extractable	Iron, Extractable	Manganese, Extractable
						0.2 mg/kg	0.2 mg/kg	0.6 mg/kg	0.2 mg/kg	0.2 mg/kg	0.6 mg/kg	2 mg/kg	2 mg/kg	8 mg/kg	0.1 mg/kg	0.1 mg/kg	0.4 mg/kg	300 mg/kg	100 mg/kg	50 mg/kg
HRU1UNI HRU1UN2 HRU1UN3 HRU1UN4 HRU1UN5 HRU1UN6 HRU1UN7 HRU1UN8	n=2 n=3 n=2	HRU HRU HRU HRU HRU HRU HRU HRU	1 1 1 1 1 1 1	UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8	2.2 3.1 3.05 2.5 2.3 2.7 2.4 2	124 129 138.5 129 119 135 119 113	526 590 583.5 570 497 565 528 492	0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1	2.4 2.5 2.4 2.6 2.5 2.65 2.5 2.5 2.4	16.9 20.3 18.6 19.1 18.5 19.7 18.5 17.8	11 13 12.5 13 12 11 11 11	256 258 262 261 219 251.5 259 225	792 895 856 869 744 827 837 752	0.10 0.20 0.15 0.20 0.20 0.15 0.20 0.10	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	15 15.4 16.3 16.2 17.6 16.45 16.8 13.6	4660 4370 4100 3970 3250 3815 4210 3450	9960 10600 10450 9570 9857 9935 10800 10500	84 89 66.5 75 76 63 98 91
HRU1UN9 HRU1UN10		HRU HRU	1 1	UN UN	9 10	2.1 2.5	105 129	489 541	0.1 0.1	2.5 2.8	18.3 19.7	10 15	221 279	761 900	0.20 0.10	0.2 0.2	14.6 13.1	3140 4540	9890 10300	71 96
HRU2UNI HRU2UN2 HRU2UN3 HRU2UN4 HRU2UN5 HRU2UN6 HRU2UN7 HRU2UN7 HRU2UN8 HRU2UN9 HRU2UN10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	3.2 2.8 2.6 2.5 3.7 4.6 2.4 3.8 2.6	111 123 111 115 98.2 134.5 141 113 126 118	484 546 471 502 485 570 621 494 552 509	0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1	2.6 2.7 2.5 2.8 2.4 3 3.1 2.5 2.8 2.8	19.2 19.75 17.9 19.6 18.9 20.95 22.9 18.4 21.2 20.1	11 12 10 12 12 13.5 16 12 12 12 12	219 237.5 221 239 210 282.5 306 240 239 259	723 781 692 768 740 881.5 990 780 780 782 818	$\begin{array}{c} 0.30\\ 0.20\\ 0.20\\ 0.20\\ 0.35\\ 0.40\\ 0.20\\ 0.30\\ 0.20\\ \end{array}$	0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.2	21.9 19.9 19.7 19 17.7 22.45 25.7 18 22.3 18.6	3460 4215 3380 3940 3460 4445 4010 3910 4200 3920	10000 9680 8920 9720 8990 10010 9890 10400 10200 10600	61 79.5 61 67 61 72.5 81 70 65 83
HRU3UN1 HRU3UN2 HRU3UN3 HRU3UN4 HRU3UN5 HRU3UN6 HRU3UN6 HRU3UN7 HRU3UN8 HRU3UN9 HRU3UN9 HRU3UN10	n=2 n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	3 3 3 3 3 3 3 3 3 3 3 3	UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	2.5 2.4 3.3 0.1 2.8 2.7 3.25 2.9 2.6 2.3	135 125 132 4.2 142 122 149.5 128 103 113	568 526 555 18.4 564 519.5 620 542 501 485	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1	3.2 2.9 3.2 3 3.5 2.75 3.65 3 2.5 2.7	21.2 20.6 20.4 21.5 23.1 19.7 23.65 21.7 19.5 19.2	13 12 13 14 14 12 15.5 12 9 11	251 217 221 227 252 221 265.5 224 190 203	871 742 795 782 818 750.5 910.5 761 702 669	$\begin{array}{c} 0.10\\ 0.10\\ 0.20\\ 0.20\\ 0.10\\ 0.15\\ 0.15\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ \end{array}$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	13.9 13.2 16.4 17.8 15.5 18.55 17.1 16.7 15.3 16	4130 4380 4330 3360 3400 3310 4050 3980 3030 2790	9830 10300 11500 9840 8890 11640 12050 9790 8720 8090	66 90 86 81 65 73 106.5 81 52 54
HRU4UN1 HRU4UN2 HRU4UN3 HRU4UN4 HRU4UN5 HRU4UN6 HRU4UN7 HRU4UN8 HRU4UN8 HRU4UN9 HRU4UN10	n=2	HRU HRU HRU HRU HRU HRU HRU HRU HRU	4 4 4 4 4 4 4 4 4 4	UN UN UN UN UN UN UN UN UN	1 2 3 4 5 6 7 8 9 10	2.4 4.2 3.4 3.2 2.5 3.1 3.1 2.9 1.65	116 143 140 119 137 117 123 130 122 104	513 671 609 592 598 525 597 557 509 428.5	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	2.6 2.7 3.1 2.5 3 2.4 2.3 2.8 2.5 2.4	19.1 23.9 21 19.7 19.8 19.4 20.6 17.9 18.6 15.85	13 17 15 14 14 13 14 12 13 9.5	236 275 281 236 253 206 247 244 241 200.5	842 1050 974 909 898 774 903 824 793 675.5	$\begin{array}{c} 0.20\\ 0.30\\ 0.20\\ 0.30\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.08\\ \end{array}$	0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.15	16.1 24.2 20.6 18 17 17.6 22.7 18.7 19.9 14.6	6280 5760 5130 5100 3830 4410 5370 4620 4190 2975	9540 9640 8870 12000 10600 9680 10600 9160 10100 8150	71 85 82 76 115 76 93 93 93 77 64.5

7 of 9

Year 2001 Field Tri						DTPA Extract			Aqueous Extra	et		Ammonium Oxa	alate Extraction		Stontium Nitrate	Extract		Dithionate-Citrat	e-Bicarbonate Extra	ct
Sample Code	Dupl	Site	Plot	Treat	Repl	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Aluminum, Extractable	Iron, Extractable	Manganese, Extractable
						0.2 mg/kg	0.2 mg/kg	0.6 mg/kg	0.2 mg/kg	0.2 mg/kg	0.6 mg/kg	2 mg/kg	2 mg/kg	8 mg/kg	0.1 mg/kg	0.1 mg/kg	0.4 mg/kg	300 mg/kg	100 mg/kg	50 mg/kg
HRU11X1		HRU	1	1X	1													-		
HRU11X2		HRU	1	1X	2	1.4	112	443	0.1	2.5	17.2	12 9	234	770	0.05	0.2	7.4	3800	9550	102
HRU11X3 HRU11X4	n=2	HRU HRU	1	1X 1X	3	1 1.5	90.8 114	371 414.5	0.1 0.1	2 2.55	14.6 16.15	9 13.5	205 250	670 810	0.05 0.05	0.2 0.2	6.2 6.85	3270 3665	9640 10335	75 92.5
HRU11X4 HRU11X5	11-2	HRU	1	1X 1X	4 5	0.8	81.8	348	0.1	1.8	10.15	9	187	649	0.05	0.2	5.2	3590	10100	92.5 82
HRU11X6		HRU	1	1X	6	1.5	126	444	0.1	2.4	15.9	13	261	822	0.05	0.2	6.8	4760	9940	89
HRU11X7		HRU	1	1X	7	1.6	130	486	0.1	2.6	17.1	10	242	748	0.05	0.2	8	3570	9260	86
HRU11X8		HRU	1	1X	8	1.1	113	406	0.1	2.4	15.8	11	243	747	0.05	0.2	4.9	3890	9320	89
HRU11X9		HRU	1	1X	9	1	106	391	0.1	2.4	14.9	12	229	723	0.05	0.2	4.9	3930	9330	80
HRU11X10		HRU	1	1X	10	1.4	114	428	0.1	2.4	15.9	11	227	719	0.05	0.2	6.2	4280	8360	72
HRU21X1	n=2	HRU	2	1X	1	1.55	125	426	0.1	3	18.5	13.5	264.5	858.5	0.05	0.3	8.75	3535	10400	85
HRU21X2		HRU	2	1X	2	2.3	131	514	0.1	2.8	18.4	13	286	887	0.10	0.3	10.2	4360	10600	86
HRU21X3		HRU	2	1X	3	1.3	106	396	0.1	2.3	15.1	13	225	699	0.05	0.3	6.4	3490	10300	79
HRU21X4		HRU	2	1X	4	1.6	132	474	0.1	2.6	16.2	15	291	871	0.05	0.3	6.7	4240	10400	72
HRU21X5 HRU21X6		HRU HRU	2	1X 1X	5	2.4 2.1	139 138	533 506	0.1	2.6 3	17.6 17.3	14 15	290 285	922 877	0.05 0.10	0.2 0.3	9.8 7.8	5460 4000	10500 10800	83 77
HRU21X6 HRU21X7		HRU	2 2	1X 1X	6 7	2.1 1.7	138	506 465	0.1 0.1	2.6	17.5	15	285 265	803	0.10	0.3	7.8	4000	10300	74
HRU21X8		HRU	2	1X 1X	8	1.7	122	478	0.1	2.5	16.3	13	268	831	0.05	0.3	7.6	3810	9920	81
HRU21X9		HRU	2	1X	9	1.4	125	465	0.1	2.8	18.1	14	229	765	0.05	0.2	6.1	3470	9990	97
HRU21X10		HRU	2	1X	10	1.4	115	422	0.1	2.7	17	12	224	728	0.05	0.2	6	3220	9740	95
HRU31X1		HRU	3	1X	1	1.5	126	456	0.1	3	17.8	13	235	789	0.05	0.2	5.8	4180	9140	77
HRU31X2		HRU	3	1X	2	1.2	94	366	0.1	2.4	14.6	9	187	634	0.05	0.2	4.6	3350	8100	72
HRU31X3	n=2	HRU	3	1X	3	1.4	109.5	438.5	0.1	2.85	17.85	12.5	241	830.5	0.05	0.2	7.25	3400	9395	93.5
HRU31X4		HRU	3	1X	4	1.1	94.1	378	0.1	2.7	16.1	11	221	767	0.05	0.2	4.9	4610	10400	89
HRU31X5	n=2	HRU	3	1X	5	1.55	110.5	443.5	0.1	2.85	18.05	12.5	224.5	799.5	0.08	0.15	7.5	4565	10800	74.5
HRU31X6		HRU	3	1X	6	1.3	94.8	386	0.1	2.9	16.7	13	215	766	0.05	0.2	6.3	4300	9550	82
HRU31X7		HRU	3	1X	7	2.1	126	502	0.1	3.5	19.8	17	276	966	0.05	0.2	8.6	4490	11000	117
HRU31X8 HRU31X9		HRU HRU	3 3	1X 1X	8	1.4 1.5	94.1 97.8	411 422	0.1	2.7 2.9	17.4 17.7	12 9	203 177	737 632	0.05 0.05	0.2 0.2	6.1 6.9	4310 3830	10000 9830	92
HRU31X9 HRU31X10		HRU	3	1X 1X	9 10	1.5	97.8 101	422 440	0.1 0.1	2.9	17.7	9	206	632 706	0.05	0.2	6.9 8	3660	10100	66 53
IIKUSIXIU		liko	5	17	10	1.7	101	440	0.1	2.0	17.9	,	200	700	0.10	0.2	0	5000	10100	55
HRU41X1		HRU	4	1X	1	1.5	111	427	0.1	2.2	15.1	12	232	786	0.05	0.2	6.5	4080	9860	91
HRU41X2		HRU	4	1X	2	1	92	354	0.1	2.1	13.3	10	185	608	0.05	0.1	4.6	2940	7560	68
HRU41X3	n=2	HRU	4	1X	3	2.15	128.5	525.5	0.1	2.4	17.3	13	279	939	0.05	0.2	8.25	4090	10000	73
HRU41X4 HRU41X5		HRU	4	1X	4	1.8 1.3	119 102	435 367	0.1	2.8 2.3	17.5 13.7	11 12	248 212	788	0.05 0.05	0.2 0.2	7.2	4460	9810 8400	75 88
HRU41X5 HRU41X6	n=2	HRU HRU	4	1X 1X	5	1.3	102 98.4	367	0.1 0.1	2.3 2.4	13.7	12	212 200.5	680 641	0.05	0.2	5.1 6.5	4060 3310	8490 7995	88 70.5
HRU41X0 HRU41X7	11-2	HRU	4	1X 1X	7	0.9	92.3	312	0.1	2.4	14.33	10.5	187	597	0.05	0.125	3.5	3030	7993	70.3
HRU41X8		HRU	4	1X	8	1.8	119	476	0.1	2.8	18.5	12	248	841	0.05	0.05	9.7	4260	9800	73
HRU41X9		HRU	4	1X	9	1.1	104	389	0.1	2.1	14.5	12	223	764	0.05	0.1	5.5	4120	8880	86
HRU41X10		HRU	4	1X	10	2.1	140	522	0.1	3.1	18.8	13	277	904	0.05	0.2	8.9	4250	10100	84

8	of	9
---	----	---

	ans, son charact	eristics for C3 Te	.a. one			DTPA Extract			Aqueous Extra	rt		Ammonium Ox	alate Extraction		Stontium Nitrate	Extract		Dithionate-Citrat	e-Bicarbonate Extra	uct
		1	I	1		DITA Extract		1	Aqueous Extra			Ammonium Ox	alate Extraction		Stontum Nitrate	Extract		Ditmonate-Citrat	e-Dicai Donate Exti a	a
Sample Code	Dupl	Site	Plot	Treat	Repl	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Cobalt	Copper	Nickel	Aluminum, Extractable	Iron, Extractable	Manganese, Extractable
						0.2 mg/kg	0.2 mg/kg	0.6 mg/kg	0.2	0.2 mg/kg	0.6 mg/kg	2 mg/kg	2 mg/kg	8 mg/kg	0.1 mg/kg	0.1 mg/kg	0.4 mg/kg	300 mg/kg	100 mg/kg	50 mg/kg
HRU1CAL1		HRU	1	CAL	1	0.6	84.4	285	0.1	2	11.3	9	210	647	0.05	0.2	2.9	2470	9040	71
HRU1CAL2		HRU	1	CAL	2	1.1	101	349	0.1	2.2	13.2	12	247	762	0.05	0.2	2.9	4700	10200	87
HRU1CAL3		HRU	1	CAL	3	0.6	78.1	260	0.1	1.8	10.4	10	205	607	0.05	0.1	2.8	3000	8600	70
HRU1CAL4		HRU	1	CAL	4	0.7	91	304	0.1	1.9	11.8	9	219	674	0.05	0.2	3	3120	8900	71
HRU1CAL5	n=2	HRU	1	CAL	5	1.55	126.5	433	0.1	2.4	13.3	13	252.5	747.5	0.05	0.2	4.35	3305	9390	77
HRU1CAL6		HRU	1	CAL	6	1.2	108	390	0.1	2.1	12.5	11	251	754	0.05	0.3	3.4	4320	9970	94
HRU1CAL7	n=2	HRU	1	CAL	7	1.2	111	383.5	0.1	2.05	11.45	13.5	264.5	775	0.05	0.2	3.2	4180	9735	74
HRU1CAL8		HRU	1	CAL	8	1.1	103	328	0.1	2.1	12	11	223	640	0.05	0.3	3.2	3910	9610	67
HRU1CAL9		HRU	1	CAL	9	1.1	102	333	0.1	2.2	11	12	232	686	0.05	0.2	2.9	3780	9790	79
HRU1CAL10		HRU	1	CAL	10	1.3	108	400	0.1	2.1	13.6	10	234	710	0.05	0.2	4.3	4110	9840	74
HRU2CAL1		HRU	2	CAL	1	1.2	108	374	0.1	2.2	13.9	11	222	736	0.05	0.2	3.6	4260	10900	82
HRU2CAL2		HRU	2	CAL	2	0.8	92.3	302	0.1	1.9	11.2	11	188	557	0.05	0.2	3.2	2640	10200	61
HRU2CAL3	n=2	HRU	2	CAL	3	1	117.5	346.5	0.1	2.45	11.95	12	228	663	0.05	0.2	3.2	3235	9960	78
HRU2CAL4		HRU	2	CAL	4	0.8	89	313	0.1	1.9	12.5	9	179	592	0.05	0.2	3.6	2710	9210	65
HRU2CAL5		HRU	2	CAL	5	1.3	115	390	0.1	2.2	13.6	11	227	715	0.05	0.2	4	3660	9140	68
HRU2CAL6		HRU	2	CAL	6	2.9	136	544	0.1	2.9	20.4	13 9	249	796	0.10	0.2	13.4	3840	11600	97
HRU2CAL7 HRU2CAL8	n=2	HRU HRU	2 2	CAL CAL	/	0.9 1.7	101 117	328 414.5	0.1 0.1	2.1 2.45	11.7 15.75	9 10	217 220	647 662	0.05 0.05	0.3 0.2	3.3 6.05	3110 3005	9980 10345	99 63.5
HRU2CAL8 HRU2CAL9	11=2	HRU	2 2	CAL	8 9	0.9	95	313	0.1	2.43	11.9	10	196	590	0.05	0.2	4	2680	9820	68
HRU2CAL9		HRU	2	CAL	10	1.5	129	394	0.1	2.5	13.8	13	252	761	0.05	0.2	4	3760	9270	63
11102011110		into	-	crit		1.0			0.1	2.0	10.0	10	202	701	0100	0.2		5700	210	00
HRU3CAL1		HRU	3	CAL	1	1	102	338	0.1	2.7	14	10	246	780	0.05	0.2	3.5	3950	9640	71
HRU3CAL2		HRU	3	CAL	2	0.7	79.7	257	0.1	2.2	10.9	11	204	646	0.05	0.1	2.4	3600	8530	87
HRU3CAL3		HRU	3	CAL	3	0.7	85.7	267	0.1	2.2	10.8	11	211	645	0.05	0.2	2.5	3650	9010	59
HRU3CAL4		HRU	3	CAL	4	1.2	114	378	0.1	2.9	14.6	14	266	894	0.05	0.2	3.8	4670	11100	99
HRU3CAL5		HRU	3	CAL	5	0.9	103	322	0.1	2.8	13.7	14	256	837	0.05	0.2	2.8	3750	11400	87
HRU3CAL6		HRU	3	CAL	6	0.9	99.5	317	0.1	2.5	12.9	13	240	792	0.05	0.2	2.9	4330	10500	80
HRU3CAL7	n=2	HRU	3	CAL	7	1.05	110.5	340.5	0.1	2.85	14	12.5	252	788	0.05	0.25	3.45	3370	9840	82.5
HRU3CAL8	n=2	HRU	3	CAL	8	1.1	122	361.5	0.1	2.65	13	10.5	250.5	781.5	0.05	0.15	2.95	4875	10465	79
HRU3CAL9		HRU	3	CAL	9	1.3	124	388	0.1	2.7	14.4	14	241	813	0.10	0.3	3.6	4900	10200	119
HRU3CAL10		HRU	3	CAL	10	0.9	98.6	328	0.1	2.3	12.9	12	209	712	0.05	0.2	3.1	4750	97700	97
HRU4CAL1	n=3	HRU	4	CAL	1	0.8	84	276	0.1	1.9	10.3	9	183	588	0.05	0.1	2.4	3567	7810	75
HRU4CAL2		HRU	4	CAL	2	1.2	123	389	0.1	2.4	13.5	12	259	788	0.05	0.2	3.9	4530	8820	84
HRU4CAL3		HRU	4	CAL	3	1.3	103	362	0.1	2	13.7	9	204	649	0.05	0.1	5.9	3820	7950	72
HRU4CAL4		HRU	4	CAL	4	1.1	119	388	0.1	2.3	13.4	12	254	779	0.05	0.1	3.8	4590	9310	73
HRU4CAL5		HRU	4	CAL	5	0.6	82.2	254	0.1	1.8	10.5	9	187	578	0.05	0.1	2.4	3390	8400	81
HRU4CAL6		HRU	4	CAL	6	0.9	96.8	301	0.1	2.1	10.9	11	217	667	0.05	0.2	2.6	3690	8380	75
HRU4CAL7		HRU	4	CAL	7	0.7	83.1	255	0.1	2.1	10.9	10	192	586	0.05	0.1	2.4	3400	8550	68
HRU4CAL8		HRU	4	CAL	8	0.7	85.7	247	0.1	2.1	10	10	205	610 782	0.05	0.2	2.4	2910	7860	66 75
HRU4CAL9 HRU4CAL10		HRU HRU	4	CAL CAL	9 10	1.5 0.7	118 85.4	390 266	0.1 0.1	2.6 1.9	14.1 10.8	11 10	260 201	782 626	0.05 0.05	0.2 0.1	4.2 2.5	3600 3250	8930 8010	75 75
IIKU4CALIU		пко	4	CAL	10	0.7	63.4	200	0.1	1.9	10.8	10	201	020	0.05	0.1	2.3	5250	8010	15

9	of	9
---	----	---

APPENDIX F-3

FIELD APPLICATION RATES OF AGRICULTURAL LIMESTONE FOR TEST SITES

Field Application Rates of Agricultural Limestone for Test Sites

Treatment	Clay 1 Test Site	Clay 2 Test Site	Clay 3 Test Site	Organic Test Site
Unamended		0 t/ha	0 t/ha	0 t/ha
1X OMAFRA		7.5 t/ha	11 t/ha	15 t/ha
2X OMAFRA		15 t/ha	-	30 t/ha
Calcareous		100 t/ha	100 t/ha	-

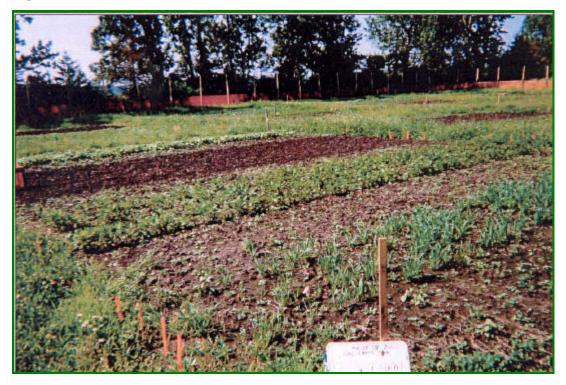
APPENDIX F-4A

REPRESENTATIVE PHOTOGRAPHS OF FIELD TRIALS 2000

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-1 Date taken: July 31, 2000 – Organic site.

Figure F4-2 Date taken: July 31, 2000 – Organic site.



Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-3 Rae Site

Figure F4-4 Rae Site

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-5 Date taken: August 30, 2000. Radishes grown on unamended soil on the Rae site.

Figure F4-6 Date taken: August 30, 2000 Radishes grown on clayey soils on the Rae site with 1X OMAFRA amendments

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-7 Date taken: October 3, 2000 Radishes grown on clayey soils on the Rae site with 2X OMAFRA amendments.

Figure F4-8 Date taken: August 30, 2000 Oats grown on Unamended soil on the Rae site.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-9 Date taken August 30, 2000

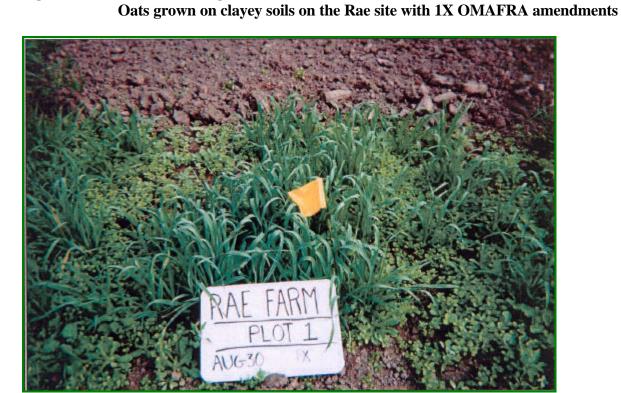


Figure F4-10 Date taken: October 3, 2000 Oats grown on clayey soils on the Rae site with 2X OMAFRA amendments.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

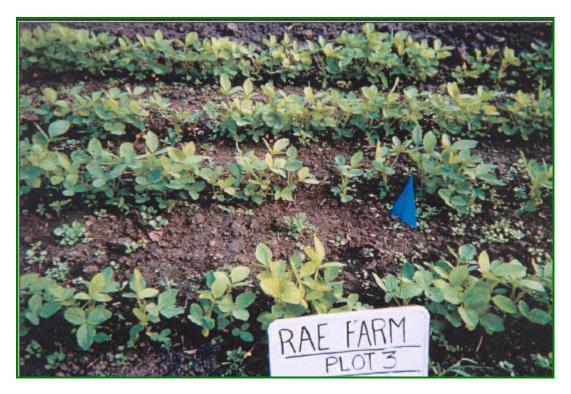
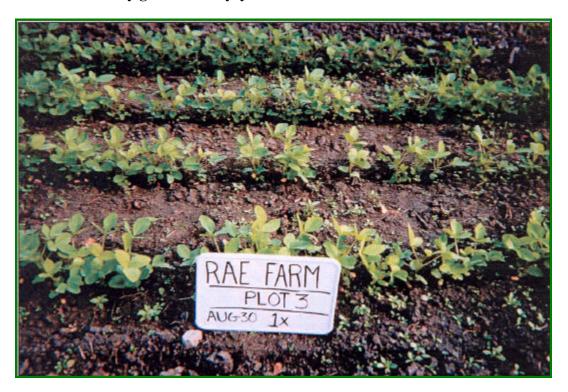
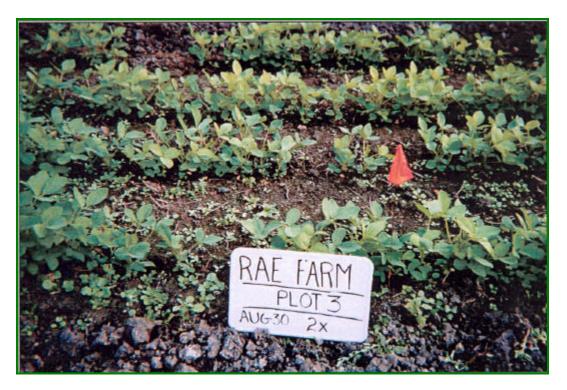



Figure F4-11 Date taken: August 30, 2000 Soy grown on Unamended soil on the Rae site


Figure F4-12 Date taken: August 30, 2000 Soy grown on clayey soils on the Rae site with 1X OMAFRA amendments.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-13 Date taken: October 3, 2000.

Soy grown on clayey soils on the Rae sitre with 2X OMAFRA amendments.

Figure F4-14 Inco Site

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-15 Inco Site

Figure F4-16 Date taken: September 13, 2000 Corn grown on Unamended soil on the Inco site.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-17 Date taken: September 13, 2000 Corn grown on clayey soils on the Inco site with 1X OMAFRA amendments.

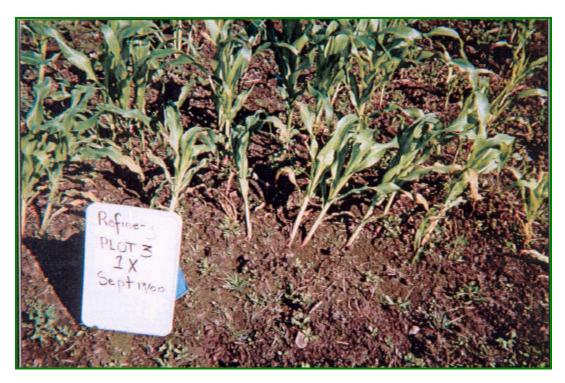


Figure F4-18 Date taken: September 13, 2000 Corn grown on clayey soils on the Inco site with 2X OMAFRA amendments.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-19 Date taken: September 13, 2000 Radishes grown on Unamended soil on the Inco site

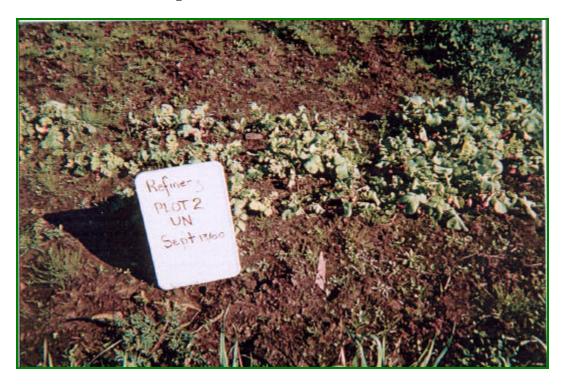


Figure F4-20 Date taken: September 13, 2000 Radishes grown on clayey soils on the Inco site with 1X OMAFRA amendments.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-21 Date taken: September 13, 2000 Radishes grown on clayey soils on the Inco site with 2X OMAFRA amendments.

Figure F4-22 Date taken: September 13, 2000 Oats grown on Unamended soil on the Inco site.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-23 Date taken: September 13, 2000 Oats grown on clayey soils on the Inco site with 1X OMAFRA amendments.

Figure F4-24 Date taken: September 13, 2000. Oats grown on clayey soils on the Inco site with 2X OMAFRA amendments.



Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-25 Date taken: September 13, 2000. Soy grown on Unamended soil on the Inco site.

Figure F4-26 Date taken: September 13, 2000. Soy grown on clayey soils on the Inco site with 1X OMAFRA amendments.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Figure F4-27 Date taken: September 13, 2000 Soy grown on clayey soils on the Inco site with 2X OMAFRA amendments.

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

APPENDIX F-4B

REPRESENTATIVE PHOTOGRAPHS OF FIELD TRIALS 2001

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

Representative Photographs of Field Trials 2001

C2 Soy Bean Crop-Plot 2A Crop

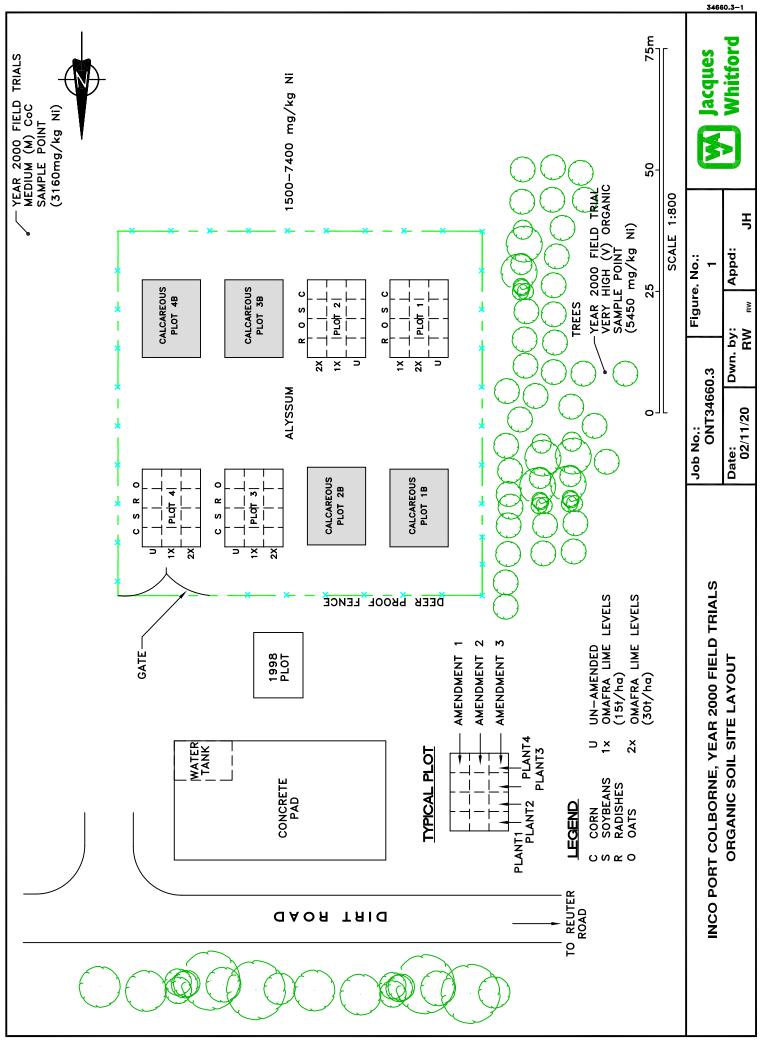
C2 Oat Crop 2X OMAFRA-Plot 4A

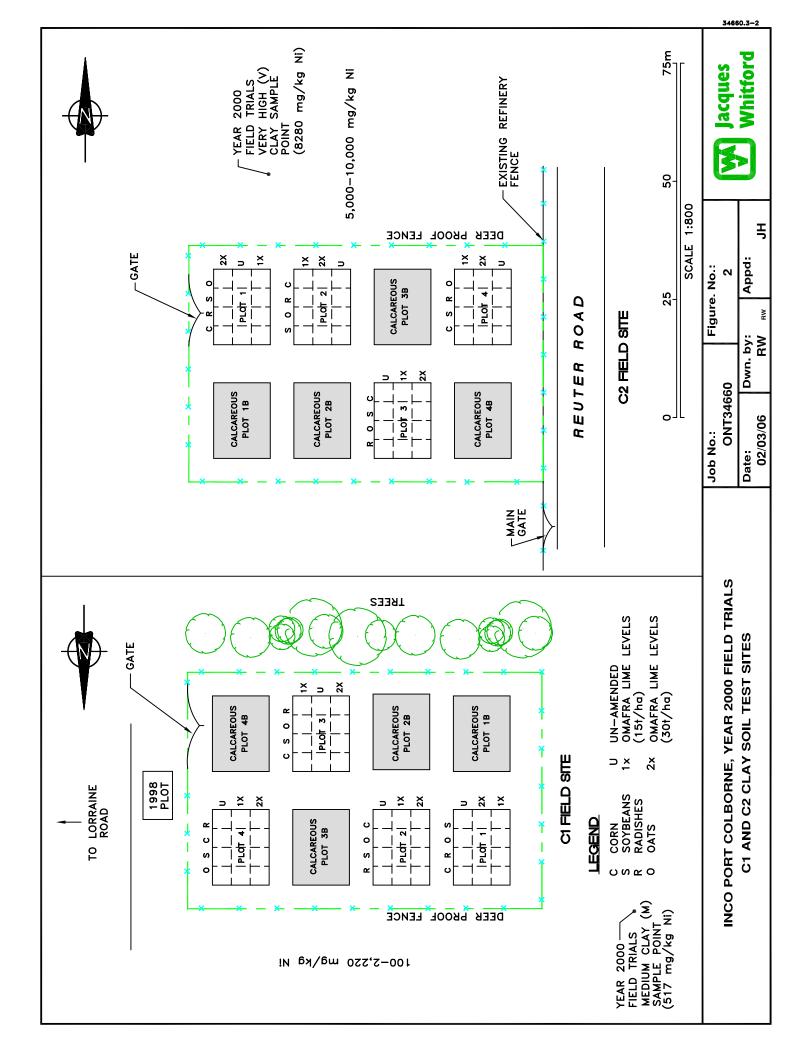
C2 Site-Plot 1A-Oats Unamended Prior to Harvest

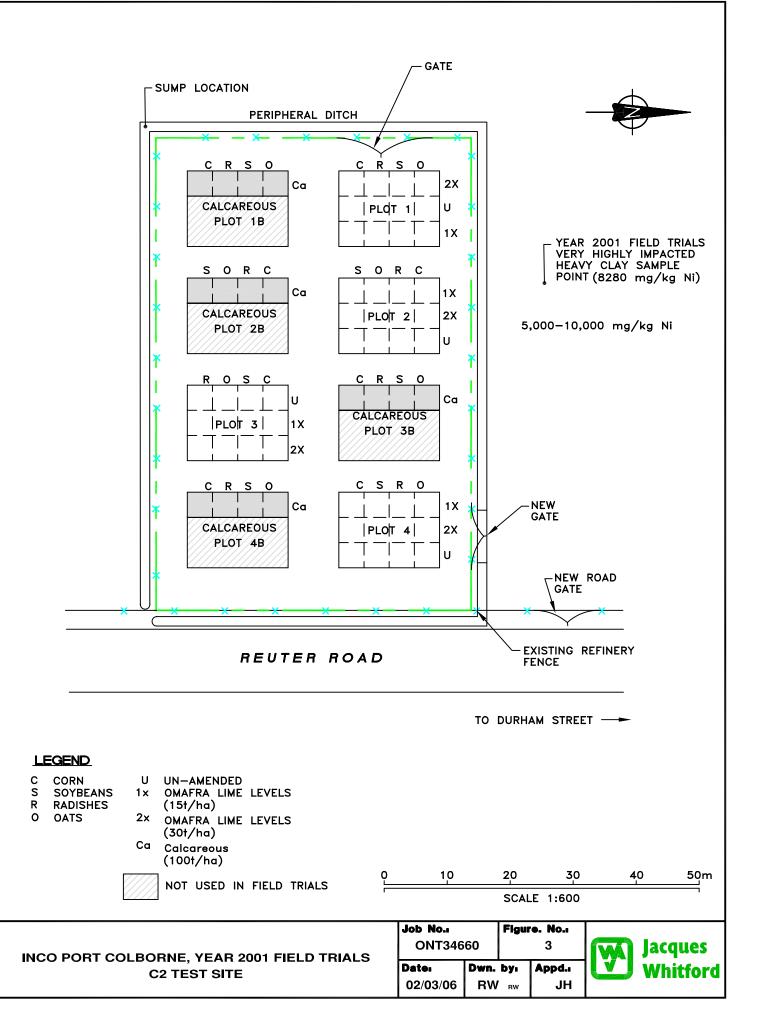
 $C2 \ Site-Corn \ A gronomic \ Sampling$

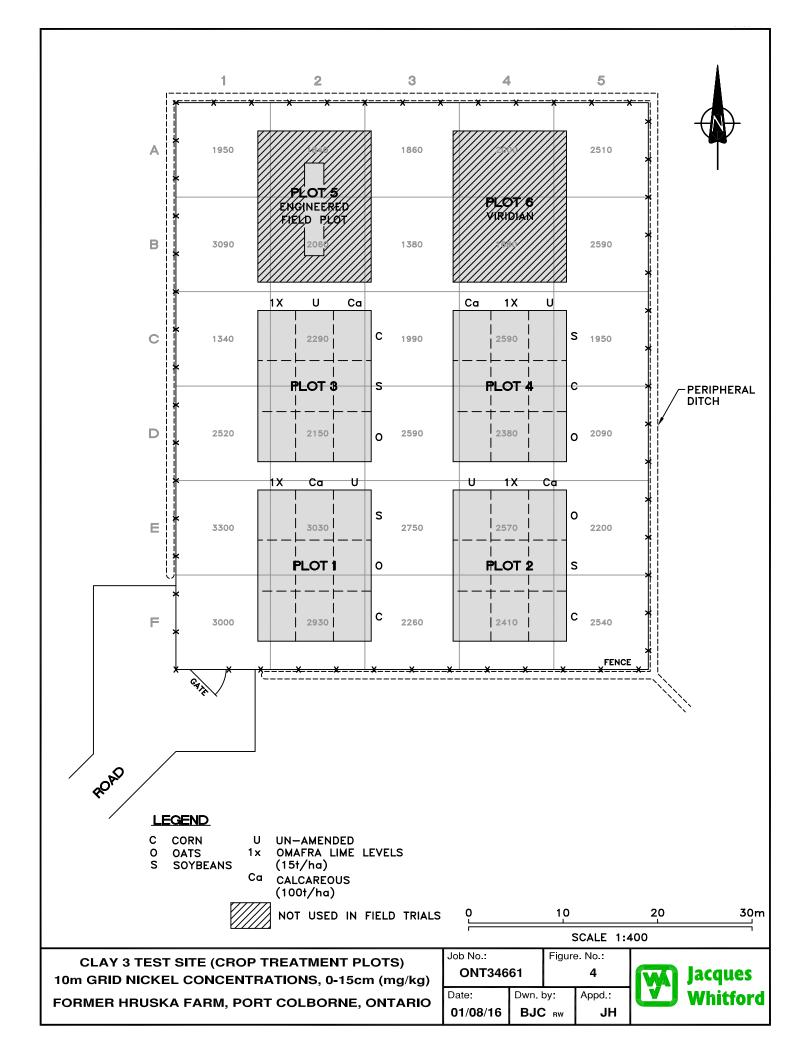
Field Workers at C2 Site

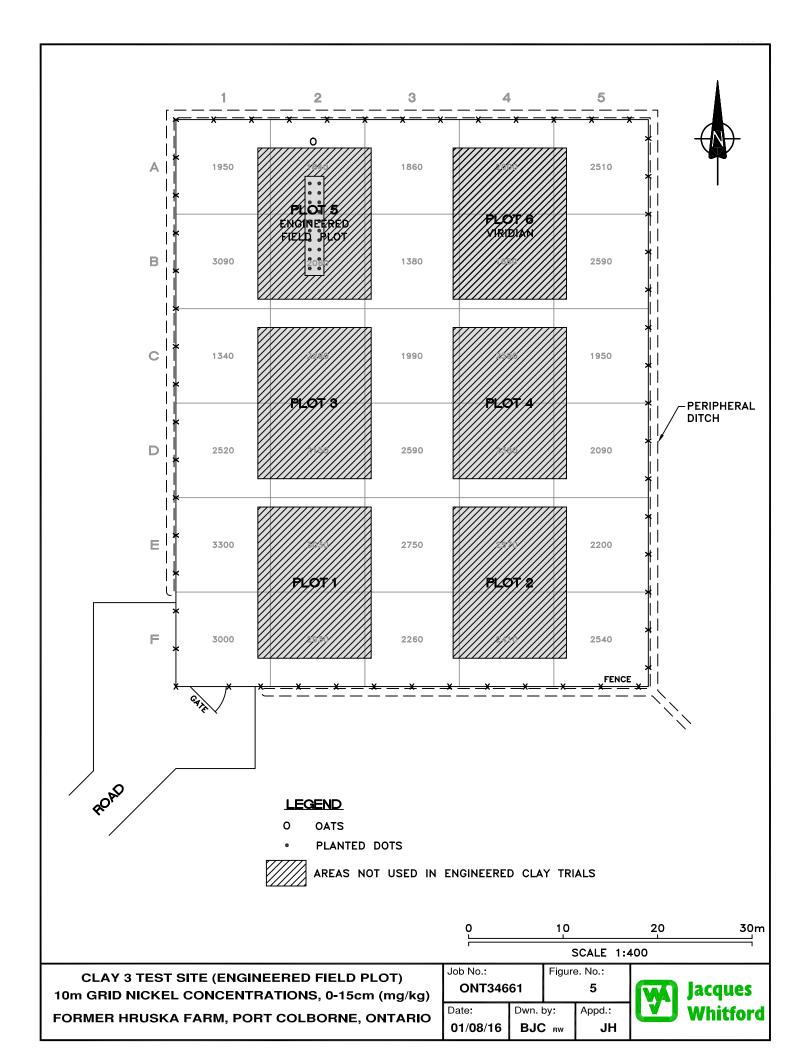
Harvesting Oats - C2 Site


Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials


APPENDIX F-5


LAYOUTS OF FIELD TEST SITES




Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

APPENDIX F-6

EXTRACTABLE NICKEL, COPPER AND COBALT OF THE PRELIMINARY FIELD TRIALS (2000) AND FIELD TRIALS (2001)

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

F6.1 Extractable Nickel, Copper and Cobalt of the Preliminary Field Trials (2000)

Extractions from one plot (Plot 1) within the C2 Test Site were so large compared to all other values (Appendix F-2) that they were excluded as outliers and are not included in the data summary presented in Table 1. Subjecting soils to DTPA extraction provided greater extractable CoCs than the aqueous extraction (Table 1). The Organic Test Site had greater percentages of extractable nickel compared to the clay soils of C1 and C2 Test Sites (Table 1). However, extractable copper was lower in the organic soils, less than half of what was extracted from the clay soils at the C1 and C2 Test Sites (Table 1). Cobalt appears to be extractable at a similar percentage for all soils analysed (Table 1). No clear trend in extractable CoC concentrations was noted across amendment treatments, and none were found to be high enough to likely produce a phytotoxic effect.

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 4 – Appendices - Field Trials

			Nickel			Copper			Cobalt	
Test Site	Amend. ²	Total (mg/kg)	Aqueous (mg/kg)	DTPA (mg/kg)	Total (mg/kg)	Aqueous (mg/kg)	DTPA (mg/kg)	Total (mg/kg)	Aqueous (mg/kg)	DTPA (mg/kg)
	UN	636 ±46	$1.2 \pm 0.1 \ (<1\%)$	50 ±3 (8%)	108 ±26	nd ³	$16.5 \pm 0.7 (15\%)$	15 ±0.6	nd	$0.7 \pm 0.1 $ (5%)
C1	1X	642 ±53	$0.9 \pm 0.1 \ (<1\%)$	47 ±2 (7%)	108 ±23	nd	18.7 ±4.5 (17%)	15.4 ±1	nd	$0.6 \pm 0.1 \ (4\%)$
	2X	614 ±52	$1.0 \pm 0.2 \ (<1\%)$	47 ±6 (8%)	104 ±20	nd	18.3 ±3.3 (18%)	$\begin{array}{c} 14.1 \\ \pm 0.8 \end{array}$	nd	$0.6 \pm 0.3 \ (4\%)$
	UN	$\begin{array}{c} 6080 \\ \pm 1410 \end{array}$	$4.0 \pm 0.7 \ (<1\%)$	188 ±55 (3%)	684 ±161	nd	80.8 ±18.6 (12%)	79.1 ± 19.2	nd	3.3 ±0.2 (4%)
C2	1X	6120 ±1620	3.9 ±1.8 (<1%)	122 ± 107 (2%)	677 ±162	nd	82.0 ±8.9 (12%)	76.0 ±13.2	nd	$3.2 \pm 0.8 $ (4%)
	2X	$5680 \\ \pm 1300$	3.3 ± 0 (<1%)	166 ±118 (3%)	632 ±103	nd	90.6 ±19.9 (14%)	76.5 ±9.5	nd	3.5 ±0.7 (5%)
	UN	3590 ±2620	7.8 ±3.9 (<1%)	540 ±393 (15%)	527 ± 320	nd	11.9 ±4.8 (2%)	47.2 ±27.1	nd	$1.7 \pm 1.2 $ (4%)
Organic	1X	2340 ±520	$3.7 \pm 0.9 \ (<1\%)$	405 ±121 (17%)	358 ±58	nd	21.1 ±5.8 (6%)	33.2 ± 6.2	nd	2.9 ± 0.8 (9%)
	2X	2800 ±1920	5.1 ±3.4 (<1%)	528 ±370 (19%)	406 ±224	nd	29.3 ±8 (7%)	37.6 ±21.3	nd	2.4 ±1 (6%)
Notes 1 2 3	Values preser method. Amendment t nd = not dete	reatments, as				-	-			
5	N=4									

Table 1Total and Extractable CoC Concentrations of Soils from 2000 Field Trials.1

F6.2 Extractable Nickel, Copper and Cobalt of the Field Trials (2001)

Results from the chemical extractions of nickel, copper and cobalt from soils at the C2 and C3 Test Sites are presented in Tables 2 and 3. These include strontium nitrate ($SrNO_3$) and acid ammonium oxalate extractions in addition to aqueous and DTPA extractions. Table 3 includes concentrations of iron and manganese extracted from the soils using the Dithionate-Citrate-Bicarbonate method (see Volume II).

Results of aqueous extractions present metal concentrations that are most readily available to the plants, while DTPA and SrNO₃ extractions reflect what remaining metal concentrations in the soils are available to the plants overall and available to the plants at different pH levels, respectively. Overall, DTPA predicts that roughly 4% of the soil nickel is relatively phytoavailable to plants at the C2 Test Site, while it predicts relative phytoavailability of nickel to be as high as approximately 16% at the C3 Test Site (Table 2).

By far the greatest extraction was done using the acid ammonium oxalate method, which extracted approximately 20% of the nickel, approximately 60% of the copper and 25-30% of the cobalt found in the C2 and C3 soils (Tables 2 & 3). Conversely, very little of the CoCs were extracted using either the aqueous extraction or strontium nitrate method, overall less than 1% of the total CoCs measured in the soil (Tables 2 & 3). The DTPA method identified a difference in availability of nickel, copper and cobalt between the two test sites, with more metals extracted from the C3 site than the C2 site (Tables 2 & 3).

Measured concentrations of extracted CoCs from amendment treatments were compared statistically within each site using ANOVA, and grouping of treatments was done using Tukey's Posthoc test. At the C2 Test Site, extraction differed across the treatments for two tests: SrNO₃ and DTPA. Strontium nitrate extracted a significantly greater concentration of nickel from unamended soils compared to the Calcareous treatment, although all concentrations were well below 1% of the total nickel found in the soil (Table 2). When comparing DTPA-extracted cobalt across the treatments, soils within the Calcareous treatment had significantly lower concentrations than any of the other treatments (Table 3).

Many of the extractions performed on soils from the C3 Test Site showed a significant difference between treatments. Overall, soils from the Calcareous treatment had significantly lower concentrations of extracted metal compared to the other treatments (Tables 2 & 3). No differences were noted for extractable iron and manganese (Table 3).

			Nie	ckel			Co	pper	
Test Site	Amend. ²	Aqueous (mg/kg)	DTPA (mg/kg)	SrNO ₃ (mg/kg)	Ammoniu m Oxalate (mg/kg)	Aqueous (mg/kg)	DTPA (mg/kg)	SrNO ₃ (mg/kg)	Ammoniu m Oxalate (mg/kg)
		7.8	211	2.6 ^a	1011	2.2	108	0.1	350
	UN	± 1.4	±59	± 1	±183	±0.3	± 17	± 0.1	± 58
		(<1%)	(4%)	(<1%)	(20%)	(<1%)	(18%)	(<1%)	(59%)
		6.8	185	1.5 ^{ab}	944	2.2	105	0.1	340
	1X	± 1.4	±54	± 0.6	±171	±0.3	±13	± 0.1	± 48
C2		(<1%)	(4%)	(<1%)	(20%)	(<1%)	(18%)	(<1%)	(58%)
C2		6.8	196	1.4 ^{ab}	946	2.1	110	0.1	342
	2X	± 1.0	±53	± 0.5	±229	±0.3	± 17	± 0.1	±61
		(<1%)	(4%)	(<1%)	(19%)	(<1%)	(18%)	(<1%)	(57%)
		5.4	134	1.0 ^b	813	2.0	93	0.1	284
	Cal	± 0.6	±21	± 0.2	± 140	± 0.2	±16	± 0.1	±51
		(<1%)	(3%)	(<1%)	(20%)	(<1%)	(19%)	(<1%)	(58%)
		19.8 ^a	528 ^a	17.8 ^a	816 ^a	2.7 ^a	121 ^a	0.2	241
	UN	± 1.7	± 96	± 3.0	± 86	± 0.3	± 96	± 0	±25
		(<1%)	(16%)	(<1%)	(25%)	(<1%)	(31%)	(<1%)	(62%)
		16.4 ^b	431 ^b	6.8 ^b	771 ^a	2.6 ^a	113 ^a	0.2	235
C3	1X	± 1.7	± 55	± 1.6	± 93	± 0.3	± 15	± 0.1	±32
		(<1%)	(14%)	(<1%)	(25%)	(<1%)	(30%)	(<1%)	(62%)
		12.7 ^c	340 ^c	3.6 ^c	702 ^b	2.3 ^b	103 ^b	0.2	226
	Cal	± 1.9	± 61	± 1.8	± 84	± 0.3	± 15	± 0.1	±25
		(<1%)	(11%)	(<1%)	(24%)	(<1%)	(28%)	(<1%)	(61%)
Notes	meth india 2 Ame	nod. Values in t cate grouping, t	oold type indica based on Tukey ents, as describe	te a significant 's Posthoc test.	Values in brack difference was Values with sin 3. UN = Unamen	noted between t nilar letters do r	reatments with ot differ signif	in a site. Supers icantly.	script letters

Table 2Nickel and Copper Extractions from Soils at the C2 and C3 Test Sites During
2001.1

T 4			Col	balt		Iron	Manganese
Test Site	Amend. ²	Aqueous (mg/kg)	DTPA (mg/kg)	SrNO ₃ (mg/kg)	Ammonium Oxalate (mg/kg)	Dithionate-Citrate- Bicarbonate (mg/kg)	Dithionate-Citrate- Bicarbonate (mg/kg)
			0.7 ^a		22	12000	120
	UN	nd ³	± 0.2	nd	±4	± 1500	± 24
			(1%)		(29%)	(53%)	(50%)
			0.6 ^a		20	11800	168
	1X	nd	± 0.2	nd	±3	± 1300	±196
C2			(1%)		(28%)	(52%)	(72%)
C2			0.7 ^a		20	11900	123
	2X	nd	± 0.2	nd	± 4	± 1300	± 29
			(1%) 0.4 ^b		(26%)	(52%)	(54%)
			0.4 ^b		17	10500	107
	Cal	nd	± 0.1	nd	±3	± 1300	±23
			(1%)		(27%)	(47%)	(42%)
			2.7 ^a	0.2 ^a	13 ^a	9980	77
	UN	nd	± 0.7	0.2 ± 0.1	± 2	± 890	± 14
			(6%) 1.5 ^b	± 0,1	(27%)	(51%)	(47%)
			1.5 ^b	_	12 ^a	9680	82
C3	1X	nd	± 0.4	nd ^b	± 2	± 850	±11
			(3%)		(26%)	(51%)	(51%)
			1.1 °		11 ^b	11700	78
	Cal	nd	± 0.4	nd ^b	± 2	± 14000	± 12
			(2%)		(24%)	(62%)	(48%)
Notes	meth	od. Values in bo	old type indicate	e a significant o	difference was no	ts are percentages of total CoC oted between treatments within lar letters do not differ signific	n a site. Superscript letters
		ndment treatme s, Cal = Calcare		d in Section 2.3	3. UN = Unameno	led, $1X = 1X$ OMAFRA levels,	2X = 2X OMAFRA
	3 nd =	not detected.					

Table 3Cobalt, Iron and Manganese Extractions from Soils at the C2 and C3 Test
Sites During 2001.1

BIOMONITORING STUDY

VOLUME 1 – PART 5 – APPENDICES

DECEMBER, 2004

LIST OF APPENDICES

VOLUME 1 - PART 5 – APPENDICES

- Appendix B-1Data for Biomonitoring Study
- Appendix B-2Site Description Summaries
- Appendix B-3Statistical Output for glms

APPENDIX B-1

DATA FOR BIOMONITORING STUDY

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

BIOMONI	TORI	NG ST	UDY	SOIL											VEG	GETAT	ION											
EXP. Ni Soil Conc.	Site	Plot	Rep	Soil pH	Soil CEC	Soil Condu ctivity @25°C	n	As	Co	Cu	Fe	Mn	Ni	Р	n	Al	Sb	As	Ca	Со	Cu	Fe	К	Mg	Mn	Ni	Р	Zn
-								mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
								0.2	0.01	1	50	1	2	20		0.5	0.05	0.2	50	0.01	0.05	5	10	5	0.5	0.1	5	0.5
Н	ORG	1	1	5.68	173.50	0.78	n=2	44.4	147.50	1365	23700	403	10650	1105	n=2	12.1	0.025	0.2	7035	1.84	10.75	57	11450	1740	23.7	41.7	974	50.0
H	ORG	1	2	5.40	156.00	0.66		72.2	201.00	1700	27400	517	14300	1340		13.0	0.100	0.2	6980	2.91	12.80	64	12900	2700	25.8	59.4	1360	64.2
H H	ORG ORG	1	3	5.35 5.50	148.50 135.00	0.63	n=2	85.0 62.3	216.00 167.00	2020 1560	27800 24500	486 379	15200 11300	1365 1330		13.1 12.6	0.080	0.3	6600 7640	2.38 1.68	31.00 10.60	71 62	16800 12800	1580 2080	31.1 11.0	67.3 44.1	1120 1070	66.2 39.3
Mean	OKO	1	-	5.48	153.25	0.65		66.0	182.88	1661	25850	446	12863	1285		12.0	0.025	0.2	7040	2.20	16.29	64	13488	2000	22.9	53.1	1131	54.9
Std Dev				0.15	16.05	0.11		17.1	31.25	276	2053	66	2226	121		0.5	0.038	0.1	430	0.56	9.86	6	2305	496	8.5	12.3	164	12.7
Н	SND	3	1	5.72	61.20	0.70		3.7	15.00	89	4640	89	600	431		12.0	0.025	0.7	7690	0.55	9.78	59	14600	2510	77.6	28.4	1230	62.8
H	SND	3	2	4.96	160.00	0.57		13.9	47.00	409	11900	280	3440	702		9.9	0.025	0.7	7780	0.55	10.00	51	14100	2470	74.8	28.1	1190	60.0
H H	SND SND	3	3	5.63 6.93	125.00	0.62		17.7 5.9	82.00 12.00	695	12900	404 151	4690	692 447		11.1 8.2	0.190	0.5	5410	0.54	10.70 9.13	44 44	9540	2670 2720	44.2 22.7	15.0	1060	60.3
Меап	SND	3	4	5.81	32.00 94.55	0.44 0.58		10.3	39.00	61 314	4990 8608	231	462 2298	568		0.2 10.3	0.080	0.1 0.5	9000 7470	0.33	9.15 9.90	50	10600 12210	2720 2593	54.8	5.9 19.4	1250 1183	37.7 55.2
Std Dev				0.82	58.41	0.11		6.6	32.75	299	4401	140	2104	149		1.6	0.078	0.3	1498	0.11	0.65	7	2517	121	26.2	10.9	85	11.7
Н	CLY	4	1	6.25	61.33	0.23	n=3	43.2	106.67	897	30133	297	7267	1637		7.1	0.050	0.1	1560	0.77	5.55	38	13400	1330	12.1	8.8	1790	20.6
Н	CLY	4	2	6.04	52.33	0.37	n=3	40.2	96.33	787	30633	259	6397	1613	n=2	15.0	0.060	0.1	6220	0.96	6.73	62	14350	1530	21.3	12.7	1665	70.9
H	CLY	4	3	6.13	66.67	0.46	n=3	24.2	57.00	515	23800	184	3583	1053		11.8	0.025	0.1	6930	1.45	6.27	49	15700	1260	22.9	12.4	2430	42.7
H Mean	CLY	4	4	5.99 6.10	41.33 55.42	0.24 0.32	n=3	20.2 32.0	51.67 77.92	414 653	22833 26850	200 235	3200 5112	879 1296		20.4 13.6	0.025	0.3 0.2	8600 5828	2.82 1.50	8.86 6.85	78 57	21300 16188	2150 1567	25.4 20.4	17.1 12.7	2760 2161	32.6 41.7
Std Dev				0.10	55.42 11.10	0.32		<u>32.0</u> 11.4	27.64	227	4104	235 53	2024	387		5.6	0.040	0.2	3015	0.93	1.42	17	3537	405	5.8	3.4	521	21.4
M	SND	5	1	6.96	11.00	0.13		4.7	13.00	103	5690	134	840	349		12.3	0.025	0.1	11700	0.66	5.94	47	10500	3330	36.4	14.7	1500	44.9
М	SND	5	2	6.90	16.00	0.13		10.7	7.00	81	5710	96	520	428		11.7	0.025	0.1	9590	0.27	10.30	52	6520	4510	14.1	9.3	1220	30.8
М	SND	5	3	6.73	14.00	0.15		8.4	9.00	90	7300	127	690	504	n=2	11.3	0.055	0.3	9025	0.43	6.40	58	13000	2535	25.2	30.5	1310	48.6
М	SND	5	4	7.13	11.00	0.14	n=2	9.6	10.00	105	5190	85	835	359		18.0	0.150	0.2	10100	0.50	7.54	83	7480	3670	23.9	19.9	1370	38.3
Mean Std Dev				6.93 0.17	13.00 2.45	0.14 0.01		8.4 2.6	9.75 2.50	95 11	5973 917	111 24	721 151	410 72		13.3 3.2	0.064 0.059	0.2	10104 1151	0.46	7.54 1.96	60 16	9375 2952	3511 818	24.9 9.1	18.6 9.0	1350 117	40.7 7.8
M	CLY	6	1	6.49	74.00	0.43		10.6	17.50	147	17850	182	877	1400		11.2	0.059	0.1	8590	0.10	9.62	45	15500	2010	9.1 19.9	3.3	1760	22.7
M	CLY	6	2	7.10	74.00	0.50	n=3	5.7	19.00	123	22700	328	694	1410		11.0	0.025	0.1	7980	0.16	9.45	60	16600	1340	14.8	1.9	3000	34.2
М	CLY	6	3	7.38	26.67	0.41	n=3	3.8	10.00	34	27900	452	81	713		8.0	0.025	0.1	7440	0.18	12.50	37	15200	2180	28.9	1.4	1890	31.3
М	CLY	6	4	7.41	29.00	0.43	n=3	3.7	9.00	38	25400	428	83	777		7.9	0.025	0.1	8260	0.12	7.02	32	17500	1930	16.0	1.3	1220	15.8
Mean				7.10	50.92	0.44		6.0	13.88	86	23463	347	434	1075		9.5	0.036	0.1	8068	0.15	9.65	44	16200	1865	19.9	2.0	1968	26.0
Std Dev C	ORG	7	1	0.43 5.86	26.67 135.00	0.04		3.2 5.6	5.11 4.00	58 34	4302 13000	123 205	413 45	382 965		1.8 11.8	0.023 0.250	0.0 0.1	487 6690	0.03 0.07	2.24 9.09	12 48	1055 11400	365 2450	6.4 33.2	0.9 0.3	747 1000	8.4 32.8
C	ORG	7	2	6.05	126.00	0.37		5.6	4.00	37	12500	203	53	1070		23.0	0.230	0.1	7330	0.07	10.60	66	11400	3020	17.0	0.5	1780	44.1
Č	ORG	7	3	5.95	128.00	0.32		8.9	4.00	42	20900	237	62	1260		10.1	0.150	0.1	6360	0.03	8.43	31	10400	2180	28.0	0.3	1590	44.3
Mean				5.95	129.67	0.38		6.7	4.00	38	15467	215	53	1098		15.0	0.142	0.1	6793	0.05	9.37	48	11200	2550	26.1	0.4	1457	40.4
Std Dev				0.10	4.73	0.07		1.9	0.00	4	4712	19	9	150		7.0	0.113	0.0	493	0.02	1.11	18	721	429	8.3	0.2	407	6.6
C C	SND SND	8	1 2	7.01 6.68	18.00 18.00	0.16 0.24		4.2	0.01 0.01	14 8	6050 4670	123 68	49 40	1020 596		13.1 11.3	0.070	0.1	7180 8890	0.02	9.25 11.30	34 37	19800 14900	1140 1510	9.6 9.7	0.9	2180 2190	68.0 129.0
C	SND	8	2	6.28	26.50	0.24	n=2	1.9	0.01	8	4670 5605	106	40 59	781		9.3	0.050	0.1	8890	0.01	17.90	44	11500	2280	9.7	0.9	1620	371.0
C	SND	8	4	7.27	19.00	0.30	11-2	1.9	0.01	10	5160	95	41	853		8.3	0.000	0.1	9690	0.01	7.01	38	14600	1160	10.7	0.3	2580	63.2
Mean				6.81	20.38	0.24		2.4	0.01	11	5371	98	47	813		10.5	0.051	0.1	8580	0.01	11.37	38	15200	1523	10.3	0.7	2143	157.8
Std Dev				0.43	4.11	0.09		1.2	0.00	3	592	23	9	176		2.1	0.019	0.0	1047	0.01	4.70	4	3430	533	0.7	0.3	395	145.3
C	CLY	9	1	7.27	32.00	0.45	n=3	3.6	10.00	23	30000	394	36	711		17.7	0.025	0.1	8150	0.07	7.23	51	32900	1670	24.1	1.3	1950	24.1
C C	CLY CLY	9 9	2	5.39 7.03	44.33 43.33	0.37 0.99	n=3 n=3	2.1	4.00	16 31	12200 12133	159 204	28 23	781 842	n=2	13.7 17.4	0.025	0.1	7700 7200	0.11 0.10	7.05 9.20	44 51	23800 20950	1560 2040	34.6 60.4	0.9	1410 1725	
C	CLY	9	4	7.44	28.00	0.39	n=3 n=2	2.6	6.00	24	20700	260	25	495	m-2	17.4	0.080	0.1	7200	0.10	5.84	44	16500	2380	33.2	0.4	1725	25.2
Mean		-		6.78	36.92	0.55		2.6	6.25	23	18758	254	28	707		16.2	0.050	0.1	7733	0.09	7.33	48	23538	1913	38.1	0.7	1586	26.9
Std Dev				0.94	8.16	0.30		0.8	2.63	6	8506	102	5	151		1.8	0.029	0.0	400	0.02	1.39	4	6927	373	15.6	0.4	310	3.6
Jacques	s																											

APPENDIX B-2

Site Description Summaries

Site description summaries, and Ecological Land Classification (ELC) data sheets for community description, management/disturbance history, and plant species lists for seven biomonitoring sites in and around Port Colborne, Ontario.

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Field Site Descriptions – Biomonitoring Study (October 2001)

High/Medium Sand, Reuter Road: This red oak deciduous forest occurs on an old, stabilized dune system. It is remarkable due to the age of many of the trees, the high species diversity at every strata, and the uncommon geomorphology on which they occur. The youngest fore dunes closest to Nickel Beach are colonized by the introduced species silver poplar (*Populus alba*) and the rare to uncommon beach grass Ammophila breviligulata. The stable, older back dunes provide microclimates for different species according to their aspect and height. The high dunes include mature, large diameter (ca. 78 cm diameter) red oak (Quercus rubra), sugar maple (Acer saccharum) hemlock (Tsuga canadensis). Scots pine (Pinus sylvestris), an introduced conifer, has naturalized here. The size of the larger trees indicates that logging last occurred 100+ years ago, although smaller diameter red oak and black cherry (Prunus serotina) on the lower back dunes indicate that logging last occurred there 30-50 years ago. Deadwood and standing snags in all size classes occur which provide habitat and indicate an absence of active management. Shrubs and small trees in the understory include bladdernut (Staphylea trifolia), spicebush (Lindera benzoin) and purple flowering raspberry (Rubus odoratus), and continuous patches of yew (Taxus canadensis) on south facing old dunes. Groundcover consists of patchy distributions of various ferns (Athyrium felix-femina, Osumunda cinnamomea), briers (Smilax herbacea, S. hispida) and vines (Rhus radicans, Parthenocissus sp.). Light litter occurs throughout the stand, and there is one track leading to a monitoring well. The constant drone of nearby industrial activity is the only other notable disturbance in this stand.

High Organic, Groetlaar Farm: Mature red maple (*Acer rubrum*) and the silver-red hybrid Freeman's maple (*Acer freemanii*) are the dominant tree species of this maple organic deciduous swamp. Standing snags and deadfall of all sizes occur indicating an absence of active management. Blue beech (*Carpinus caroliniana*) and Virginia creeper (*Parthenocissus* sp.) are scattered in the subcanopy. Where there is a break in the canopy, trembling aspen (*Populus tremuloides*) occurs with purple flowering raspberry (*Rubus odoratus*), and spicebush (*Lindera benzoin*). Groundcover largely consists of deciduous leaf litter, although ferns such as sensitive fern (*Onoclea sensibilis*) and wild sarsaparilla (*Aralia nudicaulis*) are found. Light disturbance occurs as domestic garbage dumping at the lane gate and a small excavation for soil extraction. Noise pollution is moderate and widespread due to the nearby industrial plant.

High Clay, Refinery: This fresh-moist poplar deciduous forest consists exclusively of mid-aged trembling aspen (*Populus tremuloides*). It is an advancing forest edge into the adjacent old field dominated by goldenrod (*Solidago*) species. There is low vegetative diversity at all strata: spice bush (*Lindera benzoin*) is the dominant shrub, and groundcover is dominated by shade-intolerant goldenrod (*Solidago* spp.) and grass species, which is to be expected of woodlands with large canopy breaks such as this. Large diameter aspen snags and deadfalls are abundant. Noise is intensive and widespread from the industrial plant across the road, particularly when the large press is in operation causing below ground vibrations.

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Medium Clay, Rae Farm: This site consists of a former property/yard boundary plantings of Norway spruce (*Picea alba*), weeping willow (*Salix babylonica*), and cottonwood (*Populus deltoides*) mixed with volunteer shrub and tree species such as black locust (*Robinia pseudo-acacia*) basswood (*Tilia americana*), sumac (*Rhus typhina*), pussy willow (*Salix discolor*), and red osier dogwood (*Cornus stolonifera*). The surrounding land is an old field dominated by grasses (eg. *Phalaris arundinacea, Phleum pratense*), goldenrods (*Solidago spp.*) asters (*Aster spp.*) and teasel (*Dipsacus sylvestris*). Some trees surround two shallow ponds which are possibly of anthropogenic origin. Other than past farming, (including the former fieldplot trials) there is very little ongoing disturbance, and the existing cultural plantings along with the adjoining forest will see this site return to woodland if left undisturbed.

Background Sand, MacDonald Property: This young mixed plantation consists of white spruce (*Picea glauca*), white pine (*Pinus strobus*) cottonwood (*Populus deltoides*, or a hybrid of *P. deltoides*), and black walnut (*Juglans nigra*). Herbaceous groundcover is the native species goldenrod (*Solidago altissima*), joe-pye weed (*Eupatorium maculatum*), and asters (eg. Aster puniceus, A. novae-angliae). This herbaceous layer is mowed annually in the fall.

Background Clay, Station Road: There is a high diversity of tree species in this fresh-moist shagbark hickory (*Carya ovata*) deciduous forest. Basswood (*Tilia americana*), ash (*Fraxinus* sp.), red oak (*Quercus rubra*) and red maple (*Acer rubrum*) are equally represented. Other less frequent species include blue beech (*Carpinus caroliniana*), hop hornbeam (*Ostrya virginiana*), yellow birch (*Betula allegheniensis*) black cherry (*Prunus serotina*), beech (*Fagus grandifolia*) and rock elm (*Ulmus thomasii*). Barberry (*Berberis vulgaris*), an escape garden shrub considered a weed, is found in the understory. Wild geranium is abundant in the groundcover, and wild iris (*Iris versicolor*), turtlehead (*Chelone glabra*), sensitive fern (*Onoclea sensibilis*) and various sedges indicate that this understory is normally wet. The ground vegetation was drought-stressed and the soil dehydrated at the time of the survey. There is a historic midden at the center of the woodlot, but there is otherwise very little anthropogenic disturbance.

Background Organic, Dilts Road: Sparsely distributed trembling aspen (*Populus tremuloides*) with thicket forming red osier dogwood (*Cornus stolonifera*) are dominant in this mid-aged, fresh-moist poplar deciduous forest. Jewelweed (*Impatiens* sp.) and the environmental weed garlic mustard (*Alliaria petiolata*) are common groundcover. It is likely this woodland established on abandoned organic cropland. Standing snags and deadfall occur, and there is a track to a small clearing.

Table A1. Ecological Land Classification (ELC) data sheets for community description and	
classification of Sandy (High-Ni and Medium-Ni) Reuter Road soils.	

	SITE: Sa	nd High-M	ediur	n Reuter Road			PC	LYGON:		
							Fie	eld #:	Fina	al #:
COMMUNITY DESCRIPTION &	SURVEY	′OR(S): LandSaga E	lione		DA	TE: October 2/01			UTN	1E:
CLASSIFICATION	START:	Landougu	END	:		0010001 2/01	UT	MZ:	UTN	IN:
POLYGON DESCRI	DTION									
FOLIGON DESCRI			<u> </u> т(OPOGRAPHIC			1			
SYSTEM	SUE	BSTRATE		FEATURE		HISTORY		PLANT FORM		COMMUNITY
TERRESTRIAL	ORGAN	IIC	LACI	USTRINE	NA	TURAL	PL	ANKTON	PON	ND LAKE
			RIVE	RINE			SU	BMERGED	STR	EAM RIVER
WETLAND	MINERA	L SOIL	BOT	TOMLAND	CU	LTURAL	FL	OATING- LVD.	SWA	AMP MARSH
			TER	RACE			-	RAMINOID	BOG	6 FEN
AQUATIC	PARENT	Γ MIN.	VALL	LEY SLOPE			FO	RB	BAR	REN
			TAB	LELAND			LIC	HEN	MEA	ADOW
	ACIDIC	BEDRK.	ROL	L. UPLAND			BR	YOPHYTE	PRA	IRIE
			CLIF	F				ECIDUOUS	THI	CKET
SITE	BASIC B	BEDRK.	TALL			COVER		NIFEROUS	SAV	(ANNAH
OPEN WATER				VICE/CAVE	OPE	EN	MD	KED	_	ODLAND
SHALLOW WATER	CARB. E	BEDRK.	ALV	AR					FOR	-
SURFICIAL DEP.			ROC	KLAND	SH	RUB			PLA	NTATION
BEDROCK			BEA	CH/ BAR						
			SAN	D DUNE	TR	EED				
			BLUF	FF						
STAND DESCRIPTI			-							
LAYER	НТ	CVR						REASING DOMIN		_
1 CANOPY	2			•				ER THAN; = ABOUT	EQUA	_ 10)
			-		J>15	ucana=Pinsylv=O	stvirg			
2 SUB-CANOPY	3		-	Ostvirg						
3 UNDERSTOREY	2					enz=Parsp=Rhura	ic			
4 GRD. LAYER HT CODES:	1=>25 m	0.40.117.4		ee species list - v				=0.2 <ht<0.5 7="F</td" m=""><td></td><td></td></ht<0.5>		
CVR CODES:						<pre><2 m 5=0.5<h1<1 4="CVR" cvr<60%="">60</h1<1></pre>		=0.2 <h1<0.5 =f<="" m="" td=""><td>11<0.2</td><td>m</td></h1<0.5>	11<0.2	m
STAND COMPOSITION		Querubr							BA:	
SIZE CLASS ANALYSIS:			0	< 10 cm	0	10 - 24 cm	а	25 - 50 cm	r	> 50 cm
STANDING SNAGS:			N=	< 10 cm	r	10 - 24 cm	r	25 - 50 cm	r	> 50 cm
DEADFALL/LOGS:			r	< 10 cm	r	10 - 24 cm	r	25 - 50 cm	r	> 50 cm
ABUNDANCE CODES:	_					SIONAL A=ABUNDAN				
COMM. AGE:		PIONEER	Y	OUNG		MID-AGE	х	MATURE	(OLD-GROWTH
SOIL ANALYSIS										
TEXTURE:			DED.	TH TO MOTTLES		Y	g =	_	G =	
MOISTURE:				TH OF ORGANICS	-	. 1	9 -	-	10 -	(cm
HOMOGENEOUS / VAF	RIABLE:			TH TO BEDROCK:						(cm
COMMUNITY CLAS COMMUNITY CLASS:	SIFICAT	ION	•						1	
COMMUNITY SERIES:									+	
ECOSITE:									+	
VEGETATION TYPE:	Dry -fre	sh Oak-Har	dwood	d Deciduous Fore	est				F	OD2-4
INCLUSION										
COMPLEX										
Notos:										

Notes:

Table A2. Ecological Land Classification (ELC) data sheets for natural vegetation observed at Sandy (High-Ni and Medium-Ni) Reuter Road soils.

	SITE: Sand High-Medium Reuter Rd
ELC	POLYGON:
PLANT SPECIES	DATE: October 2/01
LIST	SURVEYOR(S): LandSaga Biogeographical

 $\label{eq:layers} \begin{array}{ll} {\sf LAYERS:} \ 1 = {\sf CANOPY} > 10m & 2 = {\sf SUB-CANOPY} & 3 = {\sf UNDERSTORY} & 4 = {\sf GROUND} \ ({\sf GRD.}) \ {\sf LAYER} \\ {\sf ABUNDANCE \ CODES:} \ {\sf R} = {\sf RARE} & {\sf O} = {\sf OCCASIONAL} & {\sf A} = {\sf ABUNDANT} & {\sf D} = {\sf DOMINANT} \end{array}$

SPECIES CODE		LA	YER		COLL.	1
	1	2	3	4		
Quercus rubra	D					ļ
Aralia nudicaulis				0		
Smilax hispidis				А		
Asarum canadense				R		
Hesperis matronalis				R		
Parthenocissus sp.				0		
Solidago caesia				R		
Alliaria petiolata				R		I
Rhus rhydbergii				0		I
Maianthemum canadense				R		1
Lindera benzoin			0]
Pinus sylvatica	0					1
Rubus odoratus			R			1
Taxus canadensis			А			1
Fagus grandifolia	R					1
Smilax herbacea				А		1
Menispermum candense			R			1
Populus alba	D					1
Ammophila breviligulata	D					1
Vitis riparia			0			1
Viburnum lentago			R			1
Tilia americana		R				1
Ostrya virginiana		R				1
Rubus allegheniensis			R			1
Tsuga canadensis	R					1
Euonymous obovatus				R		1
Prunus serotina	0					1
Acer saccharum	R	Ī				1
Staphylea trifolia		А				1
Smilacena racemosa		Ī		0		1
Athyrium felix-femina				А		1
Osmunda cinnamomea		1		0		1
		1		1		1
			1	1		1
			1	1		1
		1	1	1		1

SPECIES CODE		LA	YER		COLL.
	1	2	3	4	
	-				
	_				
	-				
	-				
	_				
	-				
	_				
	1				
	+				
	-				
					of

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Table B1. Ecological Land Classification (ELC) data sheets for community de	lescription and
classification of Organic (High-Ni) Groetlaar Farm soils.	

	SITE: Organ	nic High - Groetlaa	ır	POLYGON:	
	gu.			Field #:	Final #:
COMMUNITY DESCRIPTION &	SURVEYOR(S): LandS	aga Bioge	DATE: October 3/01		UTME:
CLASSIFICATION	START:	END:		UTMZ:	UTMN:
POLYGON DESCRI	PTION				

		TOPOGRAPHIC			
SYSTEM	SUBSTRATE	FEATURE	HISTORY	PLANT FORM	COMMUNITY
TERRESTRIAL	ORGANIC	LACUSTRINE	NATURAL	PLANKTON	POND LAKE
		RIVERINE		SUBMERGED	STREAM RIVER
WETLAND	MINERAL SOIL	BOTTOMLAND	CULTURAL	FLOATING- LVD.	SWAMP MARSH
		TERRACE		GRAMINOID	BOG FEN
AQUATIC	PARENT MIN.	VALLEY SLOPE		FORB	BARREN
		TABLELAND		LICHEN	MEADOW
	ACIDIC BEDRK.	ROLL. UPLAND		BRYOPHYTE	PRAIRIE
		CLIFF		DECIDUOUS	THICKET
SITE	BASIC BEDRK.	TALUS	COVER	CONIFEROUS	SAVANNAH
OPEN WATER		CREVICE/CAVE	OPEN	MIXED	WOODLAND
SHALLOW WATER	CARB. BEDRK.	ALVAR			FOREST
SURFICIAL DEP.		ROCKLAND	SHRUB		PLANTATION
BEDROCK		BEACH/ BAR			
		SAND DUNE	TREED		
		BLUFF			

STAND DESCRIPTION

	LAYER	НТ	CVR	SPECIES IN ORDER OF DECREASING DOMINANCE (>> MUCH GREATER THAN; > GREATER THAN; = ABOUT EQUAL TO)				
1	CANOPY	2		Acefree=Acerubr>>Poptrem>Querubr				
2	SUB-CANOPY	3		Carcaro>Parvita				
3	UNDERSTOREY	5		Linbenz=Rubodor				
4	GRD. LAYER	6		Aranudi=Athefeli				
HT (CODES:	1=>25 m	2=10 <ht<25< td=""><td>5 m 3=2<ht<10 4="1<HT<2" 5="0.5<HT<1" 6="0.2<HT<0.5" 7="HT<0.2" m="" m<="" td=""></ht<10></td></ht<25<>	5 m 3=2 <ht<10 4="1<HT<2" 5="0.5<HT<1" 6="0.2<HT<0.5" 7="HT<0.2" m="" m<="" td=""></ht<10>				
CVF	CODES:	0=NONE	1=0% <cvr<1< td=""><td>0% 2=10<cvr<25% 3="25<CVR<60%" 4="CVR">60%</cvr<25%></td></cvr<1<>	0% 2=10 <cvr<25% 3="25<CVR<60%" 4="CVR">60%</cvr<25%>				
ST	AND COMPOSITION							

STAND COMPOSITION.								BA	Χ:	
SIZE CLASS ANALYSIS:		0	< 10 cm	А	10 - 24 cm	А	25 - 50 cm	R	> 50 cm	
STANDING SNAGS:		R	< 10 cm	R	10 - 24 cm	R	25 - 50 cm	Ν	> 50 cm	
DEADFALL/LOGS:			< 10 cm	А	10 - 24 cm	А	25 - 50 cm	Ν	> 50 cm	
ABUNDANCE CODES:	ABUNDANCE CODES: N=NONE R=RARE O=OCCASIONAL A=ABUNDANT									
COMM. AGE:	PIONEER		YOUNG		MID-AGE	Х	MATURE	ſ	OLD-GROWTH	

SOIL ANALYSIS

SOIL ANALISIS						
TEXTURE:		DEPTH TO MOTTLES / GLEY	g =	G =		
MOISTURE:		DEPTH OF ORGANICS:	(c			
HOMOGENEOUS / VA	RIABLE:	DEPTH TO BEDROCK:		(c		
COMMUNITY CLAS	SSIFICATION					
COMMUNITY CLASS:						
COMMUNITY SERIES:						
ECOSITE:						
VEGETATION TYPE:	VEGETATION TYPE: Maple organic deciduous swamp					
INCLUSION						

COMPLEX Notes:

Table B2. Ecological Land Classification (ELC) data sheets for natural vegetation observed at

 Organic (High-Ni) Groetlaar Farm soils.

	SITE	: Org	ganic	: Hig	h Groetlaa	ar						
ELC	POL	YGOI	N:									
PLANT SPECIES	DAT	DATE: October 3/01										
LIST	SURVEYOR(S): LandSaga Biogeographical											
LAYERS: 1 = CANOPY > 10m ABUNDANCE CODES: R = RAR				3 = UN	DERSTORY	4 = GROUND (0	GRD.) LAYER					
SPECIES CODE			YER		COLL.		SPECIES CODE			/ER		COLL.
	1	2	3	4				1	2	3	4	
Rubus idaeus	0							_				
Rubus odorata	0							_				
Populus tremuloides Parthenocissus vitacea	D			-				_				
Acer rubrum	A											
Lindera benzoin			0									
Impatiens sp			0									
Solidago altissima			0									
Onoclea sensibilis			0									
Osmunda regalis			R									
Aralia nudicaulis			0									
Osmunda cinnamomea			0									
Carpinus caroliniana			0									
Athyrium felix-femina			0									
Acer freemanii	А											
				<u> </u>								
	_	<u> </u>		<u> </u>				_				
	_							_				
	_	<u> </u>										
		-		I				_				
	_							_				
	_			<u> </u>								
								_				
		-						-				
		-										
	-							+				
		1								L		of

Table C1. Ecological Land Classification (ELC) data sheets for community description and classification of Clay (High-Ni) Refinery soils.

	SITE: Clay	-High-Refinery		POLYGON:	
	onay	ingi itemety	y		Final #:
COMMUNITY DESCRIPTION &	SURVEYOR(S): LandS	aga Bioge	DATE: October 3/01		UTME:
CLASSIFICATION	START:	END:		UTMZ:	UTMN:

		TOPOGRAPHIC			
SYSTEM	SUBSTRATE	FEATURE	HISTORY	PLANT FORM	COMMUNITY
TERRESTRIAL	ORGANIC	LACUSTRINE	NATURAL	PLANKTON	POND LAKE
		RIVERINE		SUBMERGED	STREAM RIVER
WETLAND	MINERAL SOIL	BOTTOMLAND	CULTURAL	FLOATING-LVD.	SWAMP MARSH
		TERRACE		GRAMINOID	BOG FEN
AQUATIC	PARENT MIN.	VALLEY SLOPE		FORB	BARREN
		TABLELAND		LICHEN	MEADOW
	ACIDIC BEDRK.	ROLL. UPLAND		BRYOPHYTE	PRAIRIE
		CLIFF		DECIDUOUS	THICKET
SITE	BASIC BEDRK.	TALUS	COVER	CONIFEROUS	SAVANNAH
OPEN WATER		CREVICE/CAVE	OPEN	MIXED	WOODLAND
SHALLOW WATER	CARB. BEDRK.	ALVAR			FOREST
SURFICIAL DEP.		ROCKLAND	SHRUB		PLANTATION
BEDROCK		BEACH/BAR			
		SAND DUNE	TREED		
		BLUFF			

STAND DESCRIPTION

LAYER	НТ	CVR	SPECIES IN ORDER OF DECREASING DOMINANCE (>> MUCH GREATER THAN; > GREATER THAN; = ABOUT EQUAL TO)
1 CANOPY	3		Poptre,
2 SUB-CANOPY			
3 UNDERSTOREY	4		Linbenz>>Saldisc
4 GRD. LAYER	6		Solspp=grass sp
HT CODES:	1=>25 m		5 m 3=2 <ht<10 4="1<HT<2" 5="0.5<HT<1" 6="0.2<HT<0.5" 7="HT<0.2" m="" m<="" td=""></ht<10>
	0-NONE	1-0% -CVP-	10% 2-10/CVR/25% 3-25/CVR/60% /-CVR/60%

0=NONE 1=0%<CVR<10% 2=10<CVR<25% 3=25<CVR<60% 4=CVR>60% CVR CODES:

STAND COMPOSITION:	Poptrem							BA	A:	
SIZE CLASS ANALYSIS:		0	< 10 cm	А	10 - 24 cm	А	25 - 50 cm	Ν	> 50 cm	
STANDING SNAGS:		0	< 10 cm	А	10 - 24 cm	0		Ν	> 50 cm	
DEADFALL/LOGS:		0	< 10 cm	А	10 - 24 cm	A	25 - 50 cm	Ν	> 50 cm	
ABUNDANCE CODES:	ABUNDANCE CODES: N=NONE R=RARE O=OCCASIONAL A=ABUNDANT									
COMM. AGE:	PIONEER		YOUNG	Х	MID-AGE		MATURE		OLD-GROWTH	

SOIL ANALYSIS

TEXTURE:	DEPTH TO MOTTLES / GLEY	g =	G =
MOISTURE:	DEPTH OF ORGANICS:		(cm)
HOMOGENEOUS / VARIABLE:	DEPTH TO BEDROCK:		(cm)
	•		

COMMUNITY CLASSIFICATION

COMMUNITY CLASS:		
COMMUNITY SERIES:		
ECOSITE:		
VEGETATION TYPE:	Fresh-Moist Poplar Deciduous Forest	FOD8-1
INCLUSION		
COMPLEX		
Notes:		-

Notes:

Table C2. Ecological Land Classification (ELC) data sheets for natural vegetation observed at Clay (High-Ni) Refinery soils.

	SITE: Clay High Refinery
ELC	POLYGON:
PLANT SPECIES	DATE: October 3/01
LIST	SURVEYOR(S): LandSaga Biogeographical

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTORY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

ABUNDANCE CODES: R = RARE		OCCA	SIONA	= ABUNDANT	D	
SPECIES CODE			YER		COLL.	
Denvelue (nemerie) de s	1	2	3	4		
Populus tremuloides	D					
Fraxinus pennsylvanica	R					
Leersia oryzoides				0		
Salix discolor			0			
Onoclea sensibilis				0		ŀ
Lindera benzoin			D			ŀ
Solidago altissima				A		
grass species				A		ŀ
Typha latifolia				0		ł
Quercus rubra				R		
						ł
						ĺ
						ĺ
						ĺ
						ĺ
						İ
						Ì
						İ
						İ
						Ì
						ł
						ł
						ł
	I					ł

SPECIES CODE		LAYER 1 2 3 4			COLL.
	1	2	3	4	
	-				
	_				
	-				
	-				
	-				
	1				
			F	Page	of

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Table D1. Ecological Land Classification (ELC) data sheets for community description and classification of Clay (Medium-Ni) Rae Farm soils.

	SITE:						PO	LYGON:		
		Clay-Medi	um-Ra	ae Farm			Fie	ld #:	Final	#:
COMMUNITY	SURVEY	'OR(S):			DA	TE:			UTME	:
DESCRIPTION &		LandSaga B	ioge			October 2/01				
CLASSIFICATION	START:		END:				UTI	MZ:	UTM	N:
POLYGON DESCRI	PTION									
SYSTEM	SUE	BSTRATE	тс	POGRAPHIC FEATURE		HISTORY		PLANT FORM		COMMUNITY
TERRESTRIAL	ORGAN	IIC	LACU	JSTRINE	NA	TURAL	PL/	NKTON	PON	D LAKE
			RIVE	RINE			SUE	BMERGED	STRE	AM RIVER
WETLAND	MINER	AL SOIL	BOTT	FOMLAND	CU	LTURAL	FLC	DATING- LVD.	SWAN	/IP MARSH
			TERR	ACE			GR	AMINOID	BOG	FEN
AQUATIC	PAREN	Γ MIN.	VALL	EY SLOPE			FO		BARR	
				ELAND				HEN	MEAD	-
	ACIDIC	BEDRK.		UPLAND				YOPHYTE	PRAI	
			CLIFF	-			DE	CIDUOUS	THIC	KET
SITE	BASIC E	BEDRK.	TALU			COVER		NIFEROUS		ANNAH
OPEN WATER			-	/ICE/CAVE	OPE	EN	MIX	ΈD		DLAND
SHALLOW WATER	CARB. E	BEDRK.	ALVA						FORE	
SURFICIAL DEP.			ROCI	KLAND	SH	RUB			PLAN	ITATION
BEDROCK			_	CH/ BAR						
			-	D DUNE	TR	EED				
			BLUF	F						
STAND DESCRIPTI	ON		_							
LAYER	нт	CVR				S IN ORDER OF				
	_		-	(>> M	UCH G	REATER THAN; > G	REAT	ER THAN; = ABOUT	EQUAL	то)
1 CANOPY										
2 SUB-CANOPY	3		Robp	seu>Picalb=Sa	alamy	g=Rhutuph				
3 UNDERSTOREY	2		Soldi	sc>Corstol						
4 GRD. LAYER	5		Solis	pp=Astspp=gra	asspp					
IT CODES:	1=>25 m			3=2 <ht<10 4<="" m="" td=""><td></td><td></td><td></td><td>0.2<ht<0.5 7="H</td" m=""><td>HT<0.2 m</td><td></td></ht<0.5></td></ht<10>				0.2 <ht<0.5 7="H</td" m=""><td>HT<0.2 m</td><td></td></ht<0.5>	HT<0.2 m	
CVR CODES:		1=0% <cvr<< td=""><td>10% 2</td><td>2=10<cvr<25%< td=""><td>3=25<0</td><td>CVR<60% 4=CVR>6</td><td>0%</td><td></td><td></td><td></td></cvr<25%<></td></cvr<<>	10% 2	2=10 <cvr<25%< td=""><td>3=25<0</td><td>CVR<60% 4=CVR>6</td><td>0%</td><td></td><td></td><td></td></cvr<25%<>	3=25<0	CVR<60% 4=CVR>6	0%			
STAND COMPOSITION			mixe	d					BA:	
SIZE CLASS ANALYSIS:			R	< 10 cm	А	10 - 24 cm	R	25 - 50 cm	Ν	> 50 cm
STANDING SNAGS:			N=	< 10 cm	Ν	10 - 24 cm	Ν	25 - 50 cm	Ν	> 50 cm
DEADFALL/LOGS:			N=	< 10 cm	Ν	10 - 24 cm	Ν	25 - 50 cm	Ν	> 50 cm
ABUNDANCE CODES:			N=NO	NE R=RARE O	=OCCA	SIONAL A=ABUNDAN	NT .			
Comm. Age:		PIONEER	X YO	DUNG		MID-AGE		MATURE	O	_D-GROWTH
SOIL ANALYSIS										
EXTURE:			DEPT	TH TO MOTTLES) / GI F	Ϋ́	g =		G =	
MOISTURE:			_	"H OF ORGANIC			19			(cr
HOMOGENEOUS / VAF	RIABLE:			H TO BEDROCK						(cr
COMMUNITY CLAS	SIFICAT	ION								
COMMUNITY CLASS:										
COMMUNITY SERIES:										
ECOSITE:										

Table D2. Ecological Land Classification (ELC) data sheets for natural vegetation observed at Clay (Medium-Ni) Rae Farm soils.

	SITE: Clay Medium Rae Farm
ELC	POLYGON:
PLANT SPECIES	DATE: October 2/01
LIST	SURVEYOR(S): LandSaga Biogeographical

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTORY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

ABUNDANCE CODES: R = RARE			/ER		= ABUNDANT COLL.
	1	2	3	4	COLL.
Robinia pseudoacacia		0			
Rhus typhina		0			
Picea abies		0			
Salix babylonica	R	-			
Salix discolor		0			
Populus deltoides		0			
Solidago altissima				D	
Aster novae-angliae				D	
Solanum dulcamara				R	
Linaria vulgaris				R	
Cornus stolonifera				А	
Euthamia graminifolia				0	
Leersia oryzoides				0	
Penthorum sedoides				R	
Vitis riparia				0	
Phalaris arundinacea				0	
Ace Saccharinum				R	
Lythrum salicaria				0	
Tilia americana	R				
Rhus radicans	R				
Aster puniceus				D	
Solidago canadensis				D	

Image: section of the section of th	SPECIES CODE		LAY	COLL.		
		1	2	3	4	
Image: sector						
Image: Sector of the sector						
Image: Sector of the sector						
					-	
		-				
Image: Sector of the sector						
Image: sector						
Image: Sector of the sector						
Page of				F	Page	of

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Table E1. Ecological Land Classification (ELC) data sheets for community description and classification of Sandy (Background-Ni) MacDonald Property soils.

	SITE:	Sand Baal	aro	und-MacDonald			PC	LYGON:		
		Sanu-Daci	gro				Fie	eld #:	Final	#:
COMMUNITY	SURVEY					TE:			UTME:	
DESCRIPTION &		LandSaga E	lioge			October 3/01				
CLASSIFICATION	START:		EN	D:			UT	MZ:	UTM	N:
POLYGON DESCRIP	TION		_							
SYSTEM	SUE	BSTRATE	T	OPOGRAPHIC FEATURE		HISTORY		PLANT FORM	c	OMMUNITY
TERRESTRIAL	ORGAN	IIC		CUSTRINE	NA	TURAL		ANKTON	PONE	
WETLAND	MINER	AL SOIL	BO	'ERINE TTOMLAND RRACE	си	LTURAL	FL	BMERGED OATING- LVD. RAMINOID	STRE SWAN BOG	
AQUATIC	PAREN	T MIN.	VAL	LEY SLOPE BLELAND			FO	RB CHEN	BARR	EN
	ACIDIC	BEDRK.		LL. UPLAND			BR	YOPHYTE	PRAIF	RIE
SITE	BASIC E	BEDRK.	TAL	LUS		COVER	_	NIFEROUS	SAVA	NNAH
OPEN WATER	1			EVICE/CAVE	OPI		МІ	XED	woo	DLAND
SHALLOW WATER SURFICIAL DEP.	CARB. E	BEDRK.	RO	VAR CKLAND	SH	RUB			FOREST PLANTATION	
BEDROCK				ACH/ BAR ND DUNE JFF	TR	EED				
STAND DESCRIPTIO										
LAYER	НТ	CVR		SPE		S IN ORDER OF	DEC	REASING DOMI	NANCE	
				(>> MU	СН С	REATER THAN; > GI	REAT	ER THAN; = ABOUT	EQUAL	то)
1 CANOPY										
2 SUB-CANOPY	3		Pic	glau=Pinstrob=Po	ptrei	m=Jugnigr				
3 UNDERSTOREY										
4 GRD. LAYER	5		Sol	alti>>Astspp>Eup	mac	u				
HT CODES:	1=>25 m					<2 m 5=0.5 <ht<1 r<="" td=""><td></td><td>=0.2<ht<0.5 7="H</td" m=""><td>IT<0.2 m</td><td></td></ht<0.5></td></ht<1>		=0.2 <ht<0.5 7="H</td" m=""><td>IT<0.2 m</td><td></td></ht<0.5>	IT<0.2 m	
CVR CODES:		1=0% <cvr<< td=""><td>:10%</td><td>2=10<cvr<25% 3="</td"><td>=25<0</td><td>CVR<60% 4=CVR>60</td><td>%</td><td></td><td></td><td></td></cvr<25%></td></cvr<<>	:10%	2=10 <cvr<25% 3="</td"><td>=25<0</td><td>CVR<60% 4=CVR>60</td><td>%</td><td></td><td></td><td></td></cvr<25%>	=25<0	CVR<60% 4=CVR>60	%			
STAND COMPOSITION									BA:	
SIZE CLASS ANALYSIS:			R	< 10 cm	A	10 - 24 cm	Ν	25 - 50 cm	Ν	> 50 cm
STANDING SNAGS:			N=	< 10 cm	Ν	10 - 24 cm	Ν	25 - 50 cm	Ν	> 50 cm
DEADFALL/LOGS:			N=	< 10 cm	Ν	10 - 24 cm	Ν	25 - 50 cm	Ν	> 50 cm
ABUNDANCE CODES:			N=N	IONE R=RARE O=C	CCA	SIONAL A=ABUNDAN	Т		_	
Comm. Age:		PIONEER	X	YOUNG		MID-AGE		MATURE	OI	_D-GROWTH
						~~				
TEXTURE: MOISTURE:				PTH TO MOTTLES / PTH OF ORGANICS:		:Y	g =	-	G =	(cm)
HOMOGENEOUS / VAR	IABLE:			PTH TO BEDROCK:						(cm)
COMMUNITY CLASS		ION								()
COMMUNITY SERIES:										
ECOSITE:										
VEGETATION TYPE:		Mixed plant	ation	tion CUP-2						-2
INCLUSION										
COMPLEX										
Notes:									1	

Notes:

Table E2. Ecological Land Classification (ELC) data sheets for natural vegetation observed atSandy (Background-Ni) MacDonald Property soils.

	SITE: Sand Background MacDonald
ELC	POLYGON:
PLANT SPECIES	DATE: October 2/01
LIST	SURVEYOR(S): LandSaga Biogeographical

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTORY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

SPECIES CODE	-	LA	ŕER		COLL.
	1	2	3	4	
Picea glauca		А			
Pinus strobus		А			
Juglans nigra		А			
Populus deltoides		А			
Eupatorium maculatum				0	
Solidago altissima				D	
Aster novae angliae				0	
Aster puniceus				0	

SPECIES CODE		LA` 2	COLL.		
	1	2	3	4	
	-				
	-				
	-				
	-				
	_				
	-				
					<u> </u>
	_				
	_				
μ	-		F	Page	of
			1	ugo _	0

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Table F1. Ecological Land C	lassification (ELC) data	sheets for community de	escription and
classification of Clay (Backgrou	nd-Ni) Station Road soils	5.	

	SITE: Clav-B	ackground-Stati	on Road	POLYGON:		
		uokground otati		Field #:	Final #:	
COMMUNITY DESCRIPTION &	SURVEYOR(S): LandSa	ga Bioge	DATE: Sept 19/0	01	UTME:	
CLASSIFICATION	START:	END:		UTMZ:	UTMN:	

POLYGON DESCRIPTION

		TOPOGRAPHIC			
SYSTEM	SUBSTRATE	FEATURE	HISTORY	PLANT FORM	COMMUNITY
TERRESTRIAL	ORGANIC	LACUSTRINE	NATURAL	PLANKTON	POND LAKE
		RIVERINE		SUBMERGED	STREAM RIVER
WETLAND	MINERAL SOIL	BOTTOMLAND	CULTURAL	FLOATING- LVD.	SWAMP MARSH
		TERRACE		GRAMINOID	BOG FEN
AQUATIC	PARENT MIN.	VALLEY SLOPE		FORB	BARREN
		TABLELAND		LICHEN	MEADOW
	ACIDIC BEDRK.	ROLL. UPLAND		BRYOPHYTE	PRAIRIE
		CLIFF		DECIDUOUS	THICKET
SITE	BASIC BEDRK.	TALUS	COVER	CONIFEROUS	SAVANNAH
OPEN WATER		CREVICE/CAVE	OPEN	MIXED	WOODLAND
SHALLOW WATER	CARB. BEDRK.	ALVAR			FOREST
SURFICIAL DEP.		ROCKLAND	SHRUB		PLANTATION
BEDROCK		BEACH/ BAR			
		SAND DUNE	TREED		
		BLUFF			

LAYER	нт	CVR	SPECIES IN ORDER OF DECREASING DOMINANCE (>> MUCH GREATER THAN; > GREATER THAN; = ABOUT EQUAL TO)							
1 CANOPY	2		arova=Tilamer=Frasp=Querubr							
2 SUB-CANOPY										
3 UNDERSTOREY	4		Carcaro							
4 GRD. LAYER	6		Germacu>Solrugo							
IT CODES:	1=>25 m	2=10 <ht<25< td=""><td>5 m 3=2<ht<10 4="1<HT<2" 5="0.5<HT<1" 6="0.2<HT<0.5" 7="HT<0.2" m="" m<="" td=""></ht<10></td></ht<25<>	5 m 3=2 <ht<10 4="1<HT<2" 5="0.5<HT<1" 6="0.2<HT<0.5" 7="HT<0.2" m="" m<="" td=""></ht<10>							
VR CODES:	0=NONE	1=0% <cvr<1< td=""><td>0% 2=10<cvr<25% 3="25<CVR<60%" 4="CVR">60%</cvr<25%></td></cvr<1<>	0% 2=10 <cvr<25% 3="25<CVR<60%" 4="CVR">60%</cvr<25%>							
TAND COMPOSITION:			BA:							
SIZE CLASS ANALYSIS:			A < 10 cm A 10 - 24 cm A 25 - 50 cm R > 50 cm							

STANDING SNAGS:		R	< 10 cm	R	10 - 24 cm	A	25 - 50 cm	А	> 50 cm
DEADFALL/LOGS:		A	< 10 cm	0	10 - 24 cm	0	25 - 50 cm	А	> 50 cm
ABUNDANCE CODES:		N=I	NONE R=RARE O=C	CCA	SIONAL A=ABUNDANT				
COMM. AGE:	PIONEER		YOUNG	Х	MID-AGE		MATURE		OLD-GROWTH

SOIL ANALYSIS

TEXTURE:	DEPTH TO MOTTLES / GLEY	g =	G =
MOISTURE:	DEPTH OF ORGANICS:		(cm)
HOMOGENEOUS / VARIABLE:	DEPTH TO BEDROCK:		(cm)

COMMUNITY CLAS	SIFICATION	
COMMUNITY CLASS:		
COMMUNITY SERIES:		
ECOSITE:		
VEGETATION TYPE:	Fresh-Moist Shagbark Hickory Deciduous Forest	FOD9-4
INCLUSION		
COMPLEX		
Mataa		·

Notes:

Table F2. Ecological Land Classification (ELC) data sheets for natural vegetation observed at Clay (Background-Ni) Station Road soils.

	SITE:Clay Background Station Road
ELC	POLYGON:
PLANT SPECIES	DATE: September 19/01
LIST	SURVEYOR(S): LandSaga Biogeographical

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTORY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT

ABUNDANCE CODES: R = RARE	0=	OCCA	SIONA		= ABUNDAN I	
SPECIES CODE		LA`	YER		COLL.	
	1	2	3	4		
Tilia americana	0					
Fraxinus sp	0					
Ostrya virginiana		0				
Fagus grandifolia	R					
Ulmus thomasii		R				
Acer rubrum	А					
Carya ovata	А					
Carpinus caroliniana		0				
Quercus rubrum	0					
Solidago rugosa				0		
Geum sp				А		
Geranium maculatum				А		
Berberis vulgaris			R			
Rhus rhydbergii		0				
Acer saccharum	0					
Prunus virginiana			0			
Onoclea sensibilis				0		
sedges				0		
Betula allegheniensis		R				
Chelone glabra				R		
Iris versicolor				R		
				İ		
				Ī		
				Ī		
				1		
				Î		
				1		
		Ì		1		
					ļ	

SPECIES CODE		LA	ŕer		COLL.
	1	2	3	4	
			I	Page	of

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

Table G1. Ecological Land Classification (ELC) data sheets for community described	iption and
classification of Organic (Background-Ni) Dilts Road soils.	

	of Org	anic (Dac	,Kgit	Juliu-INI) Dii	15 10	Jau 30115.				
	SITE:						PO	LYGON:		
		Organic Ba	rkaroi	ind Dilts Road			Fie	ld #:	Fina	· #·
COMMUNITY	SURVEY	0	skyrot		DAT	Ē.	110	ια <i>π</i> .	UTM	
DESCRIPTION &		LandSaga E	Bioge			C. Dctober 2/01			UTIVI	- .
CLASSIFICATION	START:		END):			UTI	MZ:	UTMN:	
POLYGON DESCRI	PTION									
			Т	OPOGRAPHIC			1		1	
SYSTEM	SUE	STRATE		FEATURE		HISTORY		PLANT FORM		COMMUNITY
TERRESTRIAL	ORGAN	IC	LAC	USTRINE	NAT	URAL	PL/	NKTON	PON	D LAKE
			RIVE	ERINE			SUE	BMERGED	STRE	EAM RIVER
WETLAND	MINER	AL SOIL	вот	TOMLAND	CUL	TURAL	FLC	DATING- LVD.	SWA	MP MARSH
			TER	RACE			GR	AMINOID	BOG	FEN
AQUATIC	PARENT	Γ MIN.	VAL	LEY SLOPE	FORB		RB	BARF	REN	
				BLELAND				HEN	MEA	DOW
	ACIDIC	BEDRK.		L. UPLAND				YOPHYTE	PRAI	-
			CLIF					CIDUOUS	тніс	
SITE	BASIC B	EDBK	TAL			COVER	_	NIFEROUS	_	
OPEN WATER				VICE/CAVE	OPE					DLAND
SHALLOW WATER	CARB. B		ALV			1	IVII/V		FOR	
SURFICIAL DEP.	CAND. D			CKLAND	SHR					
BEDROCK				CH/ BAR	SHP	(OB			FLAI	TATION
DEDROCK					TDE					
			BLU	ID DUNE	TRE	ED				
			BLU	FF						
STAND DESCRIPTI			1							
LAYER	НТ	CVR						REASING DOMII ER THAN; = ABOUT		
1 CANOPY	2		Pop	trem						
2 SUB-CANOPY	3			amer						
3 UNDERSTOREY	4		Cor	stol						
4 GRD. LAYER	5			sp>Allpeti						
HT CODES:	1=>25 m	2=10 <ht<< td=""><td></td><td></td><td>=1<ht<< td=""><td><2 m 5=0.5<ht<1< td=""><td>m 6=</td><td>0.2<ht<0.5 7="H</td" m=""><td>IT<0.2 n</td><td>า</td></ht<0.5></td></ht<1<></td></ht<<></td></ht<<>			=1 <ht<< td=""><td><2 m 5=0.5<ht<1< td=""><td>m 6=</td><td>0.2<ht<0.5 7="H</td" m=""><td>IT<0.2 n</td><td>า</td></ht<0.5></td></ht<1<></td></ht<<>	<2 m 5=0.5 <ht<1< td=""><td>m 6=</td><td>0.2<ht<0.5 7="H</td" m=""><td>IT<0.2 n</td><td>า</td></ht<0.5></td></ht<1<>	m 6=	0.2 <ht<0.5 7="H</td" m=""><td>IT<0.2 n</td><td>า</td></ht<0.5>	IT<0.2 n	า
CVR CODES:	0=NONE	1=0% <cvr<< td=""><td>:10%</td><td>2=10<cvr<25%< td=""><td>3=25<c< td=""><td>VR<60% 4=CVR>6</td><td>0%</td><td></td><td></td><td></td></c<></td></cvr<25%<></td></cvr<<>	:10%	2=10 <cvr<25%< td=""><td>3=25<c< td=""><td>VR<60% 4=CVR>6</td><td>0%</td><td></td><td></td><td></td></c<></td></cvr<25%<>	3=25 <c< td=""><td>VR<60% 4=CVR>6</td><td>0%</td><td></td><td></td><td></td></c<>	VR<60% 4=CVR>6	0%			
STAND COMPOSITION	1:								BA:	
SIZE CLASS ANALYSIS:			Ν	< 10 cm	A	10 - 24 cm	0	25 - 50 cm	N	> 50 cm
STANDING SNAGS:			N=	< 10 cm	N	10 - 24 cm	Ν	25 - 50 cm	Ν	> 50 cm
DEADFALL/LOGS:			R	< 10 cm	R	10 - 24 cm	R	25 - 50 cm	N	> 50 cm
ABUNDANCE CODES:						SIONAL A=ABUNDAN	NT			
COMM. AGE:		PIONEER	Y	OUNG	XI	MID-AGE		MATURE	0	LD-GROWTH
SOIL ANALYSIS										
TEXTURE:				TH TO MOTTLES		Y	g =		G =	
MOISTURE:				TH OF ORGANIC		1	<u>9</u> –		10 -	(cm)
HOMOGENEOUS / VAF	RIABLE:			TH TO BEDROCK						(cm)
COMMUNITY CLAS		ION								(2)
COMMUNITY CLASS:										
COMMUNITY SERIES:										
ECOSITE:										
VEGETATION TYPE:	Fresh-M	loist Poopla	r Deci	duous Forest					FOD	8-1

COMPLEX Notes:

INCLUSION

Table G2. Ecological Land Classification (ELC) data sheets for natural vegetation observed at Organic (Background-Ni) Dilts Road soils.

	SITE: Organic Background Dilts Road
ELC	POLYGON:
PLANT SPECIES	DATE: October 2/01
LIST	SURVEYOR(S):LandSaga Biogeographical

LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTORY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE O = OCCASIONAL A = ABUNDANT D = DOMINANT

ABUNDANCE CODES: R = RARE	0=0	JUUCA	SIUNA		= ABUNDAN I
SPECIES CODE		LA	/ER		COLL.
	1	2	3	4	
Populus tremuloides	D				
Fraxinus americana	R				
Cornus stolonifera	D				
Rubus idaeus			R		
Acer negundo		R			
Impatiens sp.				А	
Bidens cernua				0	
Alliaria petiolata				А	
Aster oolentangiensis				R	
Eichinocistus lobata				R	
Solidago altissima				R	
Polygonum sp				R	
Urtica dioica				R	

SPECIES CODE		LA` 2	COLL.		
	1	2	3	4	
	_				
		1			
	_				
		1			
					of

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices - Biomonitoring

APPENDIX B-3

Statistical Output for glms

ANOVAs and summaries of *glm*s used to assess relationships between soil characteristics and CoC plant: soil ratios.

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices – Biomonitoring

Nickel Plant: Soil Ratio

Analysis of Deviance Table

Gaussian model

Response: asin(sqrt(Ni.Ratio/100))

Terms added sequentially (first to last)						
	Df	Deviance Resid.	Df	Resid. Der	/ F Value	e Pr(F)
NULL			30	0.0747295)	
Soil	2	0.01200387	28	0.0627256	6.44589	0.0088464
Soil.CEC	1	0.02152849	27	0.0411971	3 23.12093	0.0001930
Soil.pH	1	0.00090359	26	0.04029354	4 0.97043	0.3392371
Soil.Fe	1	0.00108288	25	0.0392106	5 1.16298	0.2968380
Soil.Mn	1	0.00270865	24	0.03650203	L 2.90901	0.1074200
Soil:Soil.CEC	2	0.00902243	22	0.0274795	4.84490	0.0226398
Soil:Soil.pH	2	0.00506345	20	0.0224161	3 2.71900	0.0962691
Soil:Soil.Fe	2	0.00221237	18	0.0202037	5 1.18801	0.3303311
Soil:Soil.Mn	2	0.00530575	16	0.0148980	L 2.84910	0.0874116

Summary

Call: glm(formula = asin(sqrt(Ni.Ratio/100)) ~ Soil * Soil.CEC + Soil * Soil.pH + Soil * Soil.Fe + Soil * Soil.Mn, family = gaussian, data = biomonitoring, na.action = na.omit)

Deviance Residuals: Min 1Q Median 3Q Max -0.03197885 -0.01575893 -0.004322009 0.01352295 0.07758002

Coefficients:

Value	Std. Error	t value
5.053721e-001	1.639312e-001	3.08283012
1.321695e-001	1.255709e-001	1.05254925
3.268655e-003	1.470287e-001	0.02223141
-2.840097e-003	1.051052e-003	-2.70214603
-4.866551e-002	2.089058e-002	-2.32954375
1.290548e-005	8.051665e-006	1.60283329
-3.282895e-004	2.772605e-004	-1.18404695
4.884548e-004	3.854499e-004	1.26723288
-1.410112e-003	1.027223e-003	-1.37274202
-2.223299e-002	1.864604e-002	-1.19237047
-5.699378e-003	1.790320e-002	-0.31834407
3.043017e-006	1.652374e-006	1.84160324
1.502872e-005	7.994948e-006	1.87977765
-2.524785e-004	1.233555e-004	-2.04675501
-3.591088e-004	2.679574e-004	-1.34017113
	5.053721e-001 1.321695e-001 3.268655e-003 -2.840097e-003 -4.866551e-002 1.290548e-005 -3.282895e-004 4.884548e-004 -1.410112e-003 -2.223299e-002 -5.699378e-003 3.043017e-006 1.502872e-005 -2.524785e-004	1.290548e-005 8.051665e-006 -3.282895e-004 2.772605e-004 4.884548e-004 3.854499e-004 -1.410112e-003 1.027223e-003

(Dispersion Parameter for Gaussian family taken to be 0.0009311)

Null Deviance: 0.0747295 on 30 degrees of freedom Residual Deviance: 0.014898 on 16 degrees of freedom Number of Fisher Scoring Iterations: 1

Jacques Whitford Limited Ó Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices – Biomonitoring

Copper Plant: Soil Ratio

Analysis of Deviance Table

Gaussian model

Response: asin(sqrt(Cu.Ratio/1000))

Terms added sequentially (first to last)

	Df	Deviance	Resid.	Df	Resid.	Dev	F	Value	Pr(F)	
NULL				30	0.2821	867				
Soil	2	0.0729417		28	0.2092	2450	15.	.75462	0.0001655	
Soil.CEC	1	0.0118787		27	0.1973	663	5.	.13133	0.0377321	
		0.0015682		26	0.1957	981	0.	67745	0.4225650	
Soil.Fe	1	0.0148278		25	0.1809	702	б.	.40531	0.0222465	
Soil.Mn	1	0.0002415		24	0.1807	287	0.	.10433	0.7508774	
Soil:Soil.CEC	2	0.1156483		22	0.0650	805	24.	.97877	0.0000120	
Soil:Soil.pH	2	0.0016832		20	0.0633	973	0.	.36354	0.7008047	
Soil:Soil.Fe	2	0.0125605		18	0.0508	368	2.	.71293	0.0967062	
Soil:Soil.Mn	2	0.0137979		16	0.0370	389	2.	.98020	0.0794031	

Summary

Call: glm(formula = asin(sqrt(Cu.Ratio/1000)) ~ Soil * Soil.CEC + Soil * Soil.pH + Soil * Soil.Fe + Soil * Soil.Mn, family = gaussian, data = biomonitoring, na.action = na.omit)

Deviance Residuals: Min 1Q Median 3Q Max -0.07998333 -0.01600554 0.001268935 0.02121351 0.08095376

Coefficients:

COCTITOTORICO			
	Value	Std. Error	t value
(Intercept)	1.700710e-001	2.584797e-001	0.6579664
Soil1	-3.127955e-001	1.979948e-001	-1.5798164
Soil2	1.117820e-001	2.318285e-001	0.4821755
Soil.CEC	6.153300e-003	1.657255e-003	3.7129480
Soil.pH	7.781179e-003	3.293937e-002	0.2362273
Soil.Fe	-2.049343e-005	1.269552e-005	-1.6142255
Soil.Mn	-1.134634e-004	4.371725e-004	-0.2595391
SoillSoil.CEC	1.214535e-003	6.077609e-004	1.9983763
Soil2Soil.CEC	6.636875e-003	1.619682e-003	4.0976420
SoillSoil.pH	3.790818e-002	2.940028e-002	1.2893815
Soil2Soil.pH	-1.605822e-002	2.822900e-002	-0.5688552
SoillSoil.Fe	5.608608e-006	2.605392e-006	2.1526923
Soil2Soil.Fe	-1.618565e-005	1.260609e-005	-1.2839548
SoillSoil.Mn	-4.724508e-004	1.945017e-004	-2.4290319
Soil2Soil.Mn	-1.604964e-004	4.225039e-004	-0.3798696

(Dispersion Parameter for Gaussian family taken to be 0.0023149)
Null Deviance: 0.2821867 on 30 degrees of freedom
Residual Deviance: 0.0370389 on 16 degrees of freedom
Number of Fisher Scoring Iterations: 1

Jacques Whitford Limited**Ó** Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices – Biomonitoring

Cobalt Plant: Soil Ratio

Analysis of Deviance Table

Gaussian model

Response: asin(sqrt(Co.Ratio/100))

Terms added sequentially (first to last)							
	Df	Deviance Resid.	Df	Resid. Dev	F	Value	Pr(F)
NULL			26	0.06597597			
Soil	2	0.03116465	24	0.03481132	11	.94924	0.0011352
Soil.CEC	1	0.00677812	23	0.02803320	5	.19777	0.0401292
Soil.pH	1	0.00808968	22	0.01994352	б	.20354	0.0270595
Soil.Fe	1	0.00074096	21	0.01920257	0	.56820	0.4644104
Soil.Mn	1	0.00004672	20	0.01915584	0	.03583	0.8527911
Soil:Soil.CEC	2	0.00137766	18	0.01777819	0	.52822	0.6017834
Soil:Soil.pH	2	0.00023228	16	0.01754591	0	.08906	0.9153431
Soil:Soil.Fe	2	0.00059005	14	0.01695586	0	.22624	0.8006033
Soil:Soil.Mn	1	0.0000330	13	0.01695256	0	.00253	0.9606255

Summary

Call: glm(formula = asin(sqrt(Co.Ratio/100)) ~ Soil * Soil.CEC + Soil * Soil.pH + Soil * Soil.Fe + Soil * Soil.Mn, family = gaussian, data = biomonitoring, na.action = na.omit)

Deviance Residuals: Min 10 Median 30 Max -0.0320297 -0.02368638 -2.775558e-017 0.01913472 0.07360268 Coefficients: (1 not defined because of singularities) Value Std. Error t value (Intercept) 4.046597e-001 1.387894e+000 0.29156379 Soill -5.527305e-002 1.486041e-001 -0.37194839 Soil2 -1.467098e-002 1.387310e+000 -0.01057513 Soil.CEC -2.863239e-003 4.656080e-003 -0.61494631 Soil.pH -2.493936e-002 1.719363e-001 -0.14504994 Soil.Fe 1.359586e-006 2.633004e-005 0.05163630 Soil.Mn -6.183776e-005 1.459823e-004 -0.42359752 SoillSoil.CEC 2.930371e-004 4.561521e-004 0.64241090 Soil2Soil.CEC -1.854530e-003 4.633594e-003 -0.40023576 SoillSoil.pH 5.429399e-003 2.206624e-002 0.24605001

SoillSoil.ph5.614028e-0031.720635e-0010.03262765SoillSoil.Fe9.904579e-0071.955465e-0060.50650757SoillSoil.Fe1.777692e-0062.640580e-0050.06732205SoillSoil.Mn-7.347102e-0061.459823e-004-0.05032871SoillSoil.MnNANANA

(Dispersion Parameter for Gaussian family taken to be 0.001304)
Null Deviance: 0.065976 on 26 degrees of freedom
Residual Deviance: 0.0169526 on 13 degrees of freedom
Number of Fisher Scoring Iterations: 1

Jacques Whitford LimitedÓ Inco Limited - Port Colborne CBRA ERA – Crop Studies Volume 1 – Part 5 – Appendices – Biomonitoring