Jacques Whitford

REPORT

1

POTENTIAL CoC IDENTIFICATION USING SOIL CHEMICAL CONCENTRATION DATA IN EXCEEDANCE OF MOE GENERIC GUIDELINES

VALE INCO LIMITED

PORT COLBORNE COMMUNITY BASED RISK ASSESSMENT

10.16

PROJECT NO. ONT34645

REPORT ON

POTENTIAL CoC IDENTIFICATION USING SOIL CHEMICAL CONCENTRATION DATA IN EXCEEDANCE OF MOE GENERIC GUIDELINES

PORT COLBORNE COMMUNITY BASED RISK ASSESSMENT

PORT COLBORNE, ONTARIO

Prepared For

VALE INCO LIMITED

Prepared By

JACQUES WHITFORD LIMITED

7271 Warden Avenue Markham, ON L3R 5X5

JWL Project Nos. ONT34645

March 28, 2008

EXECUTIVE SUMMARY

Jacques Whitford Limited (JWL) was retained by Vale Inco Limited (Inco) to conduct a Community Based Risk Assessment (CBRA) for the City of Port Colborne. The CBRA was undertaken in accordance with a Technical Scope of Work (JWL, 2000) prepared in consultation with a Public Liaison Committee. The Technical Scope of Work (TSOW) required that a number of scientific studies and investigations be undertaken to obtain the community specific information necessary to complete the CBRA. One of these studies was to conduct various investigations for the identification and evaluation of potential chemicals of concern (CoC) based on CBRA Condition Numbers 1, 2 and 3 as outlined in the TSOW.

This report presents the results and findings on chemicals analyzed in soil samples from the Port Colborne area that are present on a community-wide basis at concentrations above the MOE generic effects-based guidelines in accordance with TSOW CoC Condition Number 2. Soils investigations were conducted to evaluate all potential relevant CoCs that may have originated from the Inco refinery, as well as from other historical industrial sources within the affected area, such as the neighbouring former Algoma steel plant.

Findings indicated that the potential CoCs attributed to Inco's historical nickel refinery operations for the CBRA under TSOW CoC Condition No. 2 were nickel, copper, cobalt and arsenic.

Findings also indicated that the potential chemicals that can be attributed to the former steel plant's iron ore operation were iron, beryllium, zinc, arsenic, selenium, lead and cadmium. Of these, only lead, zinc, arsenic and beryllium would constitute as CoCs possibly attributed to the former Algoma steel plant under TSOW Condition 2.

The soil chemistry data suggests that the former steel plant may have been a significant source of lead. However there are other potential sources of lead in Port Colborne soil that can be attributed to non-industrialized sources such as leaded paint, leaded gasoline, and batteries.

ACKNOWLEDGEMENTS

The Port Colborne community is the first to be acknowledged for their cooperation and help. Without them Jacques Whitford Limited (JWL) could not have gathered the data necessary for this study.

The MOE provided their archived 1998 and 1999 soil samples that were used for the analyses of arsenic and selenium. MOE also provided documentation on soil analytical results for the Toronto Lead study program from 1971 to 1991.

St. Lawrence Seaway Authority, the City of Port Colborne and a number of independent home owners allowed JWL to carry out test pitting and soil sampling on their properties.

JWL staff including Doug Dolby, Mahaboob Alam and Kevin Wong and Enpar's soil scientist James Warren executed the field sampling program and collated much of the analytical data.

Philip Analytical provided all of the analysis for the soil samples. JWL staff including Mahaboob Alam, Kevin Wong and Wai Chi Kwan handled the documentation and quality control for the laboratory data and analysis, and report preparation.

Kevin Wong and Luis Vieira provided technical support for data management and drafting.

This report was reviewed by CBRA Project Manager, Eric Veska, Senior Consultant and Bill Stiebel, CBRA Senior Advisor, Principal Consultant.

TABLE OF CONTENTS

			<u>Page</u>
EXE	CUTIVE	E SUMMARY	i
ACK	KNOWLE	EDGEMENTS	ii
1.0	INTRO	DUCTION	1
1.1	STATE	MENT OF OBJECTIVES	1
1.2	REVIE	W OF PREVIOUS MOE INVESTIGATIONS	3
	1.2.1	MOE 1998 AND 1999 Soil Investigations on Open Spaces	
	1.2.2	MOE School Yards and Beaches Investigation	4
	1.2.3	MOE Wood Lots Investigation	4
	1.2.4	MOE Rodney Street Neighbourhood Soils Investigation	5
1.3	INFOR	MATION GAPS FROM MOE INVESTIGATIONS	6
1.4	SCOPE	OF WORK	6
2.0	METHO	DDOLOGY	8
2.1	SITE H	ISTORY AND POTENTIAL SOURCES OF CONTAMINATION	8
2.2	PROTO	COLS	9
2.3	SURFA	ACE SOIL PROGRAM	10
2.4	TEST P	IT PROGRAM	13
	2.4.1	Purpose and Scope of Program	13
	2.4.2	Program Design	13
	2.4.3	Test Pitting Work	13
2.5	LABOR	RATORY PROGRAM	16
	2.5.1	Laboratory Procedure for Inorganic Parameters	16
	2.5.2	Laboratory Procedure for Organic Parameters	17
	2.5.3	Quality Assurance and Quality Control (QA/QC)	17
3.0	RESUL	TS OF COMMUNITY-WIDE SOILS INVESTIGATION	
3.1	JWL SU	JRFACE SOILS INVESTIGATION	
	3.1.1	Organic Parameters	
	3.1.2	Inorganic Parameters - Metals	22
	3.1.3	Inorganic Parameters - Anions	25
3.2	ANALY	SES OF MOE-ARCHIVED SURFACE SOILS	
3.3	QUALI	TY ASSURANCE AND QUALITY CONTROL	
3.4	AREAS	OF IDENTIFIED SOIL CONTAMINATION IN COMMUNITY	26

4.0		TS OF SURFACE AND SUBSURFACE SOILS INVESTIGATION AT ALGOMA AND RESIDENTIAL NEIGHBOURHOOD OF RODNEY	
	STREE		29
4.1	FIELD	OBSERVATIONS OF TEST PITS	29
	4.1.1	Subsurface Conditions at former Steel Plant	29
	4.1.2	Subsurface Conditions in Rodney Street Community	29
	4.1.3	Subsurface Conditions at Inco Property	29
4.2	CHEM	ICAL RESULTS	30
	4.2.1	Former Steel Plant Remnant Slag	30
	4.2.2	Former Steel Plant Remnant Waste Rock and Other Materials	30
	4.2.3	Soil	31
4.3	QUAL	TY CONTROL/QUALITY ASSURANCE	34
	4.3.1	Laboratory QA/QC	34
	4.3.2	Field QA/QC	34
4.4		CHEMICAL CONCENTRATION CONTOURS AROUND FORMER PLANT AND INCO REFINERY	34
4.5		CHEMICAL CONCENTRATION DEPTH PROFILES DOWNWIND OF ER STEEL PLANT AND INCO REFINERY	
4.6		N OF SOIL CHEMICALS FROM ATMOSPHERIC DEPOSITION JS FROM INFILLING	46
5.0	DISCU	SSION	51
5.1	NICKE	L, COPPER, COBALT	51
5.2	IRON		51
5.3	LEAD.		52
5.4	ZINC		52
5.5	ARSEN	VIC	52
5.6	SELEN	IIUM	53
5.7	CADM	IUM	53
5.8	BERYI	LLIUM	53
6.0	CONC	LUSIONS	55
7.0	CLOSU	JRE	56
LIST	OF RE	FERENCES	57

ONT34645

LIST OF TABLES, DRAWINGS AND APPENDICES

LIST OF TABLES

Table 2.1:	Findings of Site Background Historical Review	8
Table 2.2:	Summary of Sample Locations and Analytical Parameters	.12
Table 3.1:	Soil Analytical Results and Comparative Guidelines (Volatile Organic Compounds)	.19
Table 3.2:	Soil Analytical Results and Comparative Guidelines (Polynuclear Aromatic Hydrocarbons)	.21
Table 3.3:	Soil Analytical Results and Comparative Guidelines (Polychlorinated Biphenyls)	.22
Table 3.4:	Soil Analytical Results and Comparative Guidelines (Selected Metal Parameters)	.23
Table 3.5:	Soil Analytical Results (Selected Anions)	.25
Table 4.1:	Data on Slag from Former Steel Plant (Selected Metal Parameters)	.32
Table 4.2:	Data on Waste Rock, Iron Pellets and Iron Shot Balls from Former Steel Plant (Selected Metal Parameters)	.33

LIST OF DRAWINGS

Page

Drawi	ng 1:	Site Locations of JWL January 2001 Soil Investigation	11
Drawi	ng 2:	Site Locations of JWL August 2001 and October 2001 Test Pits and Soil Traverses A-A' and B-B'	14
Drawi	ng 3:	Mapped Exceedances of MOE Table A Generic Guidelines for Meta (Excluding Nickel, Copper and Cobalt) in Soils from Open Spaces in Port Colborne based on JWL and MOE 1998 and 1999 Surface Soil Data (0 to 5 cm)	
Drawi	ng 4:	Soil Nickel Concentration Contours, 0 to 5 cm Depth	35
Drawi	ng 5:	Soil Cobalt Concentration Contours, 0 to 5 cm Depth	36
Drawi	ng 6:	Soil Copper Concentration Contours, 0 to 5 cm Depth	37
Drawi	ng 7:	Soil Iron Concentration Contours, 0 to 5 cm Depth	
Drawi	ng 8:	Soil Lead Concentration Contours, 0 to 5 cm Depth	
Drawi	ng 9:	Soil Zinc Concentration Contours, 0 to 5 cm Depth	40
Drawi	ng 10:	Soil Cadmium Concentration Contours, 0 to 5 cm Depth	41
1	©2008.	Jacques Whitford Limited	ONT34645
	Vale Inc	co Limited, Port Colborne Community Based Risk Assessment	March 28, 2008
	Potentic	al CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic	
	Guidelin	nes	Page v

LIST OF DRAWINGS (continue)

Drawing 11:	Soil Arsenic Concentration Contours, 0 to 5 cm Depth	42
Drawing 12:	Soil Selenium Concentration Contours, 0 to 5 cm Depth	43
Drawing 13:	Soil Chemical Concentration Depth Profiles along Traverses A-A' and B-B': Nickel, Copper and Cobalt	48
Drawing 14:	Soil Chemical Concentration Depth Profiles along Traverses A-A' and B-B': Iron, Lead and Zinc	49
Drawing 15:	Soil Chemical Concentration Depth Profiles along Traverses A-A'	
	and B-B': Arsenic, Cadmium and Selenium	50

LIST OF APPENDICES

Appendix A

MOE-Generated Distribution Maps of Nickel, Cobalt and Copper Concentrations in Surface Soil (0-5 cm) of Port Colborne, Ontario.

Appendix **B**

- B1 Site Background History Review: Eastside of Port Colborne
- **B2** 1876 Regional Topographic Map of Port Colborne.

Appendix C

- C1 JWL's December 18, 2000 protocol (Draft) entitled 'Surface Soil Sampling for Identification of Potential Chemicals of Concern'
- C2 JWL's June, 2001 protocol (Draft) entitled 'Protocol for Nickel and Arsenic Deposition Modelling, Port Colborne Community Based Risk Assessment'
- C3 JWL's June 27, 2001 protocol entitled 'Test Pitting Protocol, Additional CoC Investigation, Inco Boundary and Rodney Street Area'
- C4 JWL's July 9, 2001 protocol (Revised) entitled 'Surface Soil Sampling for Identification of Potential Chemicals of Concern'
- C5 JWL's July 9, 2001 protocol entitled 'Sampling and Analysis: Quality Assurance and Quality Control'

Appendix D

Particle Size Distribution Curves of Selected Soil Samples Taken from JWL January 2001 Soil Investigation

Appendix E

Laboratory Certificates of Chemical Analyses: JWL January 2001 Soil Samples

Appendix F

- F1 Sample Location Map of MOE 1998 and 1999 Archived Soil Samples
- **F2** Table 1: MOE 1998 and 1999 Archived Soil Samples, Soil Analytical Results (Arsenic and Selenium) and Comparative Guidelines
- **F3** Laboratory Certificates of Chemical Analyses (Arsenic and Selenium): MOE 1998 and 1999 Archived Soil Samples

Appendix G

Test Pit Logs: JWL August 2001 Soil Investigation

Appendix H

- H1 Table 1 to Table 18: Soil Analytical Results and Comparative Guidelines
- H2 Laboratory Certificates of Chemical Analyses: JWL August 2001 and October 2001 Soil Samples

Appendix I

Table 1: Soil Analytical Results QA/QC: JWL August 2001 Soil Investigation

Appendix J

Table 1 to Table 4: Soil Analytical Results: Toronto Lead Study By MOE 1971 to 1991

Appendix K

Literature Review on Beryllium Occurrences in Soil

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

1.0 INTRODUCTION

1.1 STATEMENT OF OBJECTIVES

Vale Inco Limited (Inco) operated a nickel refinery in the City of Port Colborne from 1918 to 1984. Nearby, the former Algoma Steel and former Canada Blast Furnace had operated a steel plant that reportedly sintered and smelted iron ore to form pig iron from the early 1910's to 1977, located approximately 500 m southwest and upwind of the Inco refinery. Historical operations at the Inco refinery and the former steel plant released particulate emissions that subsequently resulted in atmospheric deposition of these particulates on Port Colborne soils surrounding the Inco refinery and the former steel plant.

Jacques Whitford Limited (JWL) was retained by Inco to carry out a Community Based Risk Assessment (CBRA) for the City of Port Colborne. The CBRA was undertaken in accordance with a Technical Scope of Work (JWL, 2000) prepared in consultation with a Public Liaison Committee (PLC). The Technical Scope of Work (TSOW) required that a number of scientific studies and investigations be undertaken to obtain the community specific information necessary to complete the CBRA. One of these studies was to conduct various investigations for the identification and evaluation of potential chemicals of concern (CoC) based on CBRA Condition Numbers 1, 2 and 3 as outlined in the TSOW and summarized below.

The definition for a CoC within this CBRA is a chemical found in Port Colborne soils originating from an industrial source(s) where all of the following Conditions are met:

Condition 1) Chemicals that were historically used or generated by the industrial source(s) or its processes, **and**

Condition 2) Chemicals that are present at a community level at concentrations greater than MOE generic effects-based guidelines (Table 'A' Generic Guidelines (MOE, 1997)), **and**

Condition 3) Chemicals whose presence in soil show a scientific linkage to the historical operations of that industrial source(s).

INCO is the proponent of the CBRA. Only chemicals that meet all three of the above stated CBRA COC conditions and had originated from INCO's historical operations were considered COCs for the CBRA.

This report presents the results and findings of various JWL soils investigations in 2000 and 2001, as well as a review of the earlier 1998/1999 soils investigations carried out by the Ontario Ministry of the Environment (MOE), so as to identify and evaluate potential CoCs attributed to Inco and the nearby former Algoma steel plant in accordance with CBRA Condition Number 2.

In 2001, a draft JWL report was released, entitled "*Potential CoC Identification using Soil Chemical Concentration Data in Exceedance of MOE Generic Guidelines*" and dated November 23, 2001. Potential CoCs for the CBRA under Condition No. 2 attributed to Inco's historical Nickel Refinery operations were *Nickel, Copper, Cobalt and Arsenic*. The Ministry of the Environment (MOE) conducted a technical review of this report and other COC-related reports and produced a letter (letter of January 11, 2002 "*Review of JWEL CBRA CoC Reports*") that concurred with the outcome of JWL's findings. At a December 2001 meeting of the Technical Sub-Committee to the Public Liaison Committee of the CBRA, it was decided to leave the CoC issue open ended, that if other additional information in the future becomes available, that it too be examined for CoC identification.

Although lead had not been identified as a CoC in 2001, additional Port Colborne soil lead data that became available to JWL after 2001 to 2003 were evaluated by means of soil mapping and establishing empirical relationships, emission inventories/dispersion modeling and statistical analyses to determine if lead was a CoC in accordance to CBRA CoC Conditions 1, 2 and 3. Lead was not determined a CoC for the CBRA and the details of this determination are found in the JWL report entitled "*Re-Evaluation of Lead as a Chemical of Concern*" dated June 2004 (JWL, 2004).

The report under this cover dated March 2008 represents the finalization of the draft November 23, 2001 report "Potential CoC Identification using Soil Chemical Concentration Data in Exceedance of MOE Generic Guidelines".

Other supporting reports have been prepared on additional CoC studies that relate to emission inventories/dispersion modeling and statistical analyses to address CoC Condition Numbers 1 and 3. These are as follows:

- JWL report entitled "Potential CoC Identification using Emission Inventories and Dispersion Modelling of INCO and ALGOMA Operations" dated March 28, 2008 (JWL, 2008a) and
- JWL report entitled "Potential CoC Identification using Statistical Analyses" dated March 28, 2008 (JWL, 2008b).

1.2 REVIEW OF PREVIOUS MOE INVESTIGATIONS

1.2.1 MOE 1998 AND 1999 Soil Investigations on Open Spaces

The MOE (MOE, 2000a) conducted studies of the Port Colborne area in 1998, in particular around the refinery plant. Soil samples were analyzed for seventeen (17) metals: aluminum, barium, beryllium, calcium, cadmium, cobalt, copper, chromium, iron, magnesium, manganese, molybdenum, nickel, lead, strontium, vanadium, and zinc. Arsenic and selenium were not analyzed. The MOE concluded from their investigation that soil concentrations of nickel, copper and cobalt were elevated above the MOE Table A Generic Guidelines for residential/parkland land use and for medium grained soils as listed in the MOE *Guideline for Use at Contaminated Sites in Ontario*, revised February 1997 (MOE, 1997) and that these three metals should be considered as CoCs.

The levels of nickel in soils reported in 1998 were measured at concentrations of up to 5000 ppm, generally with the highest concentrations closest to the Inco stack, and lower concentrations away from the Inco stack. Soil concentrations of copper and cobalt were measured at up to 350 ppm and 150 ppm, respectively. As with nickel, the concentrations of copper and cobalt were found to be highest near the refinery, and declined further from it. The area with concentrations of nickel, copper and cobalt exceeding the MOE Table A Generic Guidelines (MOE, 1997) as identified from the 1998 data generally occurred in the eastern portion of the City, and agricultural and forested areas to the north and east of the refinery; an area of approximately 19 km².

A more detailed phytotoxicology soils investigation of the Port Colborne area by the MOE in 1999 provided more soil chemical data, including arsenic analyses, to the existing data set. The new data increased the estimated areal extent of MOE Table A Generic Guidelines (MOE, 1997) exceedances for nickel, copper and cobalt from 19 km² to 29 km² (MOE, 2000b). Spatial distributions of these metals in exceedance of these soil guidelines were plotted on maps by the MOE and these are reproduced on drawings found in Appendix A.

As noted above, the analyses of arsenic and selenium by the MOE were not done for each soil sample collected in 1998 and selenium was not analyzed for the 1999 samples. Neither the 1998 nor the 1999 MOE investigations included a full suite of inorganic parameters or organic parameters (eg. PCBs).

1.2.2 MOE School Yards and Beaches Investigation

In April 2000, MOE collected soil samples from a number of school yards and beaches in Port Colborne area. Documentation was provided in MOE report "Results of Soil Sampling in School Yards and Beaches in the Port Colborne Area, April 2000" - Report No. SDB-031-3511-2000 (MOE, 2000c).

A review of this report revealed that soil concentrations of nickel, copper and cobalt exceeded the MOE Table A Generic Guidelines (MOE, 1997) for parkland/residential land uses. Soil concentrations of fourteen other analyzed metals including aluminum, barium, beryllium, cadmium, calcium, chromium, iron, lead, magnesium, manganese, molybdenum, strontium, vanadium and zinc were below the applicable MOE Table A Generic Guidelines (MOE, 1997) for parkland/residential land uses.

1.2.3 MOE Wood Lots Investigation

In October 2000, MOE collected soil samples from five rural woodlots in Port Colborne area. Documentation was provided in MOE report "Soil Contamination in Selected Port Colborne Woodlots: 2000" - Report No. SDB-012-3511-2001 (MOE, 2001a).

The five rural woodlots in this report were identified as Woodlots 1 to 5. Three of the woodlots, Woodlots 1, 2 and 3 were located within 2.5 km of the Refinery in the direction of the prevailing winds (east to northeast of Inco). Woodlot 4 was located at Forks Road East and Green Road, about 11 km northeast of Inco. Woodlot 5 was located at Highway 3 and Bassie Road in Wainfleet, about 5 km west of Inco and thus considered as representative of background conditions.

A review of this MOE woodlot report revealed that nickel, copper and cobalt concentrations in soils exceeded the MOE Table A Generic Guidelines (MOE, 1997) in woodlots downwind of the Inco refinery.

Concentrations of arsenic and selenium in soils from only one localized woodlot (Woodlot 3) exceeded the MOE Table A Generic Guidelines (MOE, 1997) by marginal factors of 1.2 and 1.1 times respectively.

Concentrations of beryllium exceeded the MOE Table A Generic Guideline (MOE, 1997) of 1.2 ppm at 5 (five) sampling locations in Woodlot 3 and at 7 (seven) locations in Woodlot 5 (ie. the background woodlot). The MOE explained the presence of beryllium in soil in all woodlots investigated as being related to natural background or non-anthropogenic.

1.2.4 MOE Rodney Street Neighbourhood Soils Investigation

In November 2000, MOE collected and chemically analyzed soil samples from 179 properties in the Rodney Street neighbourhood and documented their findings in a report entitled "Soil Investigation and Human Health Risk Assessment for the Rodney Street Community: Port Colborne (2001)" (MOE, 2001b) and a subsequent report dated October 2001 (MOE, 2001c).

A review and interpretation of the findings in these reports by JWL revealed two distinct sources of chemicals found in soils from the Rodney Street neighbourhood. Source 1 is from the Inco Refinery that would explain the observed distribution of nickel, copper and cobalt concentrations in soils. Source 2 is from south of Rodney Street, in the vicinity of a former steel blast furnace facility that would explain the arsenic and selenium concentrations in soil. It should be noted that arsenic is one of the more significant chemicals released to the air from the steel industry according to a Canadian Environmental Protection Act (1996) document, *Strategic Options for the Management of Toxic Substances from the Steel Manufacturing Sector*. The former steel furnace facility operated on lands directly south to southwest of Rodney Street from the 1913 to 1977. This steel plant had reportedly smelted iron ore to manufacture pig iron, which was then used to fabricate steel products.

Chemicals other than nickel, copper, cobalt, arsenic and selenium found in exceedance of the MOE Table A Generic Guidelines (MOE, 1997) but not related to either Inco or the former steel plant were lead, cadmium, chromium, barium, zinc and beryllium. (Note that the MOE linked zinc to the Inco refinery (MOE, 2001c), but this relationship is not evident as will be noticed towards the end of this report).

MOE concluded that soil lead contamination in the Rodney Street neighbourhood is typical of older urban residential communities in Ontario (MOE, 2001c). The sources of lead in soil given by the MOE were numerous and were property specific such as paint, pesticide use, storage, maintenance, disposal of vehicles and vehicle parts (particularly lead acid batteries), and historic use of leaded gasoline.

Antimony was in close association with lead and linked to batteries.

Cadmium, chromium, and zinc were found in close association with lead and linked to paint.

Beryllium also was found to be concurrent with high lead. MOE (2001c) concluded that the soil contamination on some properties on the south side of Rodney Street were linked with industrial process waste/fill and the generally elevated soil beryllium concentrations were associated with natural shale deposits and dust/slag from the former steel plant.

1.3 INFORMATION GAPS FROM MOE INVESTIGATIONS

Based on the findings of JWL's review of MOE's previous investigations, there were several information gaps that warranted further data collection and interpretation by JWL to properly identify potential CoCs in accordance with TSOW Condition No. 2.

Gaps found with the MOE 1998 and 1999 surface soil investigations on open spaces were absence of analytical data on arsenic and selenium in the suite of inorganic parameters analyzed and the absence of any data on concentrations of organic parameters such as PCBs, polyaromatic hydrocarbons and volatile organic compounds in soils. Without this information, a proper screening of chemicals could not be done nor could soil chemical patterns for the above mentioned chemicals be mapped to determine their source of origin.

Gaps found with the MOE Rodney Street investigation was that there was no clear evidence of soil chemical data at locations upwind and downwind of the Rodney Street neighbourhood to properly attribute the source of chemicals to either Inco's Refinery or the former steel plant, or both. Further, as a historical review of this area was not done by the MOE, it was not clear whether the chemicals identified by the MOE could have originated from industrial sources other than the Inco Refinery and the former steel plant.

1.4 SCOPE OF WORK

JWL conducted a two part study supplementary to the MOE investigations to obtain sufficient scientific information to identify CoCs as part of Condition No. 2 of the TSOW.

The first study was designed to address data gaps with the MOE 1998 and 1999 surface soil investigations of the entire Port Colborne Community. This involved supplemental work as follows:

- chemical analyses of ten (10) additional surface soil samples (0 to 5 cm depth) in the Port Colborne area in the vicinity of and downwind of the Inco Refinery for an extensive list of inorganic and organic parameters. Locations of surface soil samples to coincide with MOE-identified areas of high concentrations of nickel in soil from previous MOE phytotoxicity studies of the entire community;
- chemical analyses of 149 MOE-archived 1998 and 1999 soil samples (0 to 5 cm depth) for arsenic and selenium; and
- mapping surface soils (0 to 5 cm depth) concentration data for each chemical analyzed that exceed the MOE generic effects-based guidelines (in this case, MOE Table A Generic Guidelines (MOE, 1997)) and determine if there exists any noticeable patterns that link these exceedances on a community wide basis originating back to the Inco Refinery or to some other industrial source. Localized exceedances of a chemical in soil were not considered community wide.

The second study was designed to address data gaps with the MOE Rodney Street investigation and to help determine and assess the source allocation of various CoCs originating from Inco and/or Algoma Steel in the Rodney Street neighbourhood of Port Colborne. This study involved the following supplemental work:

- site background and historical land use review of other potential industrial sources of contamination in the former industrialized area west of Inco that may have contributed to the observed concentrations of chemicals in soil;
- air dispersion modelling to delineate the areal extent of historical particulate loading and fallout deposition that may have resulted from the Inco Refinery and the former steel plant;
- collection of surface and subsurface soil samples of 17 test pits excavated down to one (1) meter at locations on the former steel plant (ie. upwind of the Rodney Street neighbourhood), on the Inco Refinery property (ie. downwind of the Rodney Street neighbourhood), as well as on several residential properties within the Rodney Street neighbourhood. The test pits were located considering the areas predicted by air modelling coinciding with the highest air borne particulate deposition from the Inco refinery and the former steel plant. Chemical analyses of these samples were for the determination of inorganic parameters, including 17 metals and two nonmetallic chemicals, arsenic and selenium;
- collection and analyses of surface soil samples from four (4) additional test pits TPA, TPC, TPD and TPE located in the residential areas north and northwest of the Inco refinery and south of Killaly Street East. Data on the chemical analyses of these samples were used in conjunction with data sets on the above mentioned samples in order to obtain a better understanding of the soil chemical concentration distribution patterns; and
- mapping soils concentration data for each chemical analyzed that exceed the MOE generic effects-based guidelines and determine if there exist any noticeable patterns that link these exceedances back to either the Inco Refinery, the former steel plant or to some other industrial source(s) on a community wide basis. *Localized exceedances of chemical in soil were not considered community wide*.

Based on the above scope of work, potential CoCs will be identified in accordance with the requirements of Condition 2 of the TSOW.

2.0 METHODOLOGY

2.1 SITE HISTORY AND POTENTIAL SOURCES OF CONTAMINATION

JWL conducted a detailed historical background review of an area as defined by Welland Canal to the west, Inco property to the east, Durham Street to the north and the shores of Lake Erie to the south. Details of the site background review findings are provided in Appendix B. Based on the information gathered, the historical review has revealed evidence of industrial operations that may have resulted in potential environmental contamination in various areas as presented in Table 2.1.

Table 2.1 Findings of Site Background Historical Review							
Potential Sources of Contamination	Historical Activity	Contaminants					
Former Steel Plant (Canada Blas Furnace and Algoma Steel)	Historical iron smelting operation activ since 1913 to its closure in 1977. Th plant used coke, iron ore, limestone an iron shop ball as raw materials. Coa stock piles, iron ore and associate industrial activities such as generatio of slag containing spent metals.	from metal smelting operations. Metal					
CN Railway Yard	Historical operation of railway yard along the eastside of Welland Canal since 1860s to 1980s. The activities included, coal yard, grain storage and associated railway operations such as fuel oil storage, railway ties.	Coal dust, petroleum hydrocarbons, arsenic (from railway ties) and other metal associated with railway yard.					
Scrap Yard, Trucking Facilities and other industrial operations along eastside of Welland Cana west of Welland Street.	Historical industrial land use along the eastern part of the CN railway yard since 1930s. The activities include, scrap yard, junk metal stock piles, generation of heavy metal shavings, degreasing operation involved in metal scrapping and salvage, trucking facilities with fuel storage.	Heavy metals, petroleum hydrocarbons from scrap yard operations.					

Table 2.1 Findings of Site Background Historical Review							
Potential Sources of Contamination	Historical Activity	Contaminants					
Gas Stations, Auto Repair Facilities, and Old Residential Dwellings	Historical mixed commercial and residential land uses of area north of Rodney Street, south of Killaly Street, west of Davis Street and east of Welland Street. Majority of the urban areas were developed after 1910s and 1920s, site development, road constructions involved use of fill (slag and spent materials) most likely obtained from the Former Steel Plant. Auto repair facilities and old houses used lead-based gasoline and paints.	Lead, antimony, cadmium, petroleum hydrocarbons from gasoline, paint, batteries and fill materials.					
Inco Nickel Refinery	Historical operation of nickel refinery by Inco from 1917 to 1984. Inco's operation involved refining of nickel, copper and cobalt.	Nickel, copper and cobalt from the historical refinery operations.					

2.2 **PROTOCOLS**

A total of five protocols were developed to undertake this work. These protocols included:

JWL's December 18, 2000 protocol (Draft) entitled 'Surface Soil Sampling for Identification of Potential Chemicals of Concern' as appended in Appendix C.

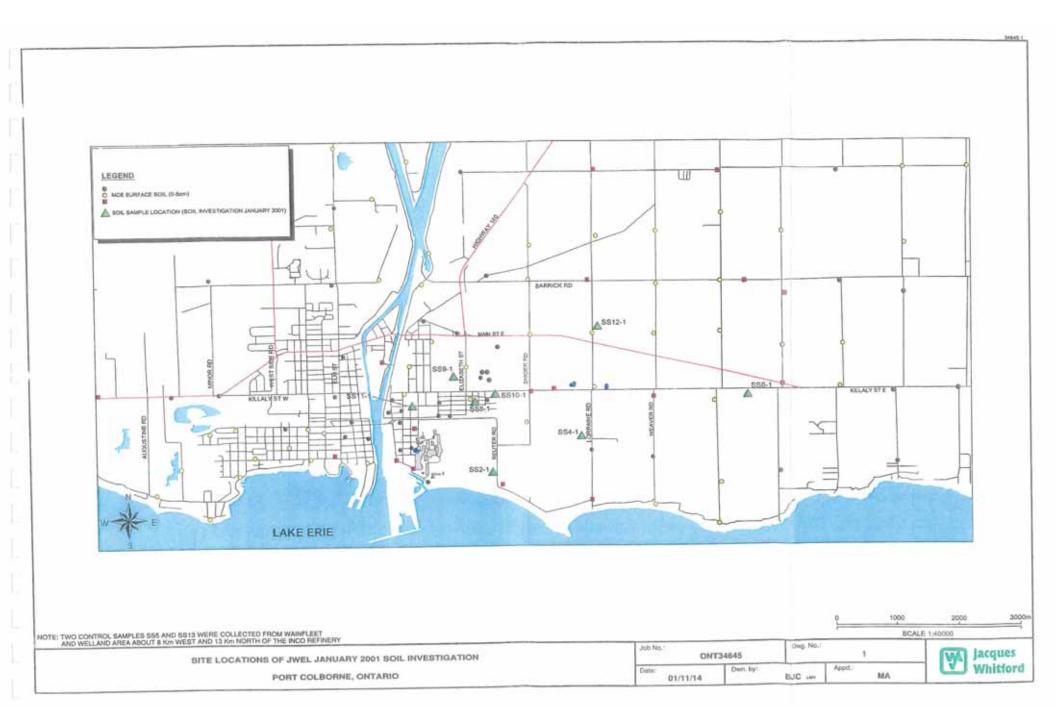
JWL's June 2001 protocol (Draft) entitled 'Protocol for Nickel and Arsenic Deposition Modelling, Port Colborne Community Based Risk Assessment' as appended in Appendix C.

JWL's June 27, 2001 protocol entitled 'Test Pitting Protocol, Additional CoC Investigation, Inco Boundary and Rodney Street Area' as appended in Appendix C.

JWL's July 9, 2001 protocol (Revised) entitled 'Surface Soil Sampling for Identification of Potential Chemicals of Concern' as appended in Appendix C.

JWL's July 9, 2001 protocol entitled 'Sampling and Analysis: Quality Assurance and Quality Control' as appended in Appendix C.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines


Reference to the above protocols are made below in Sections 2.3, 2.4 and 2.5.

2.3 SURFACE SOIL PROGRAM

Site locations of surface soil samples taken by JWL are shown on Drawing 1. Soil samples were collected from the front yards and/or back yards of residential dwellings. *Soil sampling was carried out at eight (8) locations (sites 2, 4, 6 and sites 8 through 12 on Drawing 1) in Port Colborne which coincide with areas of high concentrations of nickel in soil as reported by the MOE (MOE, 2000a and 2000b).* In addition, JWL collected two (2) soil samples from background locations, west (site 5) and north (site 13) of the Welland Canal, in areas with known, low concentrations of measured nickel in soil.

Soil samples at each of these 10 locations were collected from the 0 to 5 cm depth interval. The sampling program was conducted on dates of December 29, 2000, January 04 and 16, 2001 in accordance with JWL's December 18, 2000 protocol (Draft) entitled 'Surface Soil Sampling for Identification of Potential Chemicals of Concern' as appended in Appendix C. Sampling was carried out by JWL staff with a representative from Beak International Inc. (Beak), the environmental consultant for the PLC witnessing the sample collection as well as gathering duplicate samples for chemical analyses as part of third party verification.

All ten (10) soil samples were submitted to Philip Analytical Services Corp. (Philip), a Canadian Association of Environmental Analytical Laboratories (CAEAL) accredited laboratory, for analysis of chemical parameters listed in Table 2.2.

TABLE 2.2

SUMMARY OF SAMPLE LOCATIONS AND ANALYTICAL PARAMETERS

PORT COLBORNE, ONTARIO

Sample Number	Sample Location:	Sample Matrix:	Analytical Parameters:
Soil 2-1	Site # 2	Soil	Metals, Anions
Soil 4-1	Site # 4	Soil	Metals, Anions
Soil 5-1	Site # 5	Soil	Metals, Anions, VOCs, PAHs, PCBs
Soil 6-1	Site # 6	Soil	Metals, Anions
Soil 8-1	Site # 8	Soil	Metals, Anions
Soil 9-1	Site # 9	Soil	Metals, Anions
Soil 10-1	Site # 10	Soil	Metals, Anions, VOCs, PAHs, PCBs
Soil 11-1	Site # 11	Soil	Metals, Anions, VOCs, PAHs, PCBs
Soil 12-1	Site # 12	Soil	Metals, Anions
Soil 13-1	Site # 13	Soil	Metals, Anions
Soil 5B	Site # 5 (Resample Site # 5)	Soil	VOCs
Soil 7B	Site # 7 (Resample Site # 7)	Soil	VOCs
Soil 10B	Site # 10 (Resample Site # 10)	Soil	VOCs
Soil 11B	Site # 11 (Resample Site # 11)	Soil	VOCs

Notes:

Metals - Selected metals and nonmetals including Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Bismuth, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Phosphorous, Selenium, Silver, Sulphur, Titanium, Thallium, Vanadium, Zinc.

Anions- Selected anions including Bromide, Chloride, Fluoride, Nitrate, Nitrite, Orthophosphate, Sulphate.

VOCs - Volatile Organic Compounds

PAHs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyls (total)

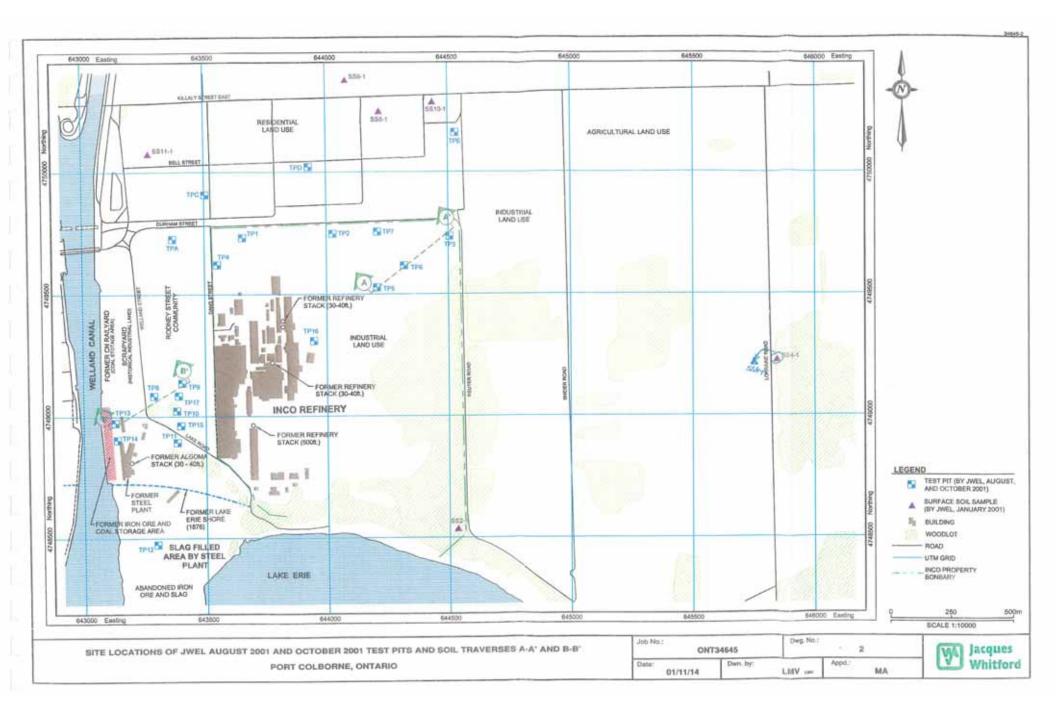
2.4 TEST PIT PROGRAM

2.4.1 Purpose and Scope of Program

JWL undertook a test pit excavation and sampling program to help determine and assess the source allocation of various CoCs from at least two industrial sources that operated adjacent to the Rodney Street community. These sources included (1) Canada Blast Furnace and Algoma Steel (hereinafter referred to as the former steel plant) that operated from 1913 to 1977 and (2) Inco Nickel Refinery which operated from 1918 to 1984.

2.4.2 Program Design

Selection of test pit locations was based on findings from the air dispersion modelling (JWL, 2001) and possible deposition fall out patterns due to emissions from the former steel plant and Inco refinery. The test pits were located to obtain a profile of soil chemicals across the predicted zones of highest atmospheric particulate deposition from historical emissions of the Inco refinery and the former steel plant.


2.4.3 Test Pitting Work

Prior to the test pit excavation, efforts to identify the locations of underground utilities and services were undertaken. Proper health and safety protocols were adhered to during the field investigation program. Permission to excavate on all properties was obtained before work commenced.

A total of seventeen (17) test pits, TP1 to TP17 were excavated from August 15 to August 21, 2001. Test pit locations are shown on Drawing No. 2. Test pits TP1 to TP7 and TP16 were located on Inco property. Test pits TP8 to TP11, TP15 and TP17 were located on properties within the Rodney Street community. Test pits TP12 to TP14 were located on the former steel plant site.

In addition to the above-mentioned 17 test pits, JWL excavated four (4) additional test pits, TPA, TPC, TPD and TPE at locations shown on Drawing No. 2 in the residential areas north and northwest of the Inco refinery and south of Killaly Street East.

The test pits were excavated by Emburgh Backhoe Services of Port Colborne, Ontario using a backhoe. Test pits were excavated to a depth below grade ranging from approximately 0.5 m to 1.1 m with the exception of TP12 which was excavated to a depth of 10 cm only because of refusal due to occurrences of very hard slag.

JWL's June 27, 2001 protocol on soil sampling entitled 'Test Pitting Protocol, Additional CoC Investigation, Inco Boundary and Rodney Street Area' as appended in Appendix C was followed.

Soil samples at each of these test pit locations were collected in the field at 2.5 cm depth intervals to a depth of 30 cm, then every 5 cm interval to a depth of 50 cm and then at 70-75 cm and 95-100 cm depth. Altogether 18 soil samples were collected from each test pit with the exception of TP12. At TP12, soils were collected at 0-2.5 cm, 2.5-5 cm and 5-10 cm depths, for a total of three samples. Sampling was carried out by JWL staff with a representative from Beak to witness the sample collection as well as to gather duplicate samples for chemical analyses as part of third party verification.

All of the collected samples were not immediately submitted to the laboratory for chemical analyses. Instead a phased approach was taken with the first phase involving the analyses of a large number of samples per test pit for a total of five test pits in critical areas downwind of the former steel plant and downwind of the Inco Refinery. These data provided a better understanding of the detailed patterns of the concentration-depth profiles of the chemicals in soils. The second phase involved chemical analyses of soil samples for the remaining test pits, concentrating on the selection and analyses of samples from similar depth intervals shown in the first five test pits to have the highest soil chemical concentrations.

Phase 1 involved the collection of eighteen (18) soil samples per test pit from three (3) test pits along a northeast transect from the former steel plant property (TP13 (on the former steel plant property), TP9 (residential property within Rodney Street neighbourhood), and TP17 residential property within Rodney Street neighbourhood) and two (2) test pits on Inco property along a northeast transect from the former Inco refinery (TP3 and TP5). The chemical analyses were used to determine the vertical concentration profiles of chemicals with depth and the depths as to where the highest concentrations of chemicals can be found.

In Phase 2, a total of seventy four (74) soil samples were analyzed for the remaining test pits including, TP1, TP2, TP4, TP6, TP7, TP8, TP10, TP11, TP14 through TP16. For TP12, soil samples were collected at 0-2.5 cm, 2.5-5 cm and 5-10 cm depth and all three samples were analyzed.

In addition, samples of remnant iron pellets, iron shot balls, slag and iron ore waste rock collected from the southern part of the former steel plant were also submitted for chemical analyses.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

All samples were submitted to Philip Analytical Services Corp. (Philip), a Canadian Association of Environmental Analytical Laboratories (CAEAL) accredited laboratory, for analysis of chemical parameters listed below:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Molybdenum, Nickel, Phosphorous, Selenium, Silver, Titanium, Thallium, Vanadium, Zinc and pH.

2.5 LABORATORY PROGRAM

2.5.1 Laboratory Procedure for Inorganic Parameters

JWL Surface Soil Samples

The ten soil samples collected between December 29, 2000 and January 16, 2001 were first analyzed for inorganic parameters following the original December 2000 protocol without spiked standard reference materials (SRM). Subsequently, archived subsamples of the same ten soil samples were analyzed on July 5, 2001 following the revised protocol of July 9, 2001, this time using SRM. The latter set of analyses was conducted at the request of Beak so that the routine procedure of using SRM for organic analyses could also used done for the inorganic analyses. A discussion follows in Section 3.3 on the differences between data on inorganic parameters obtained using SRM and those without using SRM.

Details of the sample preparation and digestion, instrumentation used, analytical method numbers and method detection limits are provided in JWL's July 9, 2001 protocol entitled 'Sampling and Analysis: Quality Assurance and Quality Control' appended in Appendix C.

MOE Archived (1998 and 1999) Surface Soil Samples

A total of 149 MOE archived surface soil samples collected at depths of 0 to 5 cm depth from the MOE 1998 and 1999 investigations were also sent to Philip for chemical analyses on February 5, 2001. The MOE-archived 149 soil samples included 10 samples from agricultural fields, 20 samples from woodlots and 119 samples from residential properties, boulevards and right of ways. Site locations are shown on Map 1 and 2 in Appendix F. In addition, the MOE provided JWL with ten (10) samples of their inhouse certified reference (not to be confused with authentic SRM).

Sample preparation was not necessary on the archived samples which were already preprocessed and sieved to a less than 355 um size fraction. Samples were digested using aqua regia solution (HNO3/HCL) and the extracts were analyzed using Hydride Generation Atomic Absorption (HGAA) as per JWL's July 9, 2001 protocol entitled 'Sampling and Analysis: Quality Assurance and Quality Control' appended in Appendix C.

The analytical results were reported as mg/kg on dry weight basis.

It should be noted that these 149 MOE archive surface soil samples were not reanalyzed along with the ten JWL surface soil samples using SRM as there was not enough sample mass remaining for the required analyses.

JWL Test Pit Soil Samples

Details of the sample preparation and digestion, instrumentation used, analytical method numbers, method detection limits and QA/QC procedures are provided in JWL's July 9, 2001 protocol entitled 'Sampling and Analysis: Quality Assurance and Quality Control' appended in Appendix C.

2.5.2 Laboratory Procedure for Organic Parameters

For organic analyses, sample preparation on the ten JWL surface soil samples involved extraction of the organic components using different types of organic solvents.

Details of the sample preparation, instrumentation used, analytical method numbers and method detection limits are provided in the laboratory certificates of chemical analyses as appended in Appendix E.

2.5.3 Quality Assurance and Quality Control (QA/QC)

Laboratory QA/QC

Laboratory QA/QC involved laboratory replicate analyses of one (1) surface soil sample for VOCs, one (1) surface soil sample for PCBs, two (2) surface soil samples for metals and 17 testpit soil samples for metals.

In addition to the above-mentioned laboratory replicate analyses, the laboratory analyses also included standard reference material (SRM). For metal analyses, the SRM used by Philip in the re-analyses of ten JWL collected samples was a commercial purchased reference material from Canmet called Lake Sediment (LKsd-3).

Field QA/QC

Seventeen (17) test pit soil field duplicates, one from each test pit were collected during the August 2000 test pitting work. No field surface soil duplicates were collected during the January 2000 soil investigation.

3.0 **RESULTS OF COMMUNITY-WIDE SOILS INVESTIGATION**

3.1 JWL SURFACE SOILS INVESTIGATION

All analytical data were compared to the MOE Table A Generic Guidelines (MOE, 1997) for residential/parkland land use and for medium grained soils as was used by the MOE in their 1998 and 1999 soils investigations (MOE, 2000a,b).

To verify that the medium grained soil texture classification is appropriate for the study area, JWL conducted grain size analyses on randomly selected soil samples representing about 20% of all samples collected during the January 2001 investigation. Grain size distribution curves are provided in Appendix D. Based on the grain size distribution curves, the collected samples contain clay size fractions. According to the MOE Guideline (MOE, 1997), the subject area soil should be considered as medium/fine grained. This confirms with the description for the majority of the soils in the Port Colborne area as clay/silt till deposits as given by the Ministry of Agriculture and Food (OMAF, 1989).

The laboratory analytical results for the submitted soil samples and the comparative MOE Table A Generic Guidelines (MOE, 1997) are summarized in Tables 3.1 to 3.5 and the laboratory certificates are provided in Appendix E. Table 3.1 provides analytical results and comparative MOE Table A Generic Guidelines (MOE, 1997) for VOCs. Tables 3.2 and 3.3 show chemical test results and comparative MOE Table A Generic Guidelines (MOE, 1997) for VOCs. Tables 3.2 and 3.3 show chemical test results and comparative MOE Table A Generic Guidelines (MOE, 1997) for PAHs and PCBs, respectively. Table 3.4 provides soil analytical results and comparative guidelines for selected metal parameters. Table 3.5 shows the test results for inorganic parameters, chloride and sulphate.

A summary of soil chemical results in Tables 3.1 to 3.5 in comparison to the applicable MOE Table A Generic Guidelines (MOE, 1997) is presented below:

3.1.1 Organic Parameters

Concentrations of all 40 VOC species, where measured, complied with the applicable MOE Table A Generic Guidelines (MOE, 1997) for residential/parkland land uses.

Concentrations of all 18 PAH species, where measured, complied with the applicable MOE Table A Generic Guidelines (MOE, 1997) for residential/parkland land uses.

Concentrations of total PCB, where measured, complied with the applicable MOE Table A Generic Guideline (MOE, 1997) for residential/parkland land uses.

TABLE 3.1

SOIL ANALYTICAL RESULTS AND COMPARATIVE CRITERIA

(Samples Collected in January 2001 at 0 to 5 cm Depth)

VOLATILE ORGANIC COMPOUNDS – VOCs

(ug/g or ppm except as noted)

Port Colborne, Ontario

PARAMETER	SOIL 5B	SOIL 7B	SOIL 10B	SOIL 11B	MOE TABLE A CRITERIA ^a
1,1,1-Trichloroethane	< 0.002	< 0.002	< 0.002	< 0.002	34
1,1,2-Trichloroethane	< 0.002	< 0.002	< 0.002	< 0.002	0.28
1,1,1,2-Tetrachloroethane	< 0.002	< 0.002	< 0.002	< 0.002	0.12
1,1,2,2-Tetrachloroethane	< 0.002	< 0.002	< 0.002	< 0.002	0.01
1,1-Dichloroethane	< 0.002	< 0.002	< 0.002	< 0.002	3.0
1,1-Dichloroethene	< 0.002	< 0.002	< 0.002	< 0.002	0.015
1,2-Dibromoethane (Ethylene dibromide)	< 0.002	< 0.002	< 0.002	< 0.002	0.01
1,2-Dichlorobenzene	< 0.002	< 0.002	< 0.002	< 0.002	0.88
1,2-Dichloroethane	< 0.002	< 0.002	< 0.002	< 0.002	0.05
1,2-Dichloropropane	< 0.002	< 0.002	< 0.002	< 0.002	0.12
1,3-Dichlorobenzene	< 0.002	< 0.002	< 0.002	< 0.002	30
1,4-Dichlorobenzene	< 0.002	< 0.002	< 0.002	< 0.002	0.32
Acetone	< 1.0	< 1.0	< 1.0	< 1.0	3.5
Benzene	0.001	< 0.002	0.003	0.003	0.24
Bromodichloromethane	< 0.002	< 0.002	< 0.002	< 0.002	0.12
Bromoform	< 0.002	< 0.002	< 0.002	< 0.002	0.11
Bromomethane	< 0.005	< 0.005	< 0.005	< 0.005	0.38
Carbon Tetrachloride	< 0.002	< 0.002	< 0.002	< 0.002	0.64
Chlorobenzene	< 0.002	< 0.002	< 0.002	< 0.002	2.4
Chloroethane	< 0.005	< 0.005	< 0.005	< 0.005	NV
Chloroform	< 0.002	< 0.002	< 0.002	< 0.002	0.13
Chloromethane	< 0.005	< 0.005	< 0.005	< 0.005	NV
Cis-1,2-Dichloroethene	< 0.002	< 0.002	< 0.002	< 0.002	2.3
Cis-1,3-Dichloropropene	< 0.002	< 0.002	< 0.002	< 0.002	0.04

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

PARAMETER	SOIL 5B	SOIL 7B	SOIL 10B	SOIL 11B	MOE TABLE A CRITERIA ^a
Dibromochloromethane	< 0.002	< 0.002	< 0.002	< 0.002	0.09
Dichloromethane (Methylene Chloride)	< 0.01	< 0.01	< 0.01	< 0.01	1.1
Ethyl Benzene	< 0.002	< 0.002	< 0.002	< 0.002	0.28
2-Hexanone	< 0.025	< 0.025	< 0.025	< 0.025	NV
Methyl-t-Butyl Ether	< 0.002	< 0.002	< 0.002	< 0.002	5.7
Methyl Ethyl Ketone (MEK)	< 0.025	< 0.025	< 0.025	< 0.025	0.27
Methyl Isobutyl Ketone (MIBK)	< 0.025	< 0.025	< 0.025	< 0.025	0.48
Xylenes	0.001	< 0.002	0.004	0.002	25
Styrene	< 0.002	< 0.002	< 0.002	< 0.002	1.7
Tetrachloroethene (Perchloroethylene)	< 0.002	< 0.002	< 0.002	< 0.002	0.45
Toluene	0.002	< 0.002	0.007	0.004	2.1
Trans-1,2-Dichloroethene	< 0.002	< 0.002	< 0.002	< 0.002	4.1
Trans-1,3-Dichloropropene	< 0.002	< 0.002	< 0.002	< 0.002	0.04
Trichloroethene	< 0.1	< 0.1	< 0.1	< 0.1	3.9
Trichlorofluoromethane	< 0.005	< 0.005	< 0.005	< 0.005	NV
Vinyl Chloride	< 0.002	< 0.002	< 0.002	< 0.002	0.0075

Notes:

а

Ontario Ministry of the Environment's *Guideline for Use At Contaminated Sites in Ontario*, February 1997, (Table A) Potable groundwater use at residential/parkland land use with medium and fine textured soils.

NV No criteria value specified.

TABLE 3.2

SOIL ANALYTICAL RESULTS AND COMPARATIVE CRITERIA (Samples Collected in January 2001 at 0 to 5 cm Depth)

POLYNUCLEAR AROMATIC HYDROCARBONS - PAHs

(ug/g or ppm except as noted)

Port Colborne, Ontario

PARAMETER	SOIL 5-1	SOIL 7-1	SOIL 10-1	SOIL 11-1	MOE TABLE A CRITERIAª
1-Methylnaphthalene	< 0.05	< 0.05	< 0.05	< 0.05	1.2
2-Methylnaphthalene	< 0.05	< 0.05	< 0.05	< 0.05	1.2
Acenaphthene	<0.05	< 0.05	< 0.05	< 0.05	15
Acenaphthylene	< 0.05	< 0.05	< 0.05	< 0.05	100
Anthracene	<0.05	< 0.05	0.06	0.05	28
Benzo(a)anthracene	0.12	0.09	0.05	0.20	6.6
Benzo(a)pyrene	0.12	< 0.05	< 0.05	0.18	1.2
Benzo(b)fluoranthene	0.14	0.14	<0.05	0.21	12
Benzo(g,h,i)perylene	0.11	0.08	< 0.05	0.14	40
Benzo(k)fluoranthene	0.13	0.10	< 0.05	0.17	12
Chrysene	0.17	0.16	< 0.05	0.25	12
Dibenzo(a,h)anthracene	< 0.05	< 0.05	< 0.05	< 0.05	1.2
Fluoranthene	0.31	0.25	<0.05	0.34	40
Fluorene	< 0.05	< 0.05	< 0.05	< 0.05	340
Indeno(1,2,3-cd)pyrene	0.12	0.10	<0.05	0.14	12
Naphthalene	<0.05	< 0.05	< 0.05	< 0.05	4.6
Phenanthrene	0.11	0.09	0.07	0.18	40
Pyrene	0.24	0.18	0.06	0.28	250

Notes:

а

Ontario Ministry of the Environment=s (MOE) *Guideline for use at Contaminated Sites in Ontario*(revised February,1997) Table A criteria for residential/parkland land use in a potable groundwater condition with medium and fine textured soils.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

TABLE 3.3

SOIL ANALYTICAL RESULTS AND COMPARATIVE CRITERIA

(Samples Collected in January 2001 at 0 to 5 cm Depth)

POLYCHLORINATED BIPHENYLS - PCBs

(ug/g or ppm except as noted)

Port Colborne, Ontario

PARAMETER	SOIL 5-1	SOIL 7-1	SOIL 10-1	SOIL 11-1	MOE TABLE A
Total PCBs	< 0.05	< 0.05	< 0.05	0.13	5.0

Notes:

a Ontario Ministry of the Environment=s (MOE) *Guideline for use at Contaminated Sites in Ontario* (revised February, 1997) Table A criteria for residential/parkland land use in a potable groundwater condition with medium and fine textured soils.

3.1.2 Inorganic Parameters - Metals

Concentrations of selected metal parameters, where measured, did not exceed the applicable MOE Table A Generic Guidelines (MOE, 1997) with the following exceptions:

Concentrations of lead exceeded the MOE Table A Generic Guideline (MOE, 1997) (200 ppm) in localized areas at sampling location Sites 6 and 11 by factors of 1.1 and 1.3 times respectively. It should be noted that Site 6 is located about 4.2 km northeast of the Inco Refinery and Site 11 is located about 1.1 km north of the Inco Refinery.

Concentrations of nickel exceeded the MOE Table A Generic Guideline (MOE, 1997) of 200 ppm at sampling location Sites 2, 4, 6, 11 and 12 by factors of 1.4, 3.9, 1.6, 3.4 and 2.5 times respectively.

TABLE 3.4 SOIL ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES (Samples Collected in January 2001 at 0 to 5 cm Depth) (Selected Metal Parameters) (mg/kg or ppm except as noted) Port Colborne, Ontario

Parameter	SOIL 2-1	SOIL 4-1	SOIL 5-1	SOIL 6-1	SOIL 8-1	MOE TABLE A
						CRITERIA ^a
Mercury	0.05 (0.07)	0.09 (0.07)	0.06 (0.05)	0.09 (0.09)	0.04 (0.04)	10
Antimony	<0.2 (0.2)	0.2 (<0.2)	<0.2 (<0.2)	<0.2 (<0.2)	0.3 (<0.2)	13
Arsenic	4.4 (6.5)	7.1 (6.6)	7.5 (2.8)	0.5 (4.3)	8.6 (8.3)	25
Bismuth	<0.2 (<0.2)	0.4 (<0.2)	<0.2 (<0.2)	<0.2 (<0.2)	<0.2 (<0.2)	NV
Selenium	0.5 (0.9)	1.5 (1.2)	0.3 (0.3)	0.8 (1.1)	0.4 (0.5)	10
Aluminum	5190 (7480)	16900	10600	4760 (6540)	12900	NV
Barium	46 (59.1)	133 (117)	75 (71.5)	57 (72.8)	69 (64.4)	1000
Beryllium	0.2 (0.4)	0.8 (0.8)	0.5 (0.7)	<0.2 (0.3)	0.5 (0.6)	1.2
Boron	<0.2 (0.6)	0.8 (1.9)	0.2 (0.5)	0.3 (1.0)	<0.2 (0.2)	1.5
Cadmium	< 0.5 (0.5)	0.9 (0.6)	0.6 (0.4)	<0.5 (0.4)	<0.5 (0.4)	12
Chromium	10 (12)	23 (19.6)	16 (15.7)	8.0 (10.1)	19 (18.8)	1000
Cobalt	8.0 (11.2)	23 (17.8)	7.0 (5.9)	8.0 (11.1)	9.0 (9.1)	50
Copper	44 (57.8)	105 (86.7)	25 (21.2)	44 (57.9)	37 (35.2)	300
Iron	11900	19400	12500	8170 (11800)	16900	NV
Lead	26 (37.3)	32 (32.5)	19 (17.2)	222 (304)	29 (31.9)	200
Manganese	286 (378)	221 (194)	235 (227)	145 (182)	422 (374)	NV
Molybdenum	<3.0 (<3.0)	<3.0 (<3.0)	<3.0 (<3.0)	<3.0 (<3.0)	<3.0 (<3.0)	40
Nickel	289 (428)	778 (693)	27 (20.2)	321 (470)	185 (189)	200
Phosphorous	1060 (1230)	917 (805)	913 (841)	777 (1030)	1200 (964)	NV
Silver	<1.0 (<0.8)	<1.0 (<0.8)	<1.0 (<0.8)	<1.0 (<0.8)	<1.0 (<0.8)	25
Titanium	140 (154)	35 (5.9)	77 (27.9)	90 (93.1)	90 (23.4)	NV
Vanadium	20 (30.3)	30 (25.4)	23 (22.1)	13 (20.1)	26 (24.2)	250
Zinc	71 (90.2)	125 (111)	63 (57.7)	98 (125)	64 (63.6)	800
Sulphur	600 (640)	880 (600)	760 (640)	420 (600)	760 (480)	NV
PH (Unitless)	6.65 (NA)	6.00 (NA)	6.94 (NA)	7.14 (NA)	6.63 (NA)	5-9 (Unitless)

Notes: a

NV

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

Bold

Exceeds Table A Guideline Value

The result in the parenthesis indicates analytical resulted conducted in January 2001 without matrix spike.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

TABLE 3.4 (Continued) SOIL ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES (Samples Collected in January 2001 at 0 to 5 cm Depth) (Selected Metal Parameters) (mg/kg or ppm except as noted) Port Colborne, Ontario

Parameter	SOIL 9-1	SOIL 10-1	SOIL 11-1	SOIL 12-1	SOIL 13-1	MOE TABLE A CRITERIA ^a
Mercury	0.04 (0.03)	0.06 (0.04)	0.11 (0.11)	0.06 (0.05)	0.04 (0.04)	10
Antimony	<0.2 (<0.2)	0.2 (<0.2)	3.6 (2.1)	0.2 (0.2)	<0.2 (2.1)	13
Arsenic	3.2 (2.9)	2.8 (3.1)	8.7 (9.3)	5.1 (4.8)	2.4 (2.1)	25
Bismuth	<0.2 (<0.2)	<0.2 (<0.2)	0.3 (<0.2)	0.2 (<0.2)	<0.2 (<0.2)	NV
Selenium	0.3 (<0.2)	0.2 (0.3)	1.1 (1.3)	0.8 (0.7)	0.2 (<0.2)	10
Aluminum	12800 (12500)	8700 (10300)	7420 (10600)	14500 (14100)	9700 (8920)	NV
Barium	69 (60.3)	82 (89.2)	127 (184)	107 (98.2)	41 (37.6)	1000
Beryllium	0.5 (0.5)	0.3 (0.5)	0.3 (0.6)	0.6 (0.7)	0.6 (0.3)	1.2
Boron	<0.2 (0.2)	<0.2 (0.3)	0.3 (0.4)	0.3 (0.5)	0.2 (0.3)	1.5
Cadmium	<0.5 (<0.3)	<0.5 (0.3)	0.7 (1.0)	<0.5 (0.3)	<0.5 (<0.3)	12
Chromium	16 (15)	16 (14.9)	36 (119)	21 (16.6)	13 (11.5)	1000
Cobalt	8.0 (7.7)	8.0 (9.4)	19 (26.1)	19 (20.5)	4.0 (3.1)	50
Copper	27 (24.4)	43 (44.5)	106 (124)	70 (72)	11 (10.7)	300
Iron	18300 (15600)	13300 (15100)	14000 (19000)	25100 (23100)	11100 (10700)	NV
Lead	21 (20.3)	16 (22.2)	256 (810)	34 (34)	13 (13.4)	200
Manganese	287 (268)	388 (438)	310 (407)	440 (437)	166 (169)	NV
Molybdenum	<3.0 (<3.0)	<3.0 (<3.0)	<3.0 (6.7)	<3.0 (<3.0)	<3.0 (<3.0)	40
Nickel	120 (119)	102 (122)	674 (850)	493 (470)	15 (11.9)	200
Phosphorous	909 (856)	1660 (1530)	1080 (1160)	1260 (1170)	736 (753)	NV
Silver	<1.0 (<0.8)	<1.0 (<0.8)	<1.0 (<0.8)	<1.0 (<0.8)	<1.0 (<0.8)	25
Titanium	106 (66.5)	81 (45.5)	103 (111)	99 (25)	42 (14.4)	NV
Vanadium	26 (23.1)	19 (20.1)	19 (25.2)	30 (26.2)	20 (16)	250
Zinc	59 (66.4)	75 (81.7)	307 (536)	99 (94.6)	45 (37.3)	800
Sulphur	480 (400)	800 (400)	760 (680)	800 (680)	600 (530)	NV
PH (Units)	7.18 (NA)	7.04 (NA)	7.52 (NA)	6.84 (NA)	7.04 (NA)	5-9 (Units)

<u>Notes</u>: a

Ministry of Environment's *Guideline For Use At Contaminated Sites in Ontario*, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils.

NV No Value

Bold Exceeds Table A Guideline Value

The result in the parenthesis indicates analytical resulted conducted in January 2001 without matrix spike.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

3.1.3 Inorganic Parameters - Anions

Concentrations of inorganic parameters such as chloride and sulphate ranged from 8.7 ppm to 216 ppm and from 20 ppm to 423 ppm respectively. A review of these concentrations plotted on a sample location map indicates that the higher concentrations of chlorides and sulphates are associated with the urban areas suggesting input from winter road salting activities. There are no MOE Table A Generic Guidelines (MOE, 1997) for either chloride or sulphate in soils.

TABLE 3.5

SOIL ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES

(Samples Collected in January 2001 at 0 to 5 cm Depth)

(Selected Anions)

(mg/kg or ppm except as noted)

Parameter	SOIL 2-1	SOIL 4-1	SOIL 5-1	SOIL 6-1	SOIL 8-1	MOE TABLE A CRITERIA ^a
Chloride	9.5	14.8	20.8	11.5	24	NV
Sulphate	20.2	23	14.1	11.5	29.2	NV

Port Colborne, Ontario

Parameter	SOIL 9-1	SOIL 10-1	SOIL 11-1	SOIL 12-1	SOIL 13-1	MOE TABLE A CRITERIA ^a
Chloride	4.0	42.9	56.2	116	80.5	NV
Sulphate	7.6	16.7	46.8	69.3	10.5	NV

Notes:

а

- Ministry of Environment's *Guideline For Use At Contaminated Sites in Ontario*, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils.

NV No Value

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

3.2 ANALYSES OF MOE-ARCHIVED SURFACE SOILS

The laboratory analytical results for the submitted 149 MOE archived soil samples together with respective land use and the comparative MOE Table A Generic Guidelines (MOE, 1997) are summarized in Table 1 provided in Appendix F. The laboratory certificates are provided in Appendix F. MOE Table A Generic Guidelines (MOE, 1997) for soils of residential land use is 25 ppm for arsenic and 10 ppm for selenium. MOE Table A Generic Guideline (MOE, 1997) for soils of agricultural land use is 2 ppm for selenium.

Based on the chemical test results, concentrations of arsenic and selenium, where measured, did not exceed the comparative MOE Table A Generic Guidelines (MOE, 1997) for properties sampled on either residential/parkland or agricultural lands.

3.3 QUALITY ASSURANCE AND QUALITY CONTROL

Laboratory QA/QC

To assure the QA/QC, Philip also analyzed matrix spiked samples and a process blank for each batch of samples. The QA/QC page of the Laboratory Certificate of Analyses (Appendix E) contains matrix spiked samples ID, process blank, process % recovery, matrix spike recovery information and statement regarding overall acceptability of the QC program. The certificate of analysis also includes statement regarding analysis performed, methodology, method number and instrument used in the analysis. In addition, the laboratory certificates also include information regarding any re-digestion required because of sample concentrations and respective, matrix spike and recovery data.

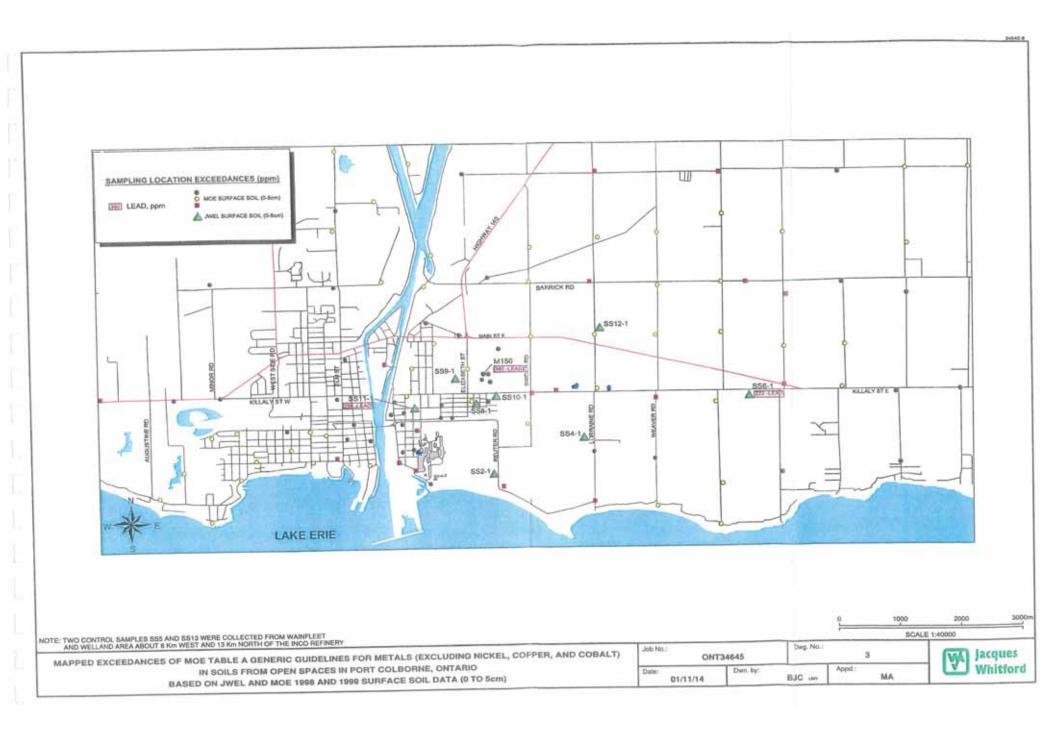
For metal analyses, the acceptable laboratory variation is 30% of the matrix spike (SRM).

Based on the chemical test results as shown in Table 3.4, no apparent significant differences were observed in data with samples without SRM and those with SRM.

No significant variations were noted amongst the analytes between one original sample and its replicate sample (SS2-1). The replicate sample was within the typical laboratory variance of 30 percent.

3.4 AREAS OF IDENTIFIED SOIL CONTAMINATION IN COMMUNITY

On a community wide basis in Port Colborne, nickel, copper and cobalt were found to be the most prevalent chemicals in soil with concentrations greater than the MOE Table A Guideline criteria in areas east of the Welland Canal, based on evidence provided from the compilation of the JWL surface soils data and the MOE surface soils data (including both the original 1998 and the 1999 data sets (MOE, 2000a,b) and the additional data set from analyses of the archived samples). Soil concentration distribution maps for nickel, copper and cobalt are shown in Appendix A.



Lead was found to be present in soils in several localized areas at concentrations marginally above the MOE Table A Generic Guidelines (MOE, 1997). Localized exceedances of lead concentrations in soil were found at two JWL locations and also at one MOE location, representing only 3 exceedances out of 233 sample points analyzed in Port Colborne. Drawing 3 shows these three localized areas of lead concentration in soil exceeding the respective MOE Table A Generic Guidelines (MOE, 1997).

No exceedances of organic parameters, such as PCBs, volatile organic compounds or polyaromatic hydrocarbons were found above the MOE Table A Generic Guidelines (MOE, 1997).

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

4.0 RESULTS OF SURFACE AND SUBSURFACE SOILS INVESTIGATION AT INCO, ALGOMA AND RESIDENTIAL NEIGHBOURHOOD OF RODNEY STREET

4.1 FIELD OBSERVATIONS OF TEST PITS

Subsurface conditions were logged at the time of excavation. The test pit logs are appended in Appendix G. The following observations were made during test pit excavation:

4.1.1 Subsurface Conditions at former Steel Plant

As shown in Appendix G, TP12 showed occurrences of very hard slag.

At TP13 and TP14, fill was encountered to a depth of 1.0 m below grade. The fill comprised of waste rock fragments, slag, coal pieces and even deposits of iron pellets and iron shot balls abandoned from the former steel plant operation.

4.1.2 Subsurface Conditions in Rodney Street Community

At TP8, TP9, TP10 and TP17, about 0.06 m (TP8) to 0.10 m (TP10 and TP17) of topsoil was encountered overlying fill materials. The fill thickness in this area ranged from 0.12 m (TP17) to 0.37 m (TP9).

Pieces of slag and brick fragments were encountered in the fill.

At TP8 and TP17, about 0.69 m and 0.18 m of peat deposit was encountered underlying the fill.

In TP9, TP10 and TP17, native beach sand deposit was encountered underlying fill and organic deposits indicating near shore deposits with low-lying peat bogs.

4.1.3 Subsurface Conditions at Inco Property

Test pits located along the northeastern part of the Inco refinery (TP2 and TP7) and those along TP5 and TP6 encountered 0.12 to 0.18 m of topsoil overlying native clay deposit.

At TP3, about 0.09 m of reworked clay with organics and rootlets from previous ploughing was encountered beneath the topsoil overlying native clay deposit. The presence of reworked native clay at TP3 is indicative of past agricultural/tilling activities in the northeast corner of Inco property.

At TP1, about 0.47 m of fill was encountered overlying buried topsoil (about 0.05 m) and native clay deposit (0.45 m thick) over limestone bedrock at a depth of 0.95 m below grade.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

At TP4, excavated along the right of way of Davis Street and Louis Street intersection, 0.51 m of fill was encountered.

At TP16, one (1.0) meter of industrial fill material was encountered suggesting the area to be part of the former Inco landfill area.

It is apparent from the above soil descriptions that fill material containing pieces of slag was found only in the Rodney Street neighbourhood and the former steel plant property. No fill material was placed northeast of the Inco Refinery beyond their landfill area (ie., northeast of testpit TP16).

4.2 CHEMICAL RESULTS

The following sub-sections describe the chemical results on the collected samples of remnant slag, iron ore waste rock, iron pellets and iron shot balls from the test pits on the former steel plant property, and of soil samples from all of the 17 test pits.

4.2.1 Former Steel Plant Remnant Slag

Table 4.1 show chemical data on slag collected from test pit TP12 excavated in the southern part of the former steel plant.

As shown in Table 4.1, the slag contains relatively high concentration of beryllium exceeding the MOE Table A generic guideline by 5 to 6 times respectively. This confirms part of the MOE data interpretation of their Rodney Street investigation (MOE, 2001c) in that the measured exceedances of beryllium in soil were related to imported fill material containing slag from the former steel plant.

It should also be noted in Table 4.1 that selenium concentrations ranged from 7.5 to 9.1 ppm (MOE Table A guideline for selenium is 10 ppm) and that the pH levels are high varying from 9.0 to 10.5 exceeding the MOE upper limit for soils at pH 9.0.

4.2.2 Former Steel Plant Remnant Waste Rock and Other Materials

Table 4.2 show chemical test data for material samples such as the abandoned iron ore waste rock, iron pellets and iron shot balls collected from test pit TP14. As shown in Table 4.2, the iron pellets and waste rock contain high concentrations of iron (25% and 41%). In addition, the waste rock contains 24 and 29.9 ppm of arsenic and 0.9 and 1.6 ppm of beryllium. The MOE Table A Generic Guidelines for arsenic in soil is 25 ppm and beryllium in soil is 1.2 ppm.

It is apparent from the chemical test results that the waste rock generated from the iron ore used by former steel plant had concentrations of arsenic and beryllium that exceed the present day MOE Table A Generic Guidelines.

4.2.3 Soil

The surface and subsurface soil chemical results for test pits TP1 through TP17 were tabulated and provided in Appendix H together with laboratory certificates of chemical analyses. The chemical results for surficial soil samples taken from test pits TPA, TPC, TPD and TPE were tabulated and provided in Table 18 of Appendix H together with the laboratory certificates of chemical analyses. The results have been mapped and the findings are discussed in Sections 4.4 to 4.6.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

TABLE 4.1DATA ON SLAG FROM FORMER STEEL PLANT

Samples Collected in August 2001

(Selected Metal Parameters)

(mg/kg or ppm except as noted)

Parameter	TP12 (0 to 2.5 cm depth)	TP12 (2.5 to 5 cm depth)	TP12 (5 to 10 cm depth)	MOE TABLE A CRITERIA ^a
Antimony	0.9	0.3	0.2	13
Arsenic	15.2	5.9	4.9	25
Selenium	7.5	9.1	9.1	10
Aluminum	42100	41200	36600	NV
Barium	691	201	160	1000
Beryllium	6.1	7.5	7.4	1.2
Cadmium	1.6	1.0	1.0	12
Chromium	39	23	21	1000
Cobalt	7.0	3.0	<2.0	50
Copper	73	27	20	300
Iron	73100	30300	18300	NV
Lead	11	<5.0	<5.0	200
Manganese	3980	3480	2960	NV
Molybdenum	6.0	<3.0	<3.0	40
Nickel	77	33	22	200
Phosphorous	804	271	226	NV
Silver	<1.0	1.0	2.0	25
Titanium	885	864	841	NV
Vanadium	13	7.0	6.0	250
Zinc	153	42	21	800
PH (Unitless)	9.0	10.3	10.5	5-9 (Unitless)

Notes:

a -Ministry of Environment's *Guideline For Use At Contaminated Sites in Ontario*, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils.

NV No Value

Bold Exceeds Table A Guideline Value

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

TABLE 4.2

DATA ON REMNANT MATERIALS FROM FORMER STEEL PLANT

Samples Collected in August 2001

(Selected Metal Parameters)

(mg/kg or ppm except as noted)								
Parameter	Iron Shot Balls	Iron Pellets	Waste Rock	Waste Rock	MOE TABLE A			
Antimony	1.5	N/A	N/A	0.9	13			
Arsenic	2.7	12.9	29.9	24	25			
Selenium	<0.2	<0.2	1.0	1.1	10			
Aluminum	786	1200	10800	8000	NV			
Barium	7.0	8.0	84	71	1000			
Beryllium	<0.2	<0.2	1.6	0.9	1.2			
Cadmium	0.7	<0.5	<0.5	3.4	12			
Chromium	24	87	48	15	1000			
Cobalt	<2.0	<2.0	<2.0	<2.0	50			
Copper	14	10	22	24	300			
Iron	108000	254000	412000	313000	NV			
Lead	<5.0	<5.0	<5.0	<5.0	200			
Manganese	188	1090	1820	1920	NV			
Molybdenum	<3.0	8.0	9.0	5.0	40			
Nickel	32	32	31	34	200			
Phosphorous	147	226	338	457	NV			
1	<1.0	<1.0	<1.0	<1.0	25			
Silver	82	223	241	385	25 NV			
Titanium								
Vanadium	9.0	15	26	22	250			
Zinc	29	14	<5.0	9.0	800			
PH (Unitless)	8.63	8.84	9.65	7.83	5-9 (Unitless)			

(mg/kg or ppm except as noted)

Notes:

a -Ministry of Environment's *Guideline For Use At Contaminated Sites in Ontario*, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils.

NV No Value

Bold Exceeds Table A Guideline Value

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

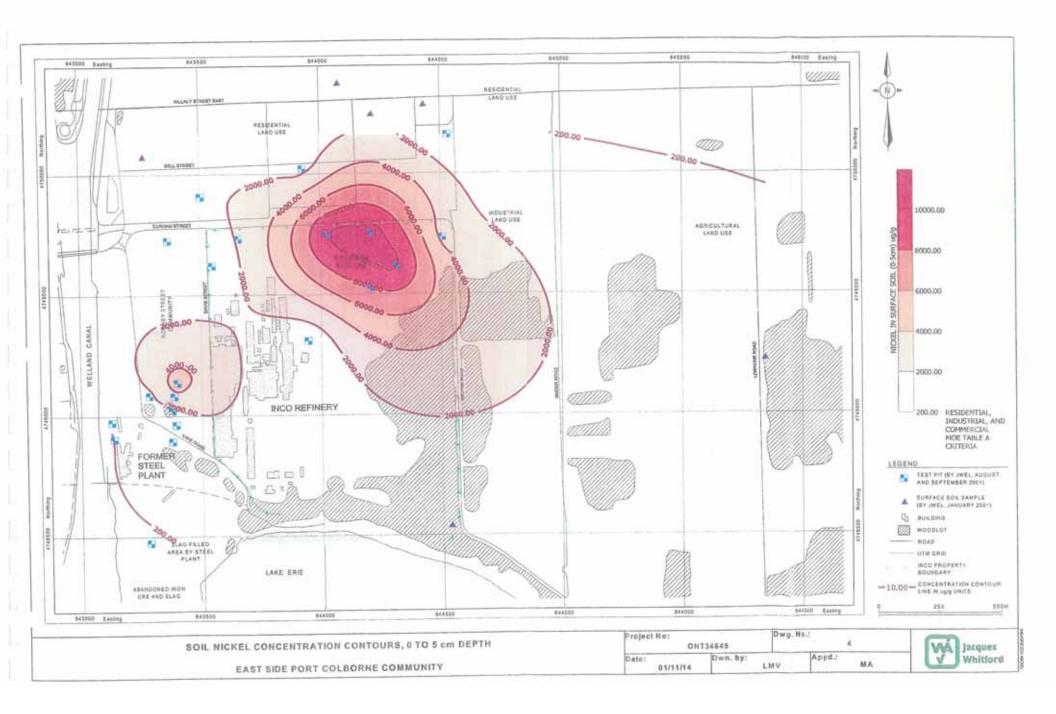
4.3 QUALITY CONTROL/QUALITY ASSURANCE

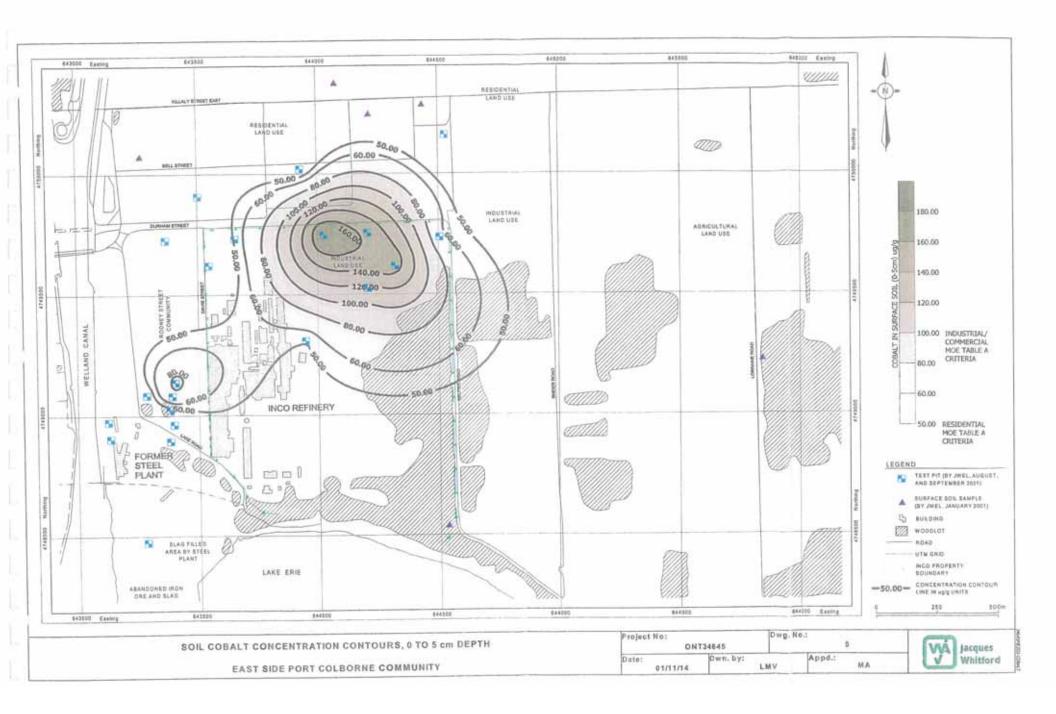
4.3.1 Laboratory QA/QC

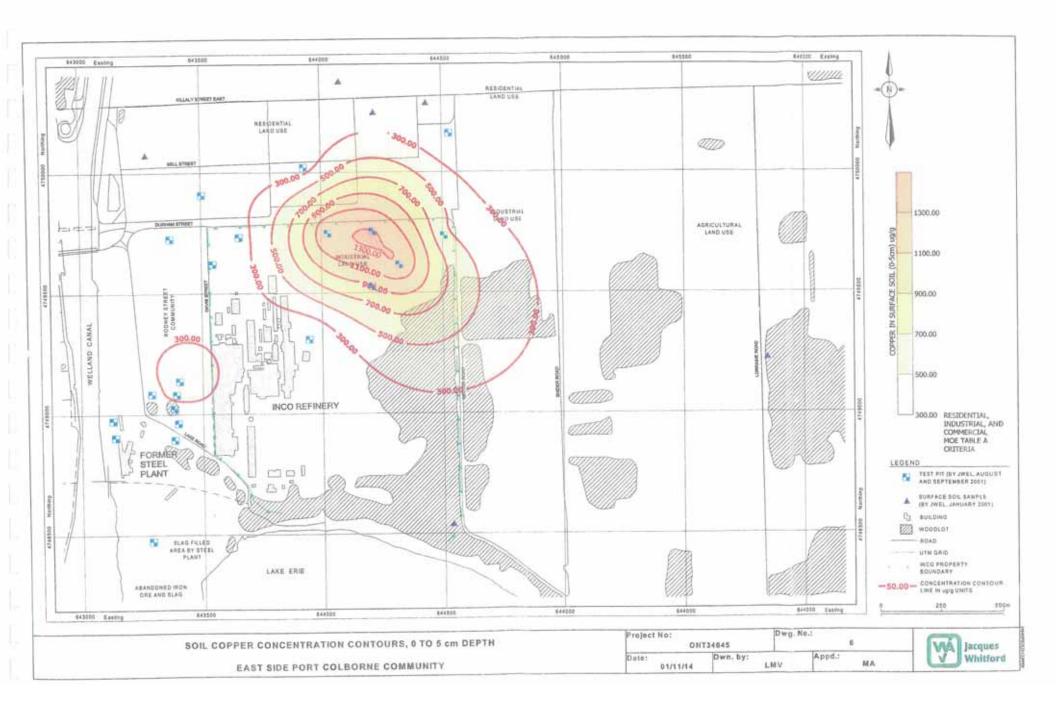
The QA/QC page of the Laboratory Certificate of Analyses (Appendix H) contains matrix spiked samples ID, process blank, process % recovery, matrix spike recovery information and statement regarding overall acceptability of the QC program. For metal analyses, the acceptable laboratory variation is 30% of the matrix spike (SRM).

4.3.2 Field QA/QC

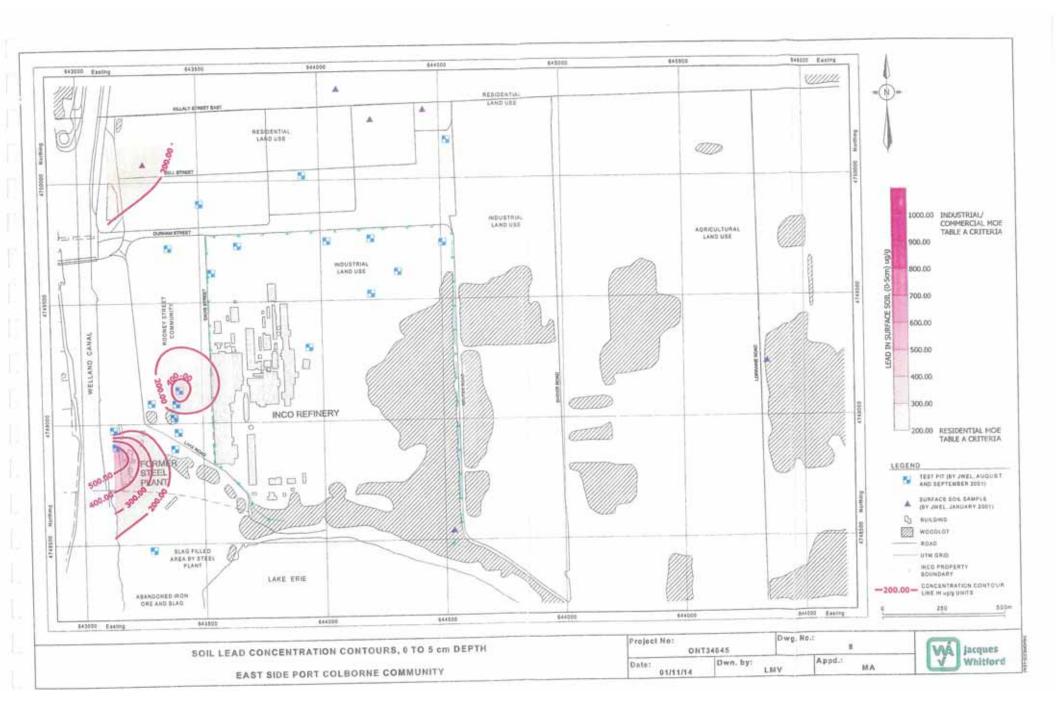
Percentage differences were calculated on chemical data of the seventeen (17) soil samples between original samples and duplicate samples according to the equation given in JWL's July 9, 2001 protocol entitled 'Sampling and Analysis: Quality Assurance and Quality Control' as appended in Appendix C.

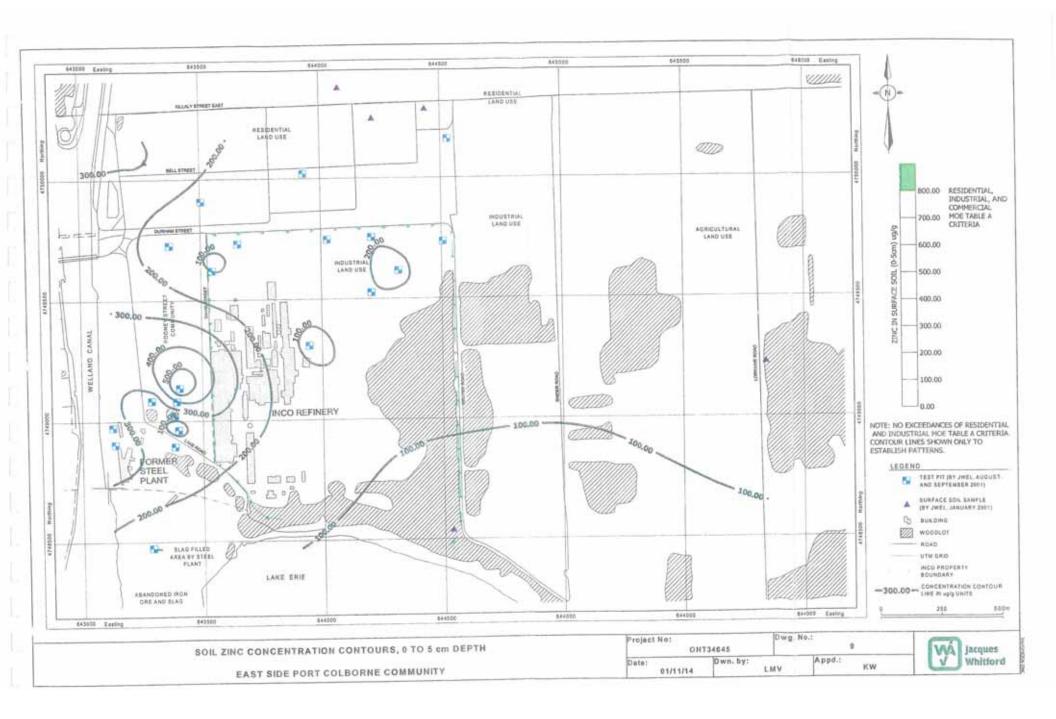

Table 1 in Appendix I show chemical test results and calculated percentage differences for original samples and duplicate samples. A difference of 30 percent is the normal control limit. Based on the chemical test results as shown in Table 1 in Appendix I, no significant variations were noted amongst the analytes between original samples and their duplicates. Two hundred eighty one (281) out of 357 duplicate chemical tests were within a variance of 30 percent.

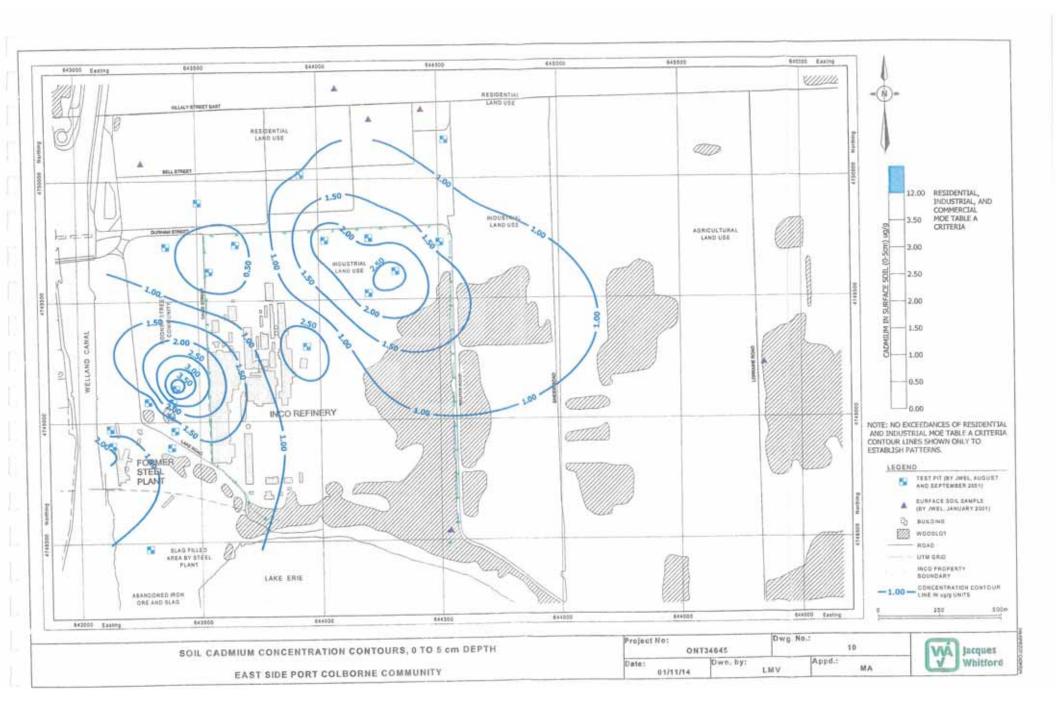

4.4 SOIL CHEMICAL CONCENTRATION CONTOURS AROUND FORMER STEEL PLANT AND INCO REFINERY

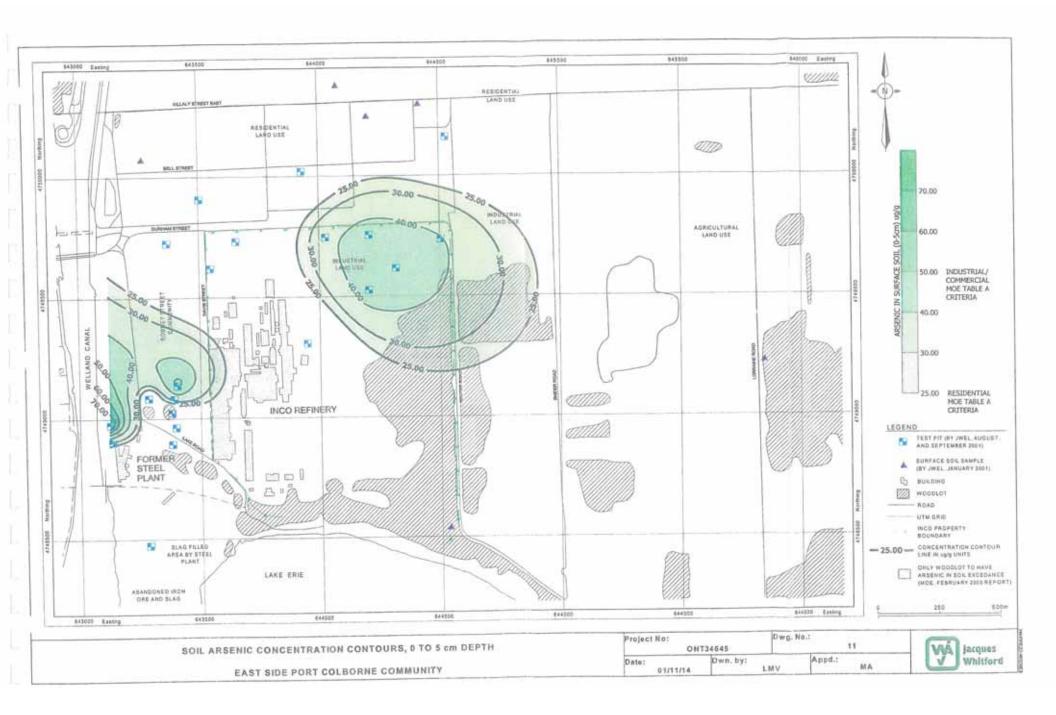

Soil chemical test results for TP1 through TP17 together with MOE Table A comparative guideline values are provided in tables in Appendix H.

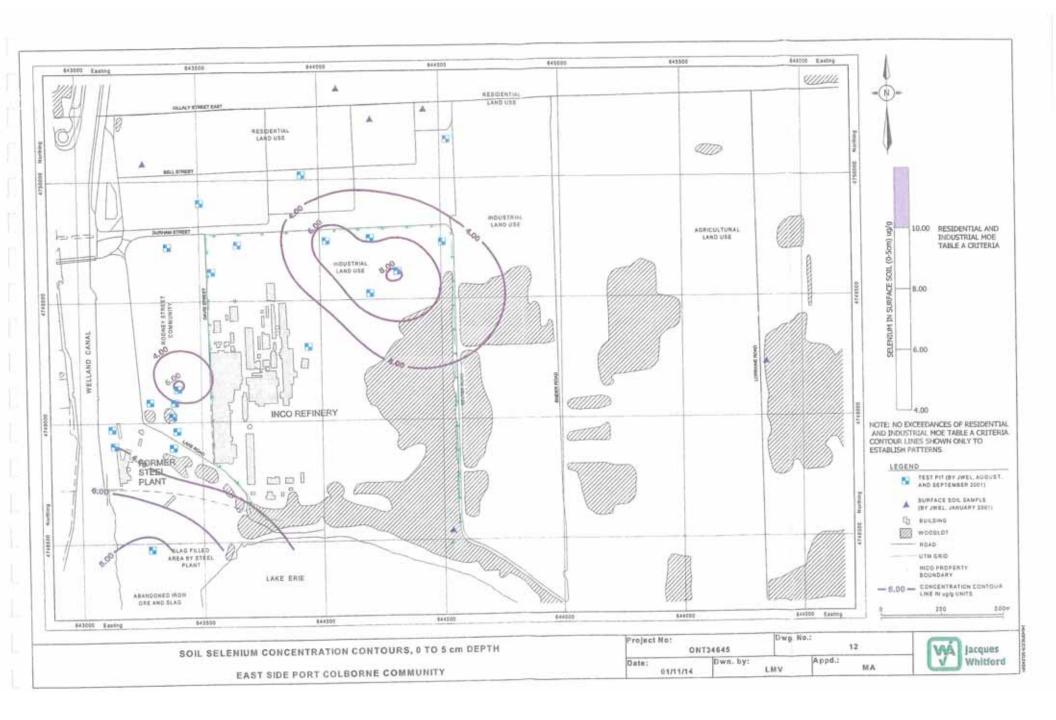
Chemical test results in surface soil (upper 5 cm) of nickel, copper, cobalt, arsenic, selenium, cadmium, iron, lead and zinc, which were metals identified to be of concern in the Rodney Street neighbourhood by the MOE (2001b,c) were plotted on Drawings 4 to 12. These plots show the spatial distribution patterns of soil chemical concentrations around the former steel plant and the former Inco refinery.











It is apparent from the soil chemical concentration contour plots of Drawings 4 to 12 that there exists chemical-chemical associations in surface soils and that these associations appear to belong into one of three distinct groups:

<u>Group1: Nickel Group</u>: those soil chemicals which show similarities in contour patterns with the soil nickel concentration contour pattern. Nickel was the primary component of atmospheric fallout from the former Inco nickel refinery. Thus nickel is the primary CoC indicator for Inco as the industrial source. Chemicals that fall in this group are nickel, copper and cobalt. The chemical distribution patterns for nickel, copper and cobalt are similar to those in prior MOE investigations (MOE 2000a,b)

<u>Group 2: Iron Group</u>: those soil chemicals which show similarities in contour patterns with the soil iron concentration contour pattern. Iron was the primary component of atmospheric fallout from the former steel plant which used iron ore as the principal raw material. Thus iron is the primary CoC indicator for the former steel plant as the industrial source. Chemicals that fall in this group are iron, lead and zinc.

The soil concentration contour patterns for the Group 2 chemicals show an abrupt decrease in concentrations east of the Inco refinery. It is apparent that the industrial buildings located along the west face of the Inco refinery acted as a vertical barrier for any northeast airborne emission originating from the former steel plant. As the stacks of the former steel plant were 9 m to 12 m high (30 to 40 feet), most of its fallout would have been in the neighbouring Rodney Street area which is located directly in the path of prevailing northeasterly wind direction.

<u>Group 3: Combined Nickel and Iron Group</u>: those soil chemicals which show similarities in contour patterns with both the soil nickel and the soil iron concentration contour patterns and thus whose origins are probably from both the Inco refinery and the former steel plant. Chemicals that fall in this group are arsenic, selenium and cadmium.

4.5 SOIL CHEMICAL CONCENTRATION DEPTH PROFILES DOWNWIND OF FORMER STEEL PLANT AND INCO REFINERY

To identify the patterns in soil chemical concentrations in test pits with depth and with distance from both the Inco refinery and the former steel plant (ie. 2 industrial sources), selected soil depth profiles were plotted along northeast traverses from Inco (ie. traverse A-A' on Drawing 2) and also from the former steel plant (ie. traverse B-B' on Drawing 2). Soil concentration depth profiles of nickel, copper, cobalt, arsenic, selenium, cadmium, iron, lead, and zinc were plotted as cross sections on Drawings 13 to15. Only soils data from five (5) test pits (TP3, TP5 for traverse A-A' and TP9, TP17 and TP13 for traverse B-B') were shown on these cross sections for ease of data visualization and interpretation.

Test pit TP5 northeast of the Inco refinery is of particular importance in the interpretation of these cross sections because there was no evidence of infilling or soil disturbance within this test pit and thus a true evaluation can be made of the vertical migration of any atmospheric deposited chemical. In contrast, the test pits of TP9, TP17 and TP13 northeast of the former steel plant showed significant man-made disturbance. At TP13 on the former Algoma property, there was evidence of demolition and burial of demolition remains.

Presence of slag, similar in appearance to that found in the test pits on the former steel property, was found in fill material in test pits TP17 and TP9 located within the Rodney Street neighbourhood, indicating a source of metals other than particulate deposition from atmospheric fallout from an industrial source. Contrary to this, no slag was found in test pits TP3 and TP5 located northeast of the Inco refinery.

Similar to the findings of the soil chemical concentration contours as discussed in Section 4.4, the soil chemical concentration depth profiles of Drawings 13 to 15 show chemical-chemical association to fall into one of three distinct groups:

<u>Group1: Nickel Group:</u> those soil chemicals which show similarities in concentration distribution patterns with depth with the soil nickel concentration distribution pattern with depth. Nickel is the primary indicator of atmospheric fallout from the former Inco nickel refinery. Chemicals that fall in this group are nickel, copper and cobalt.

<u>Group 2: Iron Group:</u> those soil chemicals which show similarities in concentration distribution patterns with depth with the soil iron concentration distribution pattern with depth. Iron is the primary CoC indicator of atmospheric fallout from the former steel plant. Chemicals that fall in this group are iron, lead and zinc.

<u>Group 3: Combined Nickel and Iron Group</u>: those soil chemicals which show similarities in concentration distribution patterns with depth with both the soil nickel and the soil iron concentration distribution patterns with depth. Chemicals that fall in this group are arsenic, selenium and cadmium. The concentration distribution patterns with depth for soil chemicals in this group southwest of the Inco refinery follow more closely the iron concentration distribution pattern with depth (thus indicating the former steel plant as the origin of the source) whereas northeast of the Inco refinery, these patterns follow the nickel concentration distribution pattern with depth (thus indicating the Inco refinery as the origin of the source).

4.6 ORIGIN OF SOIL CHEMICALS FROM ATMOSPHERIC DEPOSITION VERSUS FROM INFILLING

To differentiate the CoCs in soils as those that resulted from infilling and those from atmospheric deposition, soil chemical concentration depth profiles were examined based on:

- (1) soil descriptions in test pit logs as appended in Appendix G
- (2) chemical concentration data for soils collected from test pits in Appendices H, and
- (3) soil chemical concentration depth profiles from selected test pits as mapped on Drawings 13 to 15.

It is apparent from test pit logs appended in Appendix G that the test pits TP5, TP6 and TP7 northeast of the Inco refinery revealed no evidence of infilling or soil disturbance within these test pits and thus any collected information from soil chemical data for these test pits would be a true representation of the vertical migration of any atmospheric deposited chemical. In contrast, the test pits of TP8, TP9 and TP10 northeast of the former steel plant within the Rodney Street community showed significant man-made disturbance with depth. Presence of slag material was found in fill material in test pits TP9, TP10 and TP17 located within the Rodney Street community. Thus any collected information from soil chemical data for these test pits would be representation of not only as a result of particulate deposition from atmospheric fallout from an industrial source, but also from man-influenced infilling.

As shown on Drawings 13 to 15, the soil chemical concentration depth profiles of test pit TP9 located in Rodney Street area showed two distinctive peaks of chemical occurrence with depth, the first one within the upper 10 cm within the topsoil unit and the second one at around the 20 cm depth within the slag containing fill unit. Further evidence of this two peak signature of soil chemical occurrence with depth can also be found in test pits TP8 and TP10 (located in Rodney Street community) as shown in the soil chemical data Tables 8 and 10 in Appendix H.

Contrary to the observed two peak signature of soil chemical occurrence with depth within the Rodney Street community, test pit TP5 located within an undisturbed area on Inco property northeast of the refinery showed only a one peak signature of soil chemical occurrence with depth with the peak found in the upper 10 cm of the topsoil unit. Further evidence of this one peak signature of chemical occurrence with depth in undisturbed areas located northeast of the Inco refinery can be found for soils in test pits TP6 and TP7 as shown by the soil chemical data Tables 6 and 7 of Appendix H.

In general, soil pH measurements were found to be higher in soils northeast of the steel plant than in soils northeast of Inco. This is particularly common to fill material containing slag, most probably originating from the former steel plant.

It is known in the literature that nickel oxide can dissolve over time and the geochemical processes that control its solubility are generally pH dependent. Nickel can be transported downwards with infiltrating water to depths below the zone of initial nickel oxide deposition if pore water pH values are near neutral or mildly acidic. Considering the fact that pH was found to be higher in soils of test pits northeast of the steel plant than in soils northeast of Inco, it is unlikely that the lower peak of the soil nickel concentration distribution pattern at around the 20 cm depth within the slag containing fill in test pits excavated in the Rodney Street area had resulted from solubilization of nickel oxide and downward migration of nickel to the 20 cm depth.

©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines

5.0 **DISCUSSION**

5.1 NICKEL, COPPER, COBALT

Nickel matte containing mainly nickel, copper and cobalt was used in Inco's refinery operation from 1917 to 1984. The observed soil chemical concentration contours and the soil chemical concentration depth profiles for nickel, copper and cobalt (Nickel Group of chemicals as discussed in this report) showed community wide exceedances above MOE Table A Generic Guidelines (MOE, 1997). Thus *nickel, copper and cobalt* satisfy Condition No.2 of the TSOW and are CoCs attributed to the Inco refinery.

5.2 IRON

During the historical sintering and smelting operations at the former steel plant from 1913 to 1977, iron ore and other raw materials were burned in the blast furnace, part of which became product, and the other parts became atmospheric particulate emissions, slag, waste rock and other waste materials. Although samples of iron ore were not found on the former steel plant property, samples of slag, waste rock, iron pellets and iron shot balls were found. Chemical analyses of these materials were found to contain iron and a large number of associated metals such as arsenic, beryllium, selenium, and zinc.

Iron and the associated Iron Group chemicals as defined earlier in this report such as lead and zinc showed soil concentration contour patterns that were high in the area of the former steel plant and then decreased abruptly east of the Inco refinery.

Based on the surficial soil concentration distribution map of iron, it was apparent that the industrial buildings located along the west face of the Inco refinery acted as a vertical barrier for air borne emissions from the former steel plant, significantly reducing travel further northeastward. Hence, most of the particulate fallout containing iron and associated chemicals was in the neighbouring Rodney Street area which is located directly in the path of the prevailing northeasterly wind direction. Travel of the atmospheric particulate emissions from the former steel plant stack further northeastward was limited due to the height of the Inco buildings.

Considering the site background history on the former steel plant and the observed soil iron concentration contours and the soil iron concentration depth profiles, it is conclusive that the occurrence of iron as well as the associated Iron Group chemicals in soils in Port Colborne east of the Welland Canal originated from the historical emissions of the former steel plant.

Therefore, iron is a CoC attributed to the former steel plant.

5.3 LEAD

Based on the soil chemical test results, regionally and not including the Rodney Street neighbourhood, lead was found to be present in soils at only two localized residences at concentrations marginally exceeding the MOE Table A Generic Guidelines (MOE, 1997).

Lead was found to exceed the MOE Table A Generic Guideline (MOE, 1997) at 143 out of 179 residences in the Rodney Street neighbourhood. A significant source of lead is believed to have originated primarily from the former steel plant based on the observed patterns of soil lead concentration contours and the soil lead concentration depth profiles which mirror those of the soil iron concentration patterns. Soil iron was considered as the indicator chemical or fingerprint of soil contamination arising from the former steel plant. Other sources of this lead are from other historical industrial sources in the area (eg. former railway operations and other activity along the Welland Canal) and from lead acid batteries, lead paint, and leaded gasoline.

Review of MOE data (MOE 2001d) collected in past thirty years in the urban area of the City of Toronto, Ontario (as shown in Tables 1 to 4, Appendix J) show significant amounts of lead in urban soils as attributed to atmospheric deposition of leaded gasoline as well as the use of leaded paints and the storage of lead acid batteries.

Therefore, lead is a CoC derived mainly from the former steel plant and other non-INCO activities. Lead is not a CBRA CoC.

5.4 ZINC

Based on the soil chemical test results, regionally and not including the Rodney Street neighbourhood, concentrations of zinc in soil samples were found to be in compliance with the MOE Table A Generic Guideline (MOE, 1997).

Zinc was found to exceed the MOE Table A Generic Guidelines (MOE, 1997) at 30 out of 179 residences in the Rodney Street community. The source of this zinc is believed to have originated from atmospheric deposition from the former steel plant based on the observed patterns of soil zinc concentration contours and the soil zinc concentration depth profiles which mirror those of the soil iron concentration patterns. Soil iron was considered as the indicator chemical or fingerprint of soil contamination arising from the former steel plant.

Therefore, zinc is a CoC derived mainly from the former steel plant.

5.5 ARSENIC

Arsenic was found to exceed the MOE Table A Generic Guideline (MOE, 1997) in soils both northeast of the former steel plant and northeast of the Inco refinery. It was apparent from the observed soil arsenic concentration contour map that the arsenic exceedances were centered around both the former steel plant and the Inco refinery.

Arsenic was evident in notable concentrations in the waste rock and slag materials found abandoned on the former steel plant.

Arsenic is a CoC for both the Inco refinery and the former steel plant.

5.6 SELENIUM

The observed soil selenium concentration contour pattern did not show any exceedances on a community wide basis above the MOE Table A Generic Guideline (MOE, 1997). Instead, selenium was found to exceed the MOE Table A Generic Guideline (MOE, 1997) at only several localized areas including one (1) residence on Rodney Street and from one (1) sample in one woodlot northeast of the Inco refinery. Localized exceedances of a chemical in soil in one part of the Port Colborne community do not warrant identification of that chemical as a CoC according to the definition of TSOW Condition 2.

Thus, selenium is not a CoC.

5.7 CADMIUM

Cadmium was found to exceed the MOE Table A Generic Guideline (MOE, 1997) but only localized in soils from two (2) residences on Rodney Street. These localized exceedances cannot be considered as community wide exceedances.

Thus, cadmium is not a CoC.

5.8 BERYLLIUM

Beryllium was found by the MOE to exceed the MOE Table A Generic Guideline (MOE, 1997) at 87 out of 179 residences in the Rodney Street community (MOE, 2001b).

Assays of the slag material excavated in a test pit at the southern part of the former steel plant showed relatively high concentrations of beryllium exceeding the MOE Table A Generic Guideline (MOE, 1997) by 5 to 6 times respectively. This confirmed part of the MOE data interpretation of their Rodney Street investigation (MOE, 2001b) in that the measured exceedances of beryllium in soil were related to imported fill material containing slag from the former steel plant.

The other part of the MOE data interpretation (MOE, 2001c) regarding the origin of the beryllium in soil was related to shale in the local area. A review of the MOE document entitled *Investigation Into The Chemical Composition of Shales in Ontario 1997* (MOE 1998) indicated that shale and sometimes the soil associated with the shale formations frequently exceed the Ontario Background soil concentrations for beryllium. Although it is limestone bedrock (Middle Devonian limestone/dolostone of the Detroit River Group, Onondaga Formation) and not shale bedrock that underlies soils in Port Colborne, nonetheless, the parent soil and glacial till material transported from other areas to this area of Port Colborne may contain weathered shale fragments elevated in beryllium.

JWL conducted a review of the natural occurrences of beryllium in bedrock and natural soil and the findings are appended in Appendix K.

Literature review of historical and current refining at Inco's refinery operation indicated that raw materials containing beryllium were not used by Inco in its processes.

Based on the above, there is strong evidence linking the occurrences of beryllium in soils with past emissions from the former steel plant and slag generated by this plant.

In summary, beryllium is a CoC derived from the former steel plant.

6.0 CONCLUSIONS

The potential CoCs for the CBRA under TSOW Condition No. 2 attributed to Inco's historical nickel refinery operations are *nickel, copper, cobalt* and *arsenic*.

The potential chemicals that can be attributed to the former steel plant's iron ore operation are iron, beryllium, zinc, arsenic, selenium, lead and cadmium. Of these, only lead, zinc, arsenic and beryllium which exceed the MOE generic effects-based guidelines would constitute as CoCs attributed to the former steel plant under TSOW Condition 2.

A significant source of lead in soil as indicated by soil data may be from the former steel plant. However there are other potential sources of lead in soil that can be attributed to non-industrialized sources such as leaded paint, leaded gasoline, and batteries.

7.0 CLOSURE

This document represents results and findings of a single component of the Community Based Risk Assessment (CBRA) that is being conducted in the City of Port Colborne. This report should not be taken out of the overall context, goals and scope of the CBRA being conducted by Jacques Whitford Limited.

We trust that the information presented herein meets your present requirements. Should you have any questions or require additional information, please do not hesitate to contact us.

Yours very truly,

JACQUES WHITFORD LIMITED

Original Signed By:

Original Signed By:

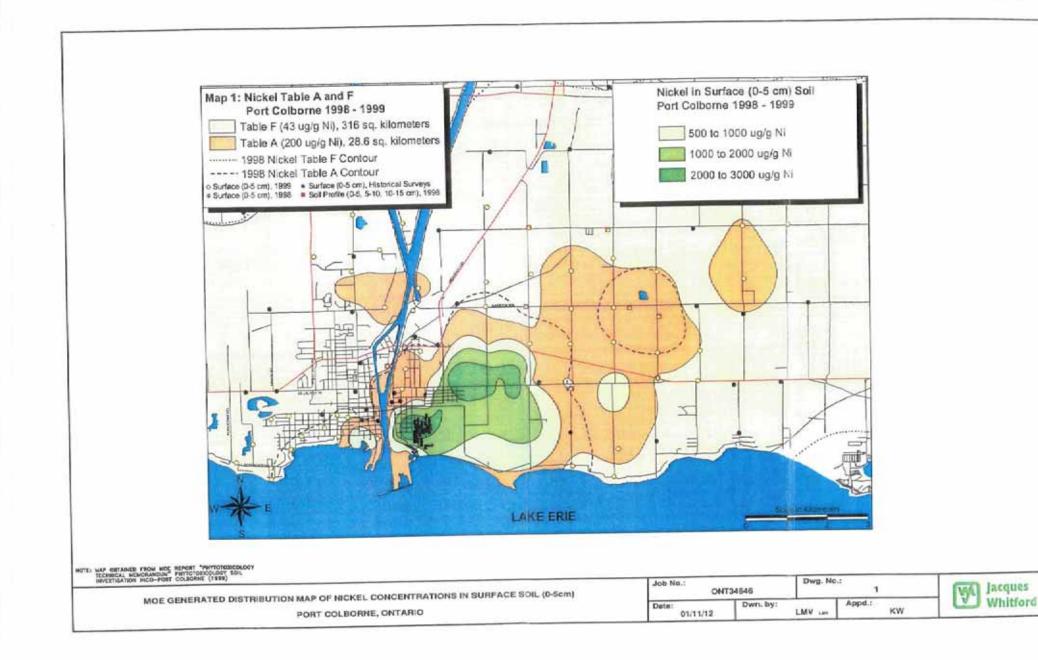
Eric Veska, Ph.D., P.Geo., C.Chem. Principal and Project Manager William H. Stiebel, M.Sc., P.Geo. Principal

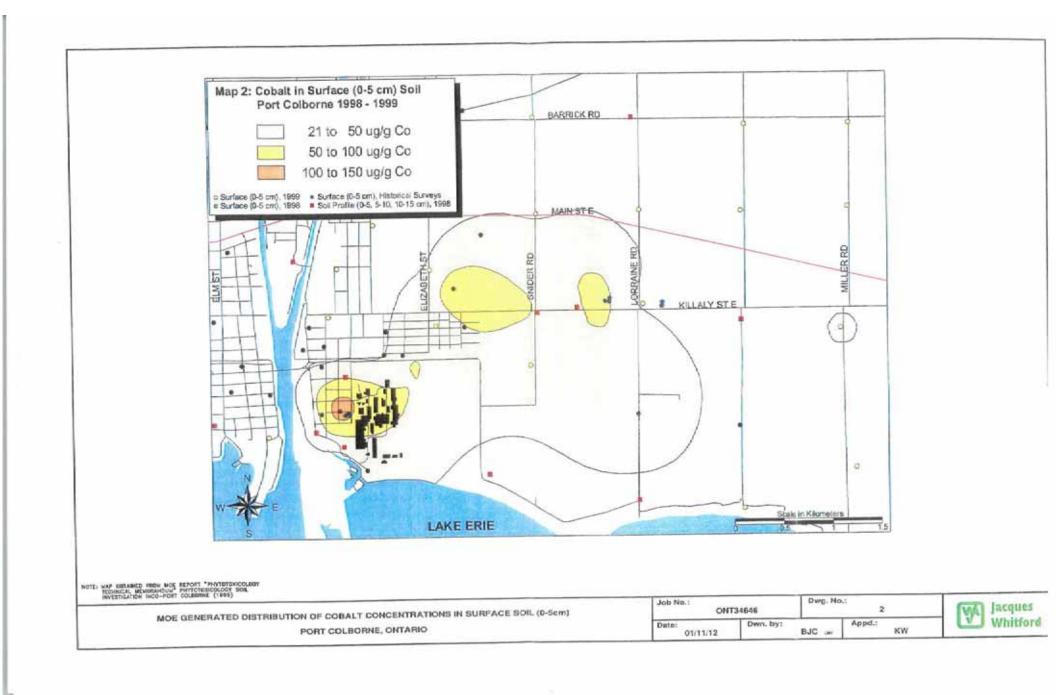
LIST OF REFERENCES

- CEPA 1996. Strategic Options for the Management of Toxic Substances from the Steel Manufacturing Sector. Canadian Environmental Protection Act. 1996.
- JWL 2000. Technical Scope of Work Community Based Risk Assessment Plan for Port Colborne, Ontario. Jacques Whitford Environment Limited. November 30, 2000.
- JWL 2001a. CoC Identification using Emission Inventories and Dispersion Modelling of Algoma and Inco Operations, Project ONT34648, Jacques Whitford Limited. March 28, 2008.
- JWL, 2004. *Re-Evaluation of Lead as a Chemical of Concern.* Jacques Whitford Limited. June 2004.
- JWL, 2008a. Potential CoC Identification using Emission Inventories and Dispersion Modelling of INCO and ALGOMA Operations. Jacques Whitford Limited. March 28, 2008.
- JWL, 2008b. *Potential CoC Identification using Statistical Analyses*. Jacques Whitford Limited. March 28, 2008.
- MOE 1993. *Guide to the Collection and Submission of Samples for Laboratory Analyses.* Ontario Ministry of Environment and Energy. December 1993.
- MOE 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of Environment and Energy. May 1996.
- MOE 1997a. *Guideline for Use at Contaminated Sites in Ontario*. Ministry of the Environment. February1997.
- MOE 1998. Phytotoxicology Technical Memorendum, *Investigation Into The Chemical Composition of Shales in Ontario 1997*. Report No. SDB-023-3511-1998, Ministry of the Environment. September 1998.
- MOE 2000a. *Phytotoxicity Soil Investigation: Inco Port Colborne (1998)*. Ontario Ministry of Environment. January 2000.
- MOE 2000b. *Phytotoxicity Soil Investigation: Inco Port Colborne (1999).* Ontario Ministry of Environment. July 2000.
- MOE 2000c. Results of Soil Sampling in School Yards and Beaches in the Port Colborne Area, April 2000 - Report No. SDB-031-3511-2000. Ontario Ministry of Environment. December 2000.

- MOE 2001a. Soil Contamination in Selected Port Colborne Woodlots: 2000 Report No. SDB-012-3511-2001. Ontario Ministry of Environment. February 2001.
- MOE 2001b. Soil Investigation and Human Health Risk Assessment for the Rodney Street Community: Port Colborne (October 2001) (Report No. SDB-010-3511-2001.Ontario Ministry of Environment. March 2001.
- MOE 2001c. Soil Investigation and Human Health Risk Assessment for the Rodney Street Community: Port Colborne (2001) (ISBN 0-7794-2272-4, PIBS 4161).Ontario Ministry of Environment. October 2001.
- MOE 2001d. *Toronto Lead Study Data 1971 to 1992,* Ontario Ministry of Environment Data obtained from the Standard Development Branch.
- OMAF 1989. The Soils of the Regional Municipality of Niagara, Vol. 1 and 2, Report No. 60 of the Ontario Institute of Pedology. Ontario Ministry of Agriculture and Food. 1989.

APPENDICIES


©2008 Jacques Whitford Limited Vale Inco Limited, Port Colborne Community Based Risk Assessment Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines


APPENDIX A

MOE - GENERATED DISTRIBUTION MAPS OF NICKEL, COBALT AND COPPER CONCENTRATIONS IN SURFACE SOIL (0-5 cm) OF

PORT COLBORNE, ONTARIO

APPENDIX B

APPENDIX B1

SITE BACKGROUND HISTORY REVIEW: EASTSIDE OF PORT COLBORNE

SITE BACKGROUND REVIEW

In order to determine potential sources of subsurface soil impact within the vicinity of Rodney Street and areas north of the Rodney Street east of the Welland Canal, JWEL conducted a detailed background review of the area. The findings are as follows:

A review of the 1876 Port Colborne, Township of Humberstone, County of Welland, Ontario map (Lincoln and Welland Atlas, 1876) as shown in Drawing 1 indicated that

- Rodney Street and surrounding areas is subdivided into lots and is undeveloped
- INCO is undeveloped and subdivided into lots
- Area where Canada Furnace was located is occupied by sand hills, further north is
 occupied by the Department of Public Works (engine house and wood shed)
- A drainage ditch is observed running in a north to south direction from Killaley Street along the Welland Canal then turning in a southeast direction at approximately Kinnear Street, passing through the backyard of 91 Rodney Street (formerly called Erie Street)

In addition, JWEL conducted a historical background review on properties located along the eastside of the Welland Canal north of Rodney Street (formerly Fort Erie Street), south of Durham Street and west of Fares Street. The review findings are as follows:

- A review of the 1862 Counties of Lincoln and Welland map (Tremaines Map 1862) indicated that the area located on the east side of the Welland canal north of Kinnear Street and presumably west of Welland Street were occupied by Welland Railway. At that time, the lands located immediately east of the railway yard was occupied by the Department of Public Works. Further to the east, the lands were undeveloped and divided into residential lots.
- By 1862, the Welland Railway had established operations at the Port Colborne site. Site facilities included grain, wood and coal storage (Jackson, 1978).
- By 1901, the rail service was owned by the Grand Trunk Railway. At this time, Lakeview Roller Mills operated in the central part of railway yard (west of present day Louis Street and Welland Street intersection) and an engine house, coal shed and grain elevator were in operation along the eastside of the canal (west of former Omaha Street, present day Nickel Street). Various sheds and coal storage were also located along the west edge of the railway yard at this time.
- In 1925, the Welland canal was widened in the easterly direction and some properties were demolished to allow the expansion (Welland Port Colborne Evening Tribune, June 27, 1931). At that time, rail tracks serviced the smelting plant operated by the Canada Furnace Company Ltd. (later Algoma Plant) located approximately 400 m south of Kinnear Street.
- By 1953, CN Rail had taken over the Grand Trunk Railroad. At that time Wallace Transport Company was located at the northeastern part of the railway yard close to Louis Street and DWOR Metal (metal salvage yard) has been located at its current location from prior to the 1940s to the present. From the mid/late 1940s to the mid/late 1970s Niagara Steel Products (metal salvage) was also present at this

Potential CoC Identification In Accordance With TSOW Condition No. 2 Project No. ONT34645

location. Further north is Hard Rock Paving Company, located at 198 Welland Street from late 1970s/early 1980s to the present. From the early 1950s to the late 1970s/early 1980s this property was occupied by Wallace Transport. A review of the 1953 FIP showed coal and scrap iron was piled over large section of the area owned by CN Rail. During the period from the 1930's to the 1990's, the primary use of the railway yard was as a coke transfer facility.

JWEL reviewed the aerial photographs of the area from 1948 to 1988, Land Title Information on selected properties of Rodney Street properties from 1856 to the present, the directory search from 1941 to 2000, the 1914, 1925 and 1953 Fire Insurance Plans (FIPs), the 1938 and 1983 topographic maps. The 1916, 1931 and 1953 maps provided by INCO were also reviewed. In addition, JWEL also reviewed documents on file at the Port Colborne Museum, Planning Office and Library to identify previous land use of the area.

- Historically, the properties located along the eastside of Welland Canal west of Welland Street were parts of the Port Colborne Harbour area and used for industrial/commercial purposes since the construction (digging?) of the canal to the present days.
- According to the title search information, the Port Colborne Harbor area property (formerly occupied by the Canada Furnace Company) is reportedly currently owned by the Upper Lakes Shipping Limited with several plots of land owned by DWOR Metal, Hard Rock Paving and Hamilton Marine. From 1834 to 1901 several individuals and the Welland Canal Co owned this plot of land. From 1901 to 1912 The Cronmiller and White Brewing and Malting Company Limited owned the land. In 1912 the Canada Furnace Company (Algoma Steel Corporation Limited) purchased the property and sold the property to Upper Lakes Shipping Limited in 1983. According to information in an article in The Welland Telegraph, dated September 30, 1913, the property immediately east and west of the Welland Canal (approximately 32 m or 105 ft) is owned by Transport Canada, St. Lawrence Seaway.
- The Canada Furnace Company Plant came into operation in the fall of 1913. A
 review of The Welland Telegraph dated September 30, 1913 indicated that the
 production output of the plant was 400 tons of pig iron and the daily consumption of
 raw materials were 800 tons of iron ore, 500 tons of coke and 200 tons of limestone.
 The iron ores were imported from Buffalo, New York.
- Prior to the 1910s, majority of the lands north of Rodney Street east of Welland Street
 was undeveloped. The residential development started with the onset of former
 Canada Furnace in the 1910s and Inco Refienry in the 1920s.
- A review of the Inco's Port Colborne (Nickel) Refinery History of Acquisition of Plant Site indicated that Inco first acquired the lands in 1916 and 1917. The refinery came into full operation after the World War I in 1921.
- Majority of the residential dwellings located along the Rodney Street was constructed in 1910s and 1920s.

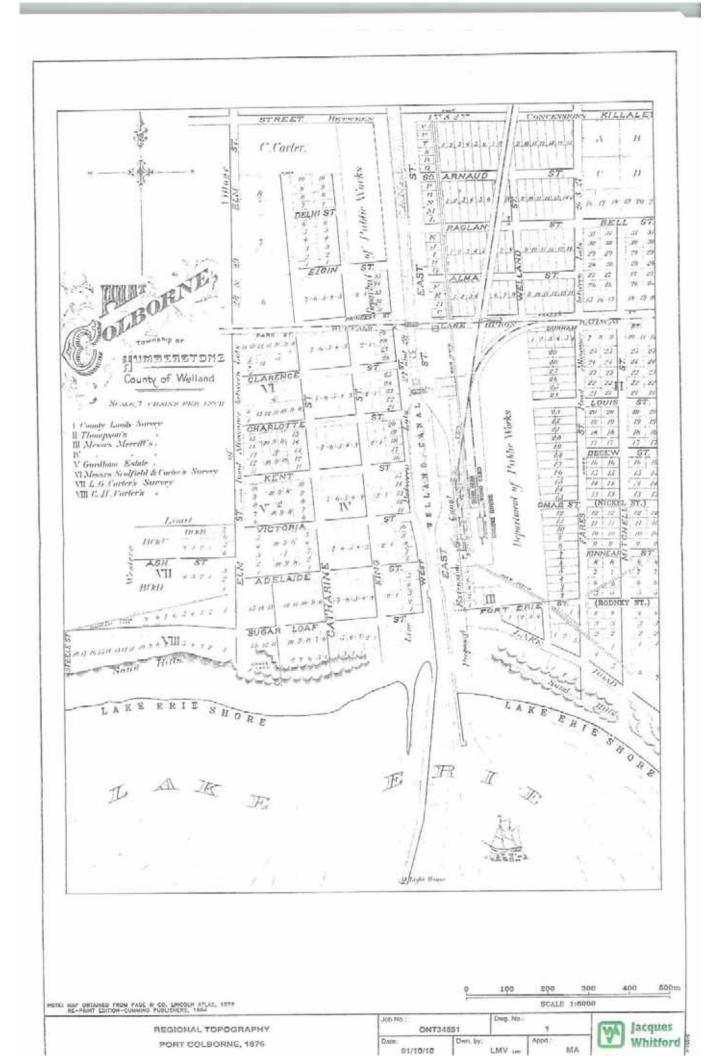
Potential CoC Identification In Accordance With TSOW Condition No. 2 Project No. ONT34645

- Historically (from 1910s and onward), the areas located north of Rodney Street, east of Welland Street and west of Davis Street were used for mixed residential and commercial purposes. The commercial activities included gas stations, auto repair facilities, restaurants, hotels and stores. However, the dominant land use was residential.
- The properties located east of Welland Street, south of Rodney Street and west of Fares Street has historically consisted of undeveloped land with two residential dwellings located along Lake Road (south portion of the site) from the early 1910s to the late 1970s/early 1980s. From 1856 to 1909 several private individuals owned this property. From 1909 to 1920 the site was owned by The Cronmiller and White Brewing and Malting Company Limited. From 1920 to 1992 the Canada Furnace Company (Algoma Steel Corporation Limited) owned the property. In 1992, 968568 Ontario Inc. took possession of the site followed by INCO in 1996.

West and

POTENTIAL SOURCES OF CONTAMINATION

Based on the information gathered and on observations made during this investigation, the site background history has revealed evidence of potential environmental contamination associated with various land use activities in the investigation area. A summary of findings of the site history is presented in the following Table.


Potential Sources of	Historical Activity	Contaminants	
Contamination Algoma Steel Plant	Historical iron smelting operation active since 1913 to its closure in 1977. The plant used coke, iron ore, limestone and iron shop ball as raw materials. Coal stock piles, iron ore and associated industrial activities such as generation of slag containing spent metals.	Iron, Arsenic, Beryllium, Selenium and associated heavy metals and coal dust from metal smelting operations. Metal containing slags that were later used as road base and fill materials in the development of neighbouring eastside of the City of Port Colborne.	
CN Railway Yard	Historical operation of railway yard along the eastside of Welland Canal since 1860s to 1980s. The activities included, coal yard, grain storage and associated railway operations such as fuel oil storage, railway ties.	Coal dust, petroleum hydrocarbons, arsenic (from railway ties) and other metal associated with railway yard.	
Scrap Yard, Trucking Facilities and other industrial operations along eastside of Welland Canal west of Welland Street.	Historical industrial land use along the eastern part of the CN railway yard since 1930s. The activities include, scrap yard, junk metal stock piles, generation of heavy metal shavings, degreasing operation involved in metal scrapping and salvage, trucking facilities with fuel storage.	Heavy metals, petroleum hydrocarbons from scrap yard operations.	
Gas Stations, Auto Repair Facilities, and Old Residential Dwellings	Historical mixed commercial and residential land uses of area north of Rodney Street, south of Killaly Stree, west of Davis Street and east of Welland Street. Majority of the urban areas were developed after 1910s and 1920s, site development, road constructions involved use of fill (slag and spent materials) most likely obtained from Algoma Plant. Auto repair facilities and old houses used lead-based gasoline and paints.	Lead, antimony, cadmium, petroleum hydrocarbons from gasoline, paint, batteries and fill materials.	
Inco Nickel Refinery	Historical operation of nickel refinery by Inco from 1917 to 1984. Inco's operation involved refining of nickel, copper and cobalt.	Nickel, copper, cobalt with some arsenic from the historical refinery operations.	

102

APPENDIX B2

1876 REGIONAL TOPOGRAPHIC MAP OF PORT COLBORNE

APPENDIX C

PROTOCOLS

20 20

APPENDIX C1

۰.

JWEL'S DECEMBER 18, 2000 PROTOCOL (DRAFT) ENTITLED

"SURFACE SOIL SAMPLING FOR IDENTIFICATION OF POTENTIAL CHEMICALS OF CONCERN"

Soil Sampling Protocol For Identification of Potential Chemicals of Concern

Port Colborne Community Based Risk Assessment

Revised - December 18, 2000

Introduction

A list of chemicals used or generated at the Inco Port Colborne Refinery, which may or may not be chemicals of concern (CoCs) for this Community Based Risk Assessment (CBRA) was identified by Jacques Whitford Environment Limited (JWEL) in their literature review of historical and current refining at Inco's Port Colborne Operation. This list of chemicals is divided into 2 categories:

1. Chemicals at the Refinery and Potential Offsite Airborne Migration:

 Metals and Inorganic Parameters: Nickel, Copper, Cobalt, Iron, Lead, Zinc, Chromium, Antimony, Aluminum, Silver, Boron, Arsenic, Selenium, Tellurium, Manganese, Sulphur, Gold, and precious metals (source: ore material)

2. Minor Feed Stock Components and Chemicals Used at the Refinery:

- Inorganic Parameters: Mercury (source: vapour lighting), Ammonia, Sodium, Chloride, and Sulphate (source: process chemicals, road salt, etc).
- Organic Parameters: PolyAromatic Hydrocarbons (source: tar/roofing waste), PCBs (source: transformers, lighting ballasts), Volatile Organics (source: paints, cleaning solvents, refractory organic chemicals, petroleum type wastes, etc), Phthalate Esters (source: plasticizers), Formaldehyde and phenols (source: resins and epoxies).
- Acids: Boric, Hydrochloric, Nitric and Sulphuric (source: process chemicals).
- Alkali: Sodium Hydroxide (source: process chemical).

Chemicals in Category 1 are those that are or would have been released as air particulates from stack and fugitive emissions to areas downwind of the Refinery. Chemicals in Category 2 are those that are or have been found within or next to the Refinery buildings and operations.

JWEL's approach in determining whether any of these chemicals are CoCs for this CBRA will involve verification sampling and testing of soils in areas of Port Colborne outside and downwind of the Inco Refinery. At the December 14, 2000 Technical SubCommittee (TSC) meeting, an analytical program was discussed and agreed to by all participants. Details of this analytical program are given on page 3 of this text.

Soil Sampling Protocol For Identification of Potential Chemicals of Concern Port Colborne Community Based Risk Assessment

by Jacques Whitford Environment Limited

Page 1

Sampling Methodology

Soil sampling will be carried out at 10 locations in Port Colborne which coincide with areas of high concentrations of nickel as reported by the MOE from their 1998 and 1999 phytotoxicology soils investigations. Nickel is the comparative indicator to other CoCs because of its relative high abundance found by the MOE todate in Port Colborne soil in comparison to other chemicals.

Soil samples will be recovered from open space properties (ie. excluding woodlot areas for now until the MOE documents their findings) where the tenant and/or property owner has given prior permission for the sampling.

Soil samples will be collected at each of the 10 locations from the 0 to 5 cm depth interval. Soil samples will be recovered as per the MOE's Laboratory Services Branch document entitled: *Guide to the Collection and Submission of Samples for Laboratory Analyses* dated December 1993.

At each sampling location, 40 subsamples will be collected within a sample area of 2 m x 2 m utilizing the shape of an "X" or "W". Each subsample or "plug" will be placed into a stainless-steel bowl and composited to constitute a sample. The exception to this procedure of collecting composite samples will be the collection of discrete samples for Volatile Organic Compounds (VOCs) analysis to avoid loss of VOCs. This methodology follows the MOE's Phytotoxicology Section's document entitled: *Field Investigation Manual – Part I – General Methodology* dated May 1993 and the MOE document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* dated May 1996.

To avoid cross contamination, the soil sampling equipment and the stainless-steel bowl will be cleaned after each sample set. Cleaning will involve a detergent solution wash, followed by rinses with distilled water, followed by rinses with acetone, followed by rinses with hexane and then allowed to air-dry before the next sampling. JWEL personnel will wear latex gloves during sampling and equipment cleaning.

JWEL will take replicates of all soil samples collected and place them into clean, labelled sample jars. One set of replicate samples will be sent to the laboratory for chemical analysis. The second set will be archived by JWEL and kept for storage should additional analyses at a later date become required.

As part of an overall quality assurance/quality control (QA/QC) program to monitor and evaluate the accuracy of the JWEL data, 20% of the total number of soil samples collected by JWEL will be submitted to Beak for their submittal for chemical analyses.

In addition to the 10 sample locations, JWEL will collect a 0 to 5 cm depth sample at two (2) background locations, north and west of Port Colborne in areas with known, low concentrations of measured nickel in soil.

Soil Sampling Protocol For Identification of Potential Chemicals of Concern Port Colborne Community Based Risk Assessment

by Jacques Whitford Environment Limited

Page 2

Analytical Program

Once collected, all 12 JWEL samples will be submitted to the Philip Analytical Services Corporation (Philip) for analysis. Philip is accredited by the Standards Council of Canada/Canadian Association Environmental Analytical Laboratories (CAEAL) program. Twelve (12) samples will be analysed for metal and inorganic parameters and 3 samples will be analyzed for organic parameters. Metal and inorganic parameters will include all those identifed in the MOE (1997) "Guideline for Use at Contaminated Sites in Ontario" (Guideline), in particular:

1) by ICP-MS - Ni, Co, Cu, Fe, Pb, Zn, Cr, Al, Ag, B, Bi, Ba, Mn, S

- 2) by AAS Sb, As, Se, Te, Hg
- 3) Sulphate, Chloride

Organic parameters will include the species of PAHs, VOCs and PCBs as identified in the MOE (1997) Guideline.

The results will be tabulated by JWEL and submitted to the TSC/PLC for examination.

Interpretation of Data

Analytical data will be compared to the MOE (1997) Guideline. Any exceedance of an inorganic or organic compound will be evaluated as a potential CoC according to the criteria or conditions given in the CBRA Technical Scope of Work document (November 30, 2000). This document states that a chemical can only be considered as a CoC for this CBRA if all of the following conditions are found, as follows:

- Chemicals that were historically used or generated in the Inco Refinery or its processes, and
- Chemicals that are present at a community level at concentrations greater than MOE generic effects-based guidelines, and
- Chemicals whose presence in soil shows a scientific link to Inco's operations.

Soil Sampling Protocol For Identification of Potential Chemicals of Concern Port Colborne Community Based Risk Assessment

3

by Jacques Whitford Environment Limited

December 12, 2000

APPENDIX C2

JWEL'S JUNE 2001 PROTOCOL (DRAFT) ENTITLED

"PROTOCOL FOR NICKEL AND ARSENIC DEPOSITION MODELLING, PORT COLBORNE COMMUNITY BASED RISK ASSESSMENT"

DRAFT PROTOCOL FOR NICKEL AND ARSENIC DEPOSITION MODELLING PORT COLBORNE COMMUNITY BASED RISK ASSESSMENT

June, 2001

1. Objectives

Jacques Whitford Environment Limited (JWEL) will carry out an air dispersion modelling study to predict possible nickel and arsenic deposition patterns in the region around the Inco Port Colborne Refinery and the former Algoma Steel Mill. These data will be used as an aid in determining locations for additional test pits in the area around the refinery and to estimate the relative contributions of Inco and Algoma to nickel and arsenic depositions. This modelling will <u>not</u> be used as an input to the Human Health Risk Assessment.

This protocol focuses on acquiring representative input data, namely:

- Meteorological data
- Emissions Estimates, and
- > Receptors

which will be used as input into an appropriate air quality dispersion model.

2. General Study Approach

The study will be performed in two stages:

- Stage 1 This preliminary study will model assumed unit emission rates (1 g/s) from the Inco and Algoma properties individually. The results of the modelling will be used as an aid in determining the locations of additional test pits. Due to the short time frame in which these data are required, a detailed emissions inventory of each facility will not be possible, therefore unit emissions rates will be assumed to estimate relative deposition contours for each facility. The preliminary study is to determine probable depositional patterns radially around the Inco refinery and former Algoma site at similar distances from the sites as the Rodney Street area. As the main stacks on both the Inco and Algoma sites are expected to be too tall to be significant contributors to deposition close to the properties, fugitive emissions from buildings will be considered only.
- Stage 2 This will be a detailed study, in which historical nickel and arsenic emissions from Inco and Algoma will be estimated and used to calculate deposition patterns. Emissions from stack and fugitive sources will be estimated from available Inco and Algoma production data over their periods of operation. These data will be utilized with a long-term meteorological data set to estimate cumulative nickel and arsenic depositions.

Protocol for Nickel and Arsenic Deposition Modelling - Draft Inco Port Colborne Jacques Whitford Environment Limited June, 2001

The dispersion modelling will be performed with the US EPA Industrial Source Complex – Prime (ISC-PRIME) model. This model includes the current state-of-the-science algorithms for modelling low level releases influenced by building wake effects.

The ISC-PRIME model uses a steady-state Gaussian plume equation to model emissions from a variety of sources (including area sources) and accepts hourly meteorological data records to define the conditions for plume rise, transport, diffusion, and deposition. The model estimates the concentration or deposition value for each source and receptor combination for each hour of input meteorology, and calculates user-selected short-term averages. The model includes algorithms for modelling emissions from area and line sources, and dry and wet deposition of particulates. Dry and wet deposition are processes by which particulates are removed from the plume by contact with the surface (dry deposition) and by coming in contact with water droplets which "wash" particulates out of the plume (wet deposition) during precipitation.

The ISC-PRIME model uses either hourly meteorological data including wind speed, wind direction, temperature, etc or long term stability array (STAR) data. Surface meteorological data for the model will be compiled from the Environment Canada station in Port Colborne, and the INCO meteorological tower. Upper air data, which provides information on the variation with height above ground of temperature, wind speed and wind direction will be obtained from the nearest representative upper air station to Port Colborne. A five-year meteorological data set will be used in the Stage 1 dispersion modelling, which follows US EPA dispersion modelling requirements.

Utilising the ISC-PRIME model, hourly and cumulative nickel and arsenic concentrations will be calculated for all receptors. The geographical variation of nickel and arsenic depositions, which are dependent on the predominant wind directions and wind speeds, will be presented graphically in deposition contour plots.

3. Meteorological Input Data

To obtain representative air quality estimates from known sources of emissions, local meteorology of the area of interest must be known. Data required to predict dispersion and transport includes wind velocities and direction; temperature; atmospheric stability; and mixing layer depth. Wind and temperature data are readily available from meteorological stations, but atmospheric stability and mixing layer depth are calculated from additional raw meteorological data including; cloud cover, snow cover and solar radiation.

For the Stage 1 preliminary study, raw hourly meteorological data from the beginning of 1996 to the end of December 2000 will be obtained from Environment Canada (Atmospheric Environment Services) and from the US National Centre for Atmospheric Research. Table 1 presents the stations and parameters to be used in the meteorological analysis.

The above data will provide hourly meteorological data, which will drive the ISC-PRIME model in the Stage 1 preliminary study.

Type of Station	Upper Air	Surface Station	Onsite Station
Station Name	Buffalo, NY	Buffalo, NY	Port Colborne
Location	42.55 N, 78.55 W	42.55 N, 78.43 W	42.88 N, 79.25 W
Years	January 96 - December 2000	January 96 - December 2000	January 96 - December 2000
Parameters	Pressure Altitude Temperature Wind Direction and Speed	Cloud Cover Ceiling Height Relative Humidity	Wind Speed and Direction Temperature Relative Humidity

Table 1 Meteorological Stations

For the Stage 2 study, a stability array (STAR) data set will be obtained from Environment Canada. The STAR data is a statistical representation of the historical meteorological conditions at the site calculated from a long-term (greater than 30-years) meteorological data set.

4. Emissions Estimation

For the Stage 1 study, a unit emissions rate (1 g/s) will be assumed for fugitive emissions (nickel and arsenic emissions due to leaks from buildings, emissions from ventilators, etc) from each facility.

For the Stage 2 study, nickel and arsenic emissions from each facility will be estimated using an emissions factor approach. Process fugitive and stack emissions will be estimated using emissions factors as specified in US EPA AP-42. Emissions estimates will be based on available production data from Inco and Algoma. Stack physical parameters (exit temperatures, velocities, etc) will be taken from available data provided by Inco or typical values from literature on the steel and nickel industries.

5. Receptors

A uniform Cartesian receptor grid with a 200-m spacing, extending 4-km to the north from the northern shores of Lake Erie and 3-km east and west from the Inco Port Colborne property line will be used in the dispersion modelling. In the vicinity of Rodney Street and the Inco and Algoma properties, a receptor spacing of 20-m will be utilized. Flat terrain will be used in the dispersion modelling and all receptors will be placed at ground level.

6. Interpretation of Data

The results of the dispersion modelling for both stages will be total cumulative nickel and arsenic depositions on the ground.

7. References

US EPA, "Users Guide for the ISC Dispersion Model", September 1995.

Electric Power Research Institute, "Addendum to ISC3 User's Guide – The PRIME Plume Rise and Building Downwash Model", November 1997.

APPENDIX C3

JWEL'S JUNE 27, 2001 PROTOCOL ENTITLED

"TEST PITTING PROTOCOL, ADDITIONAL CoC INVESTIGATION, INCO BOUNDARY AND RODNEY STREET AREA"

TEST PITTING PROTOCOL ADDITIONAL COC INVESTIGATION INCO BOUNDARY AND RODNEY STREET AREA PORT COLBORNE CBRA June 27, 2001

OBJECTIVES

As part of the Port Colborne Community Based Risk Assessment (CBRA), Jacques Whitford Environment Limited (JWEL) will carry out an additional soil sampling and chemical analyses program to evaluate the chemicals of concern (CoC). The objectives of this additional CoC investigation are to supplement the data obtained by JWEL during a previous CoC investigation in the winter and spring of 2000 and 2001.

This protocol illustrates JWEL's soil sampling methodology to undertake an investigation program within the INCO Refinery boundary and immediately west of the Refinery (Rodney Street area).

GENERAL INVESTIGATION APPROACH

As discussed in the May 30, 2001 meeting between INCO, Beak and JWEL, the additional CoC investigation will be focused on the issues related to possible arsenic and selenium and other CoC distribution patterns in soils around the INCO Port Colborne Refinery and the former Algoma Steel Mill.

As outlined the JWEL's Soil Sampling Protocol For Identification of Potential Chemicals of Concern, Port Colborne CBRA dated December 18, 2000 (revised), the following parameters will be analyzed during the additional CoC investigation.

- By ICP-MS: Barium, Beryllium, Boron, Nickel, Cobalt, Copper, Iron, Lead, Manganese, Sulfur, Silver, Aluminum, Chromium, Zinc;
- By AAS: Arsenic, Antimony, Selenium, Mercury and <u>Tellurium*</u>
- · Wet Chemistry: Sulfate, Chloride

Note*

Tellurium was included in the protocol as a potential CoC because of its suspected presence in the ore material. Further to Beak and JWEL meeting of June 7, 2001, JWEL contacted various analytical laboratories (Maxxam, Philip and XRAL) for analysis of tellurium in soil samples. The concerned laboratories could not find any standard reference materials (SRM) and no standard analytical methodology exist for tellurium analysis in soil samples. Moreover, it should be noted that there is no MOE generic guideline for tellurium in soil samples and hence does not Draft Soil Sampling and Chemical Analyses Protocol Page 1
Port Colborne Community Based Risk Assessment
Port Colborne, Ontario June 27, 2001

satisfy the Condition 2 requirements to be a CoC. Therefore, JWEL is of the opinion to exclude tellurium from the analytical list.

SAMPLING METHODOLOGY

Soil sampling will be carried out at ten (10) locations within and outside the INCO Refinery in Port Colborne which coincide with areas of potential high concentrations of nickel and other candidate CoCs as discussed in the May 30, 2001 meeting between INCO, Beak and JWEL.

Sample locations will be based in areas of particulate fallout as completed by an air dispersion modelling program (referenced in JWEL's *Protocol for Nickel and Arsenic Deposition Modelling Port Colborne Community Based Risk Assessment* dated June 2001).

Soil sampling will be conducted by excavating test pits using hand shovel. Test pits will be excavated in open space areas (i.e., excluding the paved areas).

Soil samples will be collected at each of the 10 locations from the 0 to 5 cm depth interval to a depth of 25 cm and then 25-50 cm at each location. Soil samples will be collected in accordance with the MOE's June 1996, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*

Three (3) of the ten (10) locations will be from areas located outside INCO's property boundary. Hence, permission will be required from the tenant and/or property owner to enter these three properties. The work on these three (3) properties will be done in conjunction with Decommissioning Consulting Services (DCS) during an upcoming soil cleanup program in the Rodney Street area.

At seven (7) sample locations within INCO's property boundary, test pits will be excavated to 100 cm deep. At three (3) sample locations outside INCO's property boundary, test pits will be excavated to a depth of 100 cm to verify the presence of any fill materials. The soil horizons will be logged at each sample location and documented. At each sampling location, samples will be collected from depth intervals of 0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm and 45-50 cm and 95-100 cm.

To avoid cross contamination, the soil sampling equipment will be cleaned after each sample set. Cleaning will involve a detergent solution wash, followed by rinses with distilled water and then allowed to air-dry before the next sampling. JWEL personnel will wear latex gloves during sampling and equipment cleaning.

JWEL will take replicates of all soil samples collected and place them into clean, labelled sample jars. One set of replicate samples will be sent to the laboratory for chemical analysis. The second set will be archived by JWEL and kept for storage should additional analyses at a later date become required.

Draft Soil Sampling and Chemical Analysis Protocol Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 2 June 27, 2001

As part of an overall quality assurance/quality control (QA/QC) program to monitor and evaluate the accuracy of the JWEL data, 20% of the total number of soil samples collected by JWEL will be submitted to Beak for their submittal for chemical analyses.

Grain Size Analysis

To determine the soil texture, JWEL will conduct grain size analyses on each sample using sieve and hydrometer. The grain size analyses will be conducted at JWEL's Material Testing Laboratory in Markham, Ontario.

ANALYTICAL PROTOCOLS

Chemical analyses will be performed at Philip Analytical Services (Philip) laboratory in Mississauga, Ontario. Philip will provide JWEL with all the required sample containers.

Details of the Sampling Containers, Field QA/QC, Sample Documentation, Laboratory Testing Guidelines, Standard Reference Materials and Laboratory QA/QC are discussed in JWEL's Laboratory Standardization Protocol dated June 6, 2001.

REFERENCES

Ontario Ministry of the Environment, June 1996, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.

Jacques Whitford Environment Limited (JWEL), June 6, 2001, Laboratory Standardization Protocol.

Jacques Whitford Environment Limited (JWEL), June 2001, Protocol for Nickel and Arsenic Deposition Modelling Port Colborne Community Based Risk Assessment.

Jacques Whitford Environment Limited (JWEL), dated December 18, 2000 (revised) Soil Sampling Protocol For Identification of Potential Chemicals of Concern, Port Colborne CBRA.

Draft Soil Sampling and Chemical Analysis Protocol Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 3 June 27, 2001

APPENDIX C4

JWEL'S JULY 9, 2001 PROTOCOL (REVISED) ENTITLED

"SURFACE SOIL SAMPLING FOR IDENTIFICATION OF POTENTIAL CHEMICALS OF CONCERN"

Surface Soil Sampling Protocol For Identification of Potential Chemicals of Concern

Port Colborne Community Based Risk Assessment

Revised - July 9, 2001

Introduction

A list of chemicals used or generated at the Inco Port Colborne Refinery, which may or may not be chemicals of concern (CoCs) for this Community Based Risk Assessment (CBRA) was identified by Jacques Whitford Environment Limited (JWEL) in their literature review of historical and current refining at Inco's Port Colborne Operation. This list of chemicals is divided into 2 categories:

1. Chemicals at the Refinery and Potential Offsite Airborne Migration:

 Metals and Inorganic Parameters: Nickel, Copper, Cobalt, Iron, Lead, Zinc, Chromium, Antimony, Aluminum, Silver, Boron, Arsenic, Selenium, Tellurium, Manganese, Sulphur, Gold, and precious metals (source: ore material)

2. Minor Feed Stock Components and Chemicals Used at the Refinery:

- Inorganic Parameters: Mercury (source: vapour lighting), Ammonia, Sodium, Chloride, and Sulphate (source: process chemicals, road salt, etc).
- Organic Parameters: PolyAromatic Hydrocarbons (source: tar/roofing waste), PCBs (source: transformers, lighting ballasts), Volatile Organics (source: paints, cleaning solvents, refractory organic chemicals, petroleum type wastes, etc), Phthalate Esters (source: plasticizers), Formaldehyde and phenols (source: resins and epoxies).
- Acids: Boric, Hydrochloric, Nitric and Sulphuric (source: process chemicals).
- Alkali: Sodium Hydroxide (source: process chemical).

Chemicals in Category 1 are those that are or would have been released as air particulates from stack and fugitive emissions to areas downwind of the Refinery. Chemicals in Category 2 are those that are or have been found within or next to the Refinery buildings and operations.

JWEL's approach in determining whether any of these chemicals are CoCs for this CBRA will involve verification sampling and testing of soils in areas of Port Colborne outside and downwind of the Inco Refinery. At the December 14, 2000 Technical SubCommittee (TSC) meeting, an analytical program was discussed and agreed to by all participants. Details of this analytical program are given on page 3 of this text.

Soil Sampling Protocol For Identification of Potential Chemicals of Concern Port Colborne Community Based Risk Assessment

by Jacques Whitford Environment Limited

Page 1

Sampling Methodology

Soil sampling will be carried out at 10 locations in Port Colborne which coincide with areas of high concentrations of nickel as reported by the MOE from their 1998 and 1999 phytotoxicology soils investigations. Nickel is the comparative indicator to other CoCs because of its relative high abundance found by the MOE todate in Port Colborne soil in comparison to other chemicals.

Soil samples will be recovered from open space properties (ie. excluding woodlot areas for now until the MOE documents their findings) where the tenant and/or property owner has given prior permission for the sampling.

Soil samples will be collected at each of the 10 locations from the 0 to 5 cm depth interval. Soil samples will be recovered as per the MOE's Laboratory Services Branch document entitled: *Guide to the Collection and Submission of Samples for Laboratory Analyses* dated December 1993.

At each sampling location, 40 subsamples will be collected within a sample area of 2 m x 2 m utilizing the shape of an "X" or "W". Each subsample or "plug" will be placed into a stainless-steel bowl and composited to constitute a sample. The exception to this procedure of collecting composite samples will be the collection of discrete samples for Volatile Organic Compounds (VOCs) analysis to avoid loss of VOCs. This methodology follows the MOE's Phytotoxicology Section's document entitled: *Field Investigation Manual – Part I – General Methodology* dated May 1993 and the MOE document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* dated May 1996.

To avoid cross contamination, the soil sampling equipment and the stainless-steel bowl will be cleaned after each sample set. Cleaning will involve a detergent solution wash, followed by rinses with distilled water, followed by rinses with acetone, followed by rinses with hexane and then allowed to air-dry before the next sampling. JWEL personnel will wear latex gloves during sampling and equipment cleaning.

JWEL will take replicates of all soil samples collected and place them into clean, labelled sample jars. One set of replicate samples will be sent to the laboratory for chemical analysis. The second set will be archived by JWEL and kept for storage should additional analyses at a later date become required.

As part of an overall quality assurance/quality control (QA/QC) program to monitor and evaluate the accuracy of the JWEL data, 20% of the total number of soil samples collected by JWEL will be submitted to Beak for their submittal for chemical analyses.

In addition to the 10 sample locations, JWEL will collect a 0 to 5 cm depth sample at two (2) background locations, north and west of Port Colborne in areas with known, low concentrations of measured nickel in soil.

Soil Sampling Protocol For Identification of Potential Chemicals of Concern Port Colborne Community Based Risk Assessment

by Jacques Whitford Environment Limited

Analytical Program

Once collected, all 12 JWEL samples will be submitted to the Philip Analytical Services Corporation (Philip) for analysis. Philip is accredited by the Standards Council of Canada/Canadian Association Environmental Analytical Laboratories (CAEAL) program. Twelve (12) samples will be analysed for metal and inorganic parameters and 3 samples will be analyzed for organic parameters. Metal and inorganic parameters will include all those identifed in the MOE (1997) "Guideline for Use at Contaminated Sites in Ontario" (Guideline), in particular:

by ICP-MS - Ni, Co, Cu, Fe, Pb, Zn, Cr, Al, Ag, B, Bi, Ba, Mn, S
 by AAS - Sb, As, Se, Te, Hg
 Sulphate, Chloride

Organic parameters will include the species of PAHs, VOCs and PCBs as identified in the MOE (1997) Guideline.

The results will be tabulated by JWEL and submitted to the TSC/PLC for examination.

Analysis of Tellurium

Tellurium was included in the original list of analytes because of its suspected presence in the ore material. However, JWEL excluded tellurium from the original analytical list as 1) there is no MOE generic guideline for tellurium in soil and hence there is no way of evaluating its Condition No. 2 requirements to be a potential CoC and 2) after discovering from various analytical laboratories (Maxxam, Philip and XRAL) that there are no soil tellurium standard reference materials (SRM) nor any standard analytical methodology for tellurium analysis in soils.

Interpretation of Data

Analytical data will be compared to the MOE (1997) Guideline. Any exceedance of an inorganic or organic compound will be evaluated as a potential CoC according to the criteria or conditions given in the CBRA Technical Scope of Work document (November 30, 2000). This document states that a chemical can only be considered as a CoC for this CBRA if all of the following conditions are found, as follows:

- Chemicals that were historically used or generated in the Inco Refinery or its processes, and
- Chemicals that are present at a community level at concentrations greater than MOE generic effects-based guidelines, and
- · Chemicals whose presence in soil shows a scientific link to Inco's operations.

Soil Sampling Protocol For Identification of Potential Chemicals of Concern Port Colborne Community Based Risk Assessment

by Jacques Whitford Environment Limited

APPENDIX C5

JWEL'S JULY 9, 2001 PROTOCOL ENTITLED

"SAMPLING AND ANALYSIS: QUALITY ASSURANCE AND

QUALITY CONTROL"

SAMPLING AND ANALYSIS: QUALITY ASSURANCE AND QUALITY CONTROL

PORT COLBORNE CBRA July 9, 2001

1. INTRODUCTION

As part of the Port Colborne Community Based Risk Assessment (CBRA), JWEL has carried out sampling and chemical analyses on various types of sample medium including soil, water, air and garden/orchard produce. Details of sampling methodology and analytical procedures for each sample medium is provided in separate written protocols.

JWEL has developed a protocol for determination of analytical parameters, sample standards, and laboratory quality assurance and quality control (QA/QC). The protocol has been designed for Philip Analytical Services (Philip) of Mississauga, Ontario, the designated laboratory carrying out the chemical analyses on the Port Colborne samples. This protocol delineates JWEL's policies for Philip with respect to field QA/QC, laboratory standardization, data management and laboratory QA/QC.

As outlined in the MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE 1996), laboratories accredited by the Canadian Association of Environmental Analytical Laboratories (CAEAL) are recommended for use for analytical purposes. Philip is such a CAEAL accredited analytical laboratory for most of the required analytes.

2. SAMPLING METHODS QA/QC

As outlined in Section 5 of the MOE (1996) guidance document, all samples will be collected by JWEL in MOE-recommended containers. Philip will provide JWEL with all the required sample containers.

The following field sampling QA/QC procedures will be followed:

- Clean latex gloves will be worn by the JWEL technician during sampling and will be changed before each new sample is collected;
- The sampling equipment will be cleaned after collection of each sample set. Cleaning
 will involve a detergent solution wash, followed by rinses with distilled water and then
 allowed to air-dry before the next sampling;

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 1

 Samples will be stored in a cooler (provided by Philip) at 4^oC in the field and will be delivered to Philip after collection as soon as possible.

The field procedures for collecting soil and water samples are basically the same except that different types of containers and preservatives are used for water sampling.

3. REQUIRED CONTAINERS

As outlined in Section 5 of the MOE (1996) guidance document all samples, including field samples, field blanks and travelling blanks will be collected by JWEL in MOE recommended containers. Philip will provide JWEL with the required sample containers. The following procedures in Table 1 describe container and preservative requirements during sampling and transportation of samples from the field to the analytical laboratory.

TABLE 1

APPROPRIATE CONTAINERS, PRESERVATIVES AND STORAGE FOR SOIL AND WATER SAMPLES INCO, PORT COLBORNE, ONTARIO

PARAMETER	CONTAINER	PRESERVATIVE	MAXIMUM HOLDING TIME
Soil Samples			
Total Metals	Plastic or glass	None	180 days
Water Samples			
Total Metals (excluding mercury and hexavalent chromium)	Polyethyleneterephthalate (PET) or glass with plastic- lined cap	HNO ₃ (containing <1mg/L of total metals) to pH between 1.5 and 2.0	60 days

From: Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, Sections 5.1 and 5.2, (MOE, 1996).

- Prior to the onset of field program, JWEL's technician will inform Philip of the sample medium, analytes of interest and required sample containers and coolers.
- Philip will provide JWEL with the required number of containers with appropriate preservatives, whenever needed.

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Port Colborne, Ontario Page 2

4. FIELD QA/QC

As outlined in Section 7 of the MOE (1996) guidance document, all sampling and sample handling will be conducted with utmost care, to prevent cross contamination of samples. The following procedures describe field QA/QC requirements during sampling and transportation of samples from the field to the analytical laboratory.

a) Blanks

Blanks are analytical quality control samples analyzed in the same manner as site samples. They are used to determine whether contamination has been introduced into a sample either in the field while the samples were being collected, or in the laboratory during sample preparation or analysis.

Travelling Blank:

A travelling blank is a sample of uncontaminated water free of the analytes of interest that is prepared by the laboratory performing the chemical analysis. Travelling blanks are used to determine whether sample contamination occurred in the sample containers and/or as a result of sample cross contamination during sample transport and storage.

- Philip will provide adequate travelling blank(s) to JWEL prior to the onset of field investigation;
- The travelling blank will accompany the sample containers to the sampling location. JWEL will carry the travelling blank to the field and return it, unopened, to the Philip laboratory for chemical analysis.

Travelling Spiked Blank:

A travelling spiked blank is a sample of uncontaminated matrix (water, soil, sediment, air absorbent) free of any interfering substances to which a known amount of standard solution containing known amounts of the analytes of interest and appropriate preservatives have been added by the laboratory performing the chemical analysis.

- Philip will prepare and provide samples of travelling spiked blanks to JWEL prior to the onset of any field investigation;
- Philip will spike the travelling spiked blank with solutions containing all the target parameters required to be analyzed at a level of five-to-ten times the concentrations of each analyte of interest at the specific site.

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 3

•

- The travelling spiked blank will be prepared within 24 hours of accompanying the containers required for sampling at the site. JWEL will carry the travelling spiked blank to the field and return it, unopened, to the Philip laboratory for chemical analysis.

Field Blank:

A field blank is a sample of uncontaminated water free of the analytes of interest that is prepared by the laboratory performing the chemical analysis. Field blanks are used to determine whether sample contamination occurred in the sample containers and/or as a result of sample cross contamination during sample collection procedures in the field.

- Philip will provide samples of a field blank to JWEL prior to the onset of field investigation;
- The field blank will accompany the sample containers to the sampling location. At the sampling location JWEL will open the field blank container at least as long as the filling of other sample bottles is required, close it, and return it to the laboratory with the samples for analysis.

b) Replicates

Replicate samples are any number of additional samples collected in the same place and at the same time as the original sample. Replicates are collected and analyzed to provide an estimate of sample variability.

- As outlined in Section 7.2 of the MOE (1996) guidance document, JWEL will collect replicate samples for all test groups.
- As part of an overall QA/QC program to determine the reproducibility or variability related to sampling procedures and sample homogeneity, JWEL will calculate the percentage differences between analyzed values for the original and replicate samples.

5. DOCUMENTATION

Documentation and Shipping

Proper documentation by JWEL in the field will be important for ensuring the integrity of samples shipped from the field to the laboratory. Proper documentation includes: field observations, station sampling summaries, chain of custody forms, correct shipping conditions for samples and Transportation of Dangerous Goods (TDG) compliance, when required.

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 4

Chain of Custody Records

- Philip will provide the Chain of Custody Forms. A sample copy is provided in Appendix A.
- A JWEL technician will complete all relevant sections of the Chain of Custody Form during sampling and JWEL's Project Manager (PM) or a person designated by the PM will ensure that the requested analytical testing is clearly outlined on the Chain of Custody.

Shipping

- Philip will provide required sample coolers with ice or cold packs. JWEL will ensure
 proper packaging to prevent spillage and breaking of glass bottles.
- JWEL will ensure that the samples are preserved at optimum temperature at 4^oC until the laboratory receives the samples.

If possible, the samples will be delivered by a JWEL technician in person. However, if this is not possible, Philip's courier will be used. Once the samples are delivered to the laboratory, the Chain of Custody form will be signed by both parties to ensure the tracking of sample movement. Both JWEL and Philip will retain their own copies of these forms.

All analytical methods by Philip will include details of sample pretreatment/preparation, cleanup (if required), instrumental measurement method, and data reporting procedures. All must be accompanied by references.

6. LABORATORY TESTING GUIDELINES

Philip will perform chemical analysis of the samples after they are submitted by a JWEL representative. A properly completed and signed Chain of Custody form will be included with all sample batches. Instructions for analyses of specific chemical parameters with previously agreed upon method detection limits (MDL) appropriate for the regulatory criteria to which the results will be compared, will also be included.

Sample Preparation and Digestion

As outlined in Section 5.1 of the MOE (1996) guidance document, Philip will prepare all samples prior to analysis conducted by instrument. Sample preparation and digestion procedures that will be followed by Philip for inorganic analyses are as follows:

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 5

- a) Soils
 - Soil samples will be spread out on drying trays in a dust free environment and dried at 30-35°C to constant weight (overnight). A drying blank will be prepared and analyzed. Philip will retain this moisture data and report it as part of the Certificate of Analysis.
 - The sample will then be disaggregated with a mortar and pestle and screened through a 2 mm sieve. The fraction greater than 2 mm will be discarded. The fraction less than 2 mm will then be ground to pass a 355 um sieve.
 - The samples will then be digested using concentrated nitric acid and hydrochloric acids. The digestion involves the following procedure.
 - One (1) g of soil sample is weighed into a beaker.
 - 2mls of concentrated HNO₃ is added and the mixture is allowed to sit at room temperature for 1 hour.
 - 6mls of concentrated HCl is added and the mixture is sample is left at room temperature for 30 minutes.
 - The sample is refluxed at 90°C for 1 hour and then evaporated to incipient dryness.
 - 1.5mls of concentrated HNO₃ is added and the volume is diluted to 25mls with deionized water.
 - After addition of de-ionized water, the sample is allowed to settle before analysis. If the sample still contains floatable particles it is centrifuged.

b) Water

- No digestion is required for surface water samples.
- Groundwater samples are digested using concentrated nitric acid and hydrochloric acid same as soil samples.
- Groundwater samples are field filtered and preserved. A filter blank will be analyzed for each sample set to determine whether sample contamination occurred during sample collection procedures in the field or not.

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 6

c) Vegetation/Garden/Orchard Produce

- Once received, Philip will wash the samples with distilled water and the samples will be digested using hot nitric acid at 90°C until the biomass is dissolved. Time required to dissolve biomass varies depending on the type of sample.
- Once the biomass is dissolved completely, the sample is allowed to settle before analysis, if the sample still contains floatable particles it is centrifuged.

d) Maple Sap

- Maple sap samples will be collected by JWEL in accordance with the University of Toronto, Faculty of Forestry collection protocol (MOE 1992);
- Prior to chemical analysis, the sap samples will be digested using hot nitric acid.

e) Air

- Once collected, the air filters will be submitted to Philip for chemical analysis. Prior to chemical analysis, the samples (air filters) will be digested using hot nitric acid. Digest is centrifuged and the supernatant is analyzed.
 - A filter blank will be analyzed with each sample set.

Sample Analysis

Analytical procedures and instruments have been pre-selected by JWEL and Philip in accordance with the MOE (1996) guidance document. This selection was based on sample matrix, detection limits to be reached, comparability to guidelines, parameters analyzed, availability and suitability of techniques and instrumentation.

Analytical methods and QA/QC protocols will be referenced by Philip to recognized standard setting organizations such as US EPA, CSA, and ASTM. If alternate equivalent methods are used, then these must be demonstrated to meet acceptable precision, accuracy and sensitivity requirements. Table 2 shows the analytical guidelines for metal parameters.

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 7

TABLE 2

PARAMETER	ANALYTICAL METHOD	INSTRUMENT	
Soil, Water, Air (Particulate)* Samples			
Metals (17 including, Al, Ba, Be, Ca, Cd, Cu, Co, Cr, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn)	US EPA Method 6010, Rev. 0	Inductively Coupled Plasma- Atomic Emission Spectrometer	
Metals (As, Sb and Se)	US EPA Method 7061 and 7741 (Modified)	Hydride Generation Atomic Absorption Spectrophotometer	
Garden Produce and Maple Sap Samples Metals (17including, Al, Ba, Be, Ca, Cd, Cu, Co, Cr, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn)	U.S.EPA Method 200.8 (Modified)	Inductively Coupled Plasma- Mass Spectrometer	
Metals (As, Sb and Se)	U.S. EPA Method 7061 and 7741 (Modified)	Hydride Generation Atomic Absorption Spectrophotometer	

ANALYTICAL METHODS AND INSTRUMENTATION INCO, PORT COLBORNE, ONTARIO

Note

For Air Particulate Sampling (Filter): US EPA, 40 CFR, Part 53- Ambient Air Monitoring Reference and Equivalent Methods

Table 3 shows the sample matrix and pre-selected MDLs for all seventeen (17) ICP metal parameters as well as for arsenic, selenium and antimony for the Port Colborne samples.

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 8

TABLE 3 METHOD DETECTION LIMIT (MDL) CRITERIA AND SAMPLE MATRIX INCO, PORT COLBORNE, ONTARIO

PARAMETER	SOIL* (ug/g)	VEGETATION (ug/g)	GROUNDWATER [*] (ug/L)	SURFACE WATER ^b (ng/L)	AIR ^r (ug/filter
Aluminum	20	0.6	5.0	5.0	5.0
Antimony	0.2	0.05	0.5	0.5	0.2
Arsenic	0.2	0.2	2.0	2.0	1.0
Barium	5.0	0.5	5.0	5.0	2.0
Calcium	50	50	500	500	200
Cadmium	0.3	0.01	0.1	0.1	0.05
Cobalt	2.0	0.01	0.1	0.1	0.05
Copper	1.0	0.05	0.5	0.5	0.5
Chromium	1.0	0.5	5.0	5.0	2.0
Iron	50	5.0	30	30	20
Magnesium	20	20	50	50	20
Manganese	1.0	0.5	5.0	5.0	2.0
Molybdenum	3.0	0.1	5.0	5.0	0.5
Nickel	2.0	0.1	1.0	1.0	0.5
Lead	5.0	0.05	0.5	0.5	0.2
Selenium	0.2	0.2	2.0	2.0	1.0
Strontium	0.3	0.1	1.0	1.0	0.5
Vanadium	1.0	0.05	0.5	0.5	0.5
Zinc	5.0	0.5	5.0	5.0	5.0

Notes:

Meet MOE Table A Residential/Parkland Land Use Criteria 3 b

Meet MOE's Provincial Water Quality Objective (PWQO) Criteria

C Meet MOE's Ambient Air Quality Criteria (AAQC)

Sampling and Analysis:

Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited,

Page 9

7. STANDARD REFERENCE MATERIALS (SRM)

Philip uses commercial, purchased standard reference materials (SRMs) from Canmet called Lake Sediment (LKsd-3). JWEL will also submit additional SRM samples for other media, such as food stuffs, as an added check on the variability related to an analytical procedure. JWEL will compare data from Philip's results on the SRM samples to those referenced by the originating authority.

Philip will provide a QA/QC page of the Certificates of Analysis. It will contain data on the SRM as well as the Process Blank data.

JWEL will calculate percentage differences to determine the accuracy of each analytical determination.

8. LABORATORY QA/QC

As outlined in the MOE (1996) guidance document, Philip will observe the following QA/QC procedures to perform the chemical analyses.

- Pre-run* QC:
 - labware and reagent blanks;
 - instrument setup standard;
 - reference standard to validate in-house standards; and
 - instrument detection limits (IDLs) and detector linearity curves (minimum of 5-point
- calibration).
- In-run* QC:
 - baseline drift blanks;
 - standards; and
 - instrument checks.
- Run* QC:
 - method recovery blanks;
 - method blanks;
 - in-house matrix check material;
 - duplicates (minimum of one set per run* of 30 samples). As mentioned in the MOE (1996) guidance document, a duplicate sample is defined as a second aliquot from the same sample container;

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 10

- surrogates (added prior to organic extraction). The surrogates should be selected to cover the whole range of the particular scan. It is recommended to use a minimum of three surrogates per organic type scan, except PCBs, where one surrogate can be used. Surrogates are not used in inorganic analyses and thus will not be used in these analyses of the Port Colborne samples;
- spiked samples, if applicable;
- certified standard reference materials (SRMs) to validate method recovery; and
- Method Detection Limits (MDLs) for each parameter.
- * "run" refers to a group of samples submitted as one group, and consisting of 30 or fewer samples

9. DATA MANAGEMENT: QA/QC

The quality of data depends upon planning, sampling, analysis and reporting. As a means of determining the reproducibility or variability related to analytical procedures of the sample homogeneity, JWEL will calculate the percentage differences between analyzed values for the original and duplicate samples.

Further, as a means of determining sample accuracy, JWEL will calculate the percentage differences between the analytical results of the SRM samples and the referenced SRM correlation data.

For sample reproducibility calculations, percentage differences will be calculated for those chemical parameters with analytical values greater than 3 X LOQ (LOQ is the limit of quantification, i.e., the lowest level of a parameter that can be identified with confidence by an analytical laboratory).

Percentage differences will be determined using the following formula:

Percentage difference of Analyte A = $(Analyte A in test 1 - Analyte A in test 2) \times 100$ (Analyte A in test 1 + Analyte A in test 2) / 2

10. REPORT OF ANALYSIS

The Laboratory Report of Analysis as provided by Philip will include the sample results as well as all run quality QC, recovery data and MDL data. The acceptability of the laboratory data will include the following considerations:

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 11

- The analytical method performance should meet the requirement criteria as outlined in Section 8.3, 8.4 and 8.5 of the MOE (1996) guidance document.
- The results of laboratory QC samples that are applicable to the matrix and contaminant groups of interest (method blank, spiked blank, spiked sample) will be within the statistically determined control limits of 30%. Philip will be responsible for any QC results that exceed the control limits.
- Recoveries of all surrogates (for organic analyses) where applicable will be monitored and reported.
- A table of the precision and accuracy estimates associated with the reported results will be
 provided based on duplicate/replicate analyses of Port Colborne samples, and through
 periodic analysis of standard or certified reference materials as available for each analyte
 selected at appropriate concentrations.
- Analytical data will be reported without correction, unless correction is clearly identified and described.

11. REFERENCES

Ontario Ministry of the Environment, June 1996, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.

Canadian Council of Ministers of the Environment, December 1993, Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites, Volumes I and II.

University of Toronto, Faculty of Forestry, November 1992, Relationship of Sugar Maple Acer Saccharum Decline and Corresponding Chemical Changes in the Sap Composition (Carbohydrates and Trace Elements).

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited, Page 12

July 9, 2001

APPENDIX A

SAMPLE CHAIN OF CUSTODY RECORD

Sampling and Analysis: Quality Assurance and Quality Control Port Colborne Community Based Risk Assessment Jacques Whitford Environment Limited,

Page 13

July 9, 2001

CHAIN	5735 McAd Mississauga	a, Ontario L4Z	2 1N9	Wats: 1	(905) 89 -800-26	3-9040								Cor		
lient: _								S QU								
-			1.7	_					oject #							
ontact:				1.5			Sar	mpled I	by:	-					4	
hone:		Fax:				Pl	ease spe	cify G	uidelin	e (if appl	icable)					
				Analys	sis Requi	red:								TAT (Turn	around Time)
	f other than above):	•													FOR RU xceptions ap 5-7 Busine Specify Do	
Sample	Client Sample I.D.	Date	Time												Time	
#	Chein Sampie 1.D.	Sampled	Sampled											Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1																
2																
3))															
4		1														
5																
6																
7																
8																
9																
10																
11																
12													1			
mples Rel lient Signa	inquished to PAS by sture)				_			Date		1	1	Time:	_		Method of Shipm	ent
	eived in lab by:			<u></u>			-								and a ranker of 52 years at 6841.5	

WATER	Analytical	Volume		Sample	Preservative	Holding
WATER	Parameter	Preferred	Minimum	Container	20 0 9 34	Time m
	Alkaknity / pH	100	50	125 mLHDPE	4°C	4 days
Sample Bottle	Anions - (Br', CI', F', NO3', NO2', PO43', SO43')	100	50	125 ml HDPE	4°C	5/28 days
and	Biochemical Oxygen Demand (BOD)	500	250	500 ml HDPE	4°C	4 days
Preservation	Carbon - (DOC, TOC)	100	50	125 ml HDPE	H2SO4 < pH 2***	10 days
Information-	Chemical Oxygen Demand (COD)	100	50	125 ml HDPE	H2SO4 < pH 2***	30 days
information-	Chlorine, residual (CI)	40	40	40 ml clear glass septum vial*	4°C	immediately
	Chromium VI	100	50	125 ml HDPE	4°C	5 days
	Conductivity	100	50	125 ml HDPE	4°C	28 days
	Cyanide (CN')	250	100	250 mt HDPE	NaOH >12***	7 days
	HGAAS Metals (Sb, As, 8i, Se, Te)	100	50	125 ml HDPE	HNO ₅ < pH 2***	6 months
	ICP Metals	100	50	125 ml HDPE	HNO3 < pH 2***	6 months
	Mercury	100	50	125 ml clear glass	K2Cr2O3/ HNO3 < pH 2***	7 days
	Nitrogen - Ammonia (NHp N) / Total Kjedahl Nitrogen (TKN)	100	50	125 mI HDPE	H,SO, < pH 2***	10 days
	Phenolics - Total	100	50	125 ml clear glass	CuSO ₄ / H ₂ PO ₄ < pH 2***	28 days
	Solids - (TS, TSS, TDS)	200	100	250 ml HDPE	4°C	7 days
	Sulphide (S*)	100	250	250 ml HDPE	NaOH / ZnOAc > pH 12***	7 days
	Total Phosphorus	100	50	125 ml HDPE	H-SO, < pH 2***	28 days
	Microbiological	250	250	250 mt HDPE - Sterilized	Na,S,O,	24 hours
	Acid & Base Neutral Extractables	2 x 1000	1000	1000 ml amber glass"	4°C	7 days
	Fatty and Resin Acids	250	100	250 ml amber glass"	4°C	28 days
	Herbicides	2 x 1000	1000	1000 ml amber glass**	4°C	7 days
	PCDD / PCDF	2 x 1000	1000	2 x 1000 ml amber glass"	4°C	28 days
	PAH's	2 x 1000	1000	1000 ml amber glass**	4°C	7 days
	Pesticides / PCB's	2 x 1000	1000	1000 mi amber glass**	4°C	7 days
	Oil & Grease / Heavy Oils	2 x 1000	1000	1000 ml amber glass**	HCI < pH 2***	28 days
	Total Extractable Hydrocarbons (TEH) - Diesel	500	250	2 x 250 ml or 500 ml amber glass"*	HCI < pH 2***	14 days
	Volatiles / BTEX / Total Volatile Hydrocarbons (TVH) - Gas	3 x 40	40	3 x 40 ml clear glass septum vial*	NaHSO, < pH 2***	14 days

HDPE = High Density Polyethylene

Note: Samples with more than one test with similar container / preservative requirements, may share a sample container as long as there is sufficient sample to cover minimum requirements for all tests requested. Please use a sample container which will provide sufficient sample when multiple tests are required.

* No headspace or air bubbles in the container.

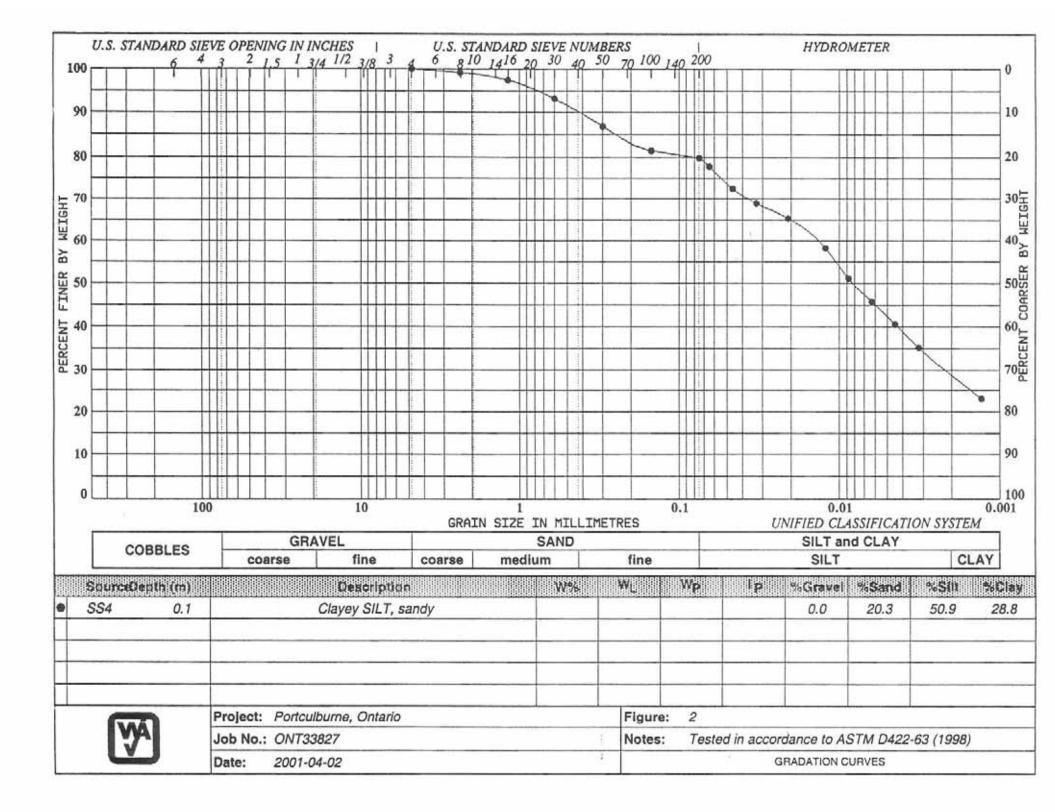
** Containers must have a terion liner in cap.

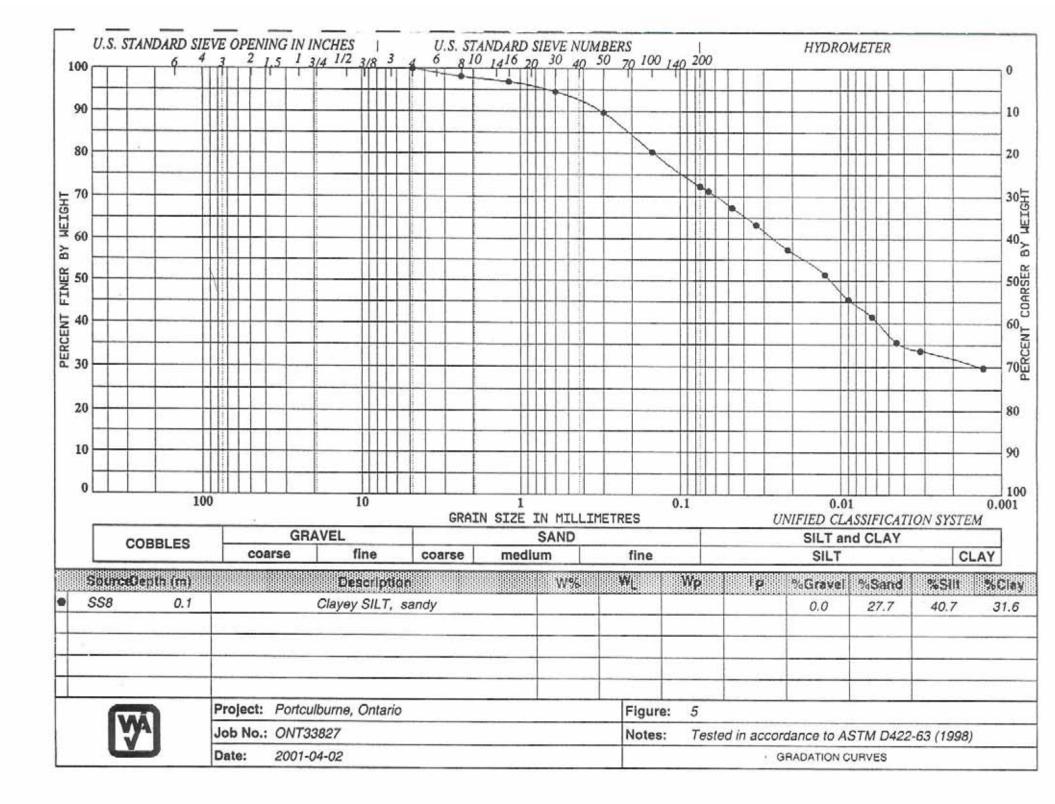
*** Corrosive - Wear protective gloves.

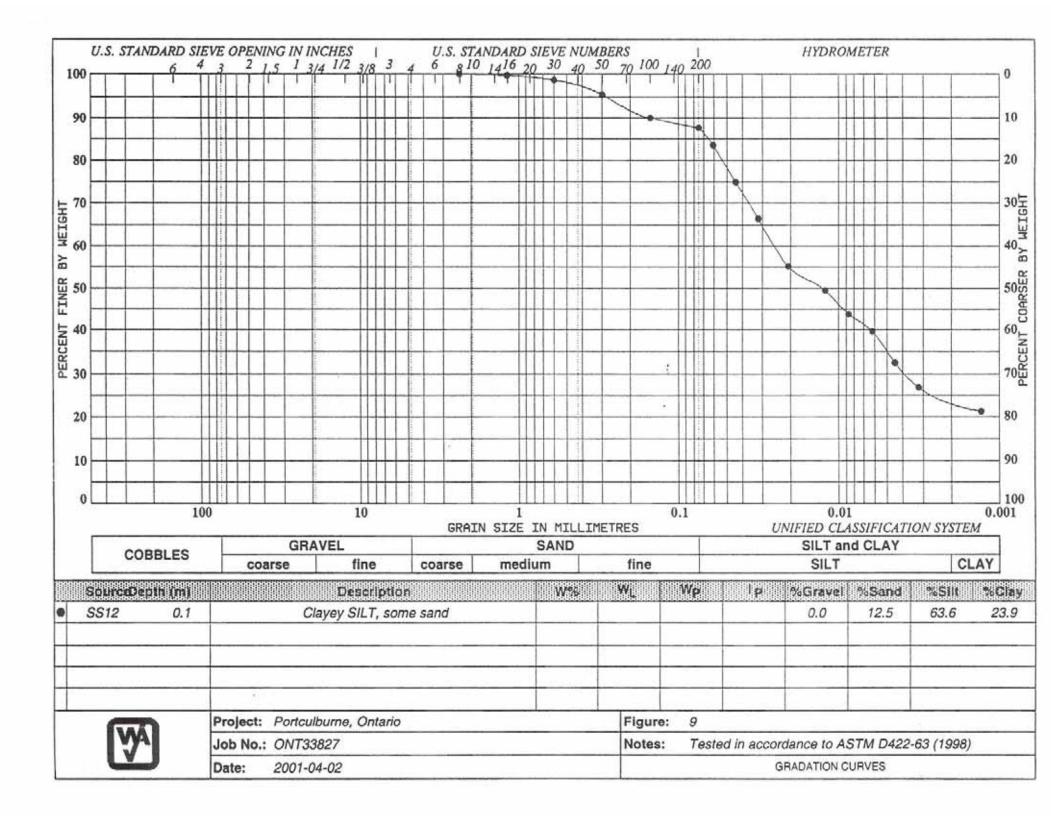
(1) Based upon EPA / MISA protocols.

Please ensure samples are transported as quickly as possible to ensure hold times can be met.

SOIL	Analytical		(g)	Sample	Preservation	Holding
JUIL	Parameter	Preferred	Minimum	Container	Trootration	Time a
	pH	100	50	250 ml glass jar	4°C	N/A
Sample	Anions - (Br', CI, F', NO3', NO2', PO43', SO43'')	100	50	250 ml glass jar	4°C	N/A
Bottle	Carbon - (DOC, TOC)		50	250 mi glass jar	4°C	N/A
ind	Chromium VI		50	250 ml glass jar	4°C	N/A
Preservation	Conductivity	100	50	250 ml glass jar	4°C	N/A
	Cyanide (CN')	100	50	250 ml glass jar	4°C	N/A
nformation-	HGAAS Metals (Sb, As, Bi, Se, Te)	100	50	250 ml glass jar	4°C	N/A
	ICP Metals	100	50	250 ml glass jar	4°C	N/A
	Mercury	100	50	250 mi glass jar	4'C	N/A
	Nitrogen - Ammonia (NH1-N) / Total Kjedahl Nitrogen (TKN)	100	50	250 ml glass jar	4ºC	N/A
	Phenolics - Total	100	50	250 ml glass jar	4°C	N/A
	Contaminated Sites Guidelines	250	100	250 mi glass jar	4°C	N/A
	Regulation 347	250	100	250 ml glass jar	4°C	N/A
	Acid & Base Neutral Extractables	100	50	120 ml or 250 ml glass jar	4°C	14 day
	Fatty and Resin Acids	100	50	120 mi or 250 mi glass jar	4°C	14 days
	Herbicides	100	50	120 ml or 250 ml glass jar	4°C	14 days
	PCDD / PCDF	100	50	120 ml or 250 ml glass jar	4°C	14 day
	PAH's	100	50	120 ml or 250 ml glass jar	4°C	14 days
	Pesticides / PCB's	100	50	120 ml or 250 ml glass jar	4°C	14 day
	Oil & Grease / Heavy Oils	100	50	120 ml or 250 ml glass jar	4°C	14 day
	Total Extractable Hydrocarbons (TEH) - Diesel	100	50	120 ml or 250 ml glass jar	4°C	14 days
	Volatiles / BTEX / Total Volatile Hydrocarbons (TVH) - Gas	60	30	60 ml or 120 ml glass jar*	4°C	14 days


COC110999


Hold times may differ depending on required protocol.


APPENDIX D

PARTICLE SIZE DISTRIBUTION CURVES OF SELECTED SOIL SAMPLES TAKEN FROM JWEL JANUARY 2001 SOIL INVESTIGATION

APPENDIX E

LABORATORY CERTIFICATES OF CHEMICAL ANALYSES:

JWEL JANUARY 2001 SOIL SAMPLES

Client:	Jacques Whitford Environment Ltd.	Date Received:	January 16/2001
	1200 Denison Street	Date Reported:	January 22/2001
	Markham, ON, CANADA	Lab Ref#:	G210157
	L3R 8G6	Lab Quote#:	EG009-0811
Fax:	905-479-9326	Client Ref#:	33828 INCO
		Sampled By:	D. Dolby
Attn:	D. Dolby		120

Attached are your results for VOC's

If you have any questions, please call Elaine Grant, your Service Manager at Philip Analytical Services Corp.

VOLATILE ORGANIC COMPOUNDS

Date: 22-Jan-01

"ent: Jacques Whitford Environment Ltd. oject Reference: 33828 INCO Work Order: G210157 * tatrix: Soil

Units: micrograms/gram (ug/g) dry weight

Compound	EQL ug/g	SAMPLE 5B	SAMPLE 5B Dup.	SAMPLE 7B	SAMPLE 10B	SAMPLE 11B
C. Joromethane	0.005	nd	nd	nd	nd	nd
Vinyl Chloride	0.002	nd	nd	nd	nd	nd
omomelhane	0.005	nd	nd	nd	nd	nd
loroethane	0.005	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.005	nd	nd	nd	nd	nd
* cetone	1.00	nd	nd	nd	nd	nd
-Dichloroethene	0.002	nd	nd	nd	nd	nd
L.Jhloromethane (Methylene Chloride)	0.010	nd	nd	nd	nd	nd
Irans-1,2-Dichloroethene	0.002	nd	nd	nd	nd	nd
thyl-t-Butyl Ether	0.002	nd	nd	nd	nd	nd
-Dichloroethane	0.002	nd	nd	nd	nd	nd
Methyl Ethyl Ketone (MEK)	0.025	nd	nd	nd	nd	nd
's-1,2-Dichloroethene	0.002	nd	nd	nd	nd	nd
loroform	0.002	nd	nd	nd	nd	nd
1,Dichloroethane	0.002	nd	nd	nd	nd	nd
1.1.1-Trichloroethane	0.002	nd	nd	nd	nd	nd
rbon Tetrachloride	0.002	nd	nd	nd	nd	nd
. nzene	0.002	*0.001	0.002	nd	0.003	0.003
1,2-Dichloropropane	0.002	nd	nd	nd	nd	nd
"richloroethene (Trichloroethylene)	0.002	nd	nd	nd	nd	nd
modichloromethane	0.002	nd	nd	nd	nd	nd
:1,3-Dichloropropene	0.002	nd	nd	nd	nd	nd
Methyl Isobutyl Ketone (MIBK)	0.025	nd	nd	nd	nd	nd
1s-1,3-Dichloropropene	0.002	nd	nd	nd	nd	nd
2-Trichloroethane	0.002	nd	nd	nd	nd	nd
foluene	0.002	0.002	0.004	nd	0.007	0.004
* Hexanone	0.025	nd	nd	nd	nd	nd
romochloromethane	0.002	nd	nd	nd	nd	nd
I,Dibromoethane (Ethylene dibromide)	0.002	nd	nd	nd	nd	nd
Fetrachloroethene (Perchloroethylene)	0.002	nd	nd	nd	nd	nd
1,2-Tetrachloroethane	0.002	nd	nd	nd	nd	nd
. orobenzene	0.002	nd	nd	nd	nd	nd
Ethylbenzene	0.002	nd	nd	nd	nd	nd
-Xylene & p-Xylene	0.002	*0.001	0.002	nd	0.004	0.002
moform	0.002	nd	nd	nd	nd	nd
5 jiene	0.002	nd	nd	nd	nd	nd
.1,2,2-Tetrachloroethane	0.002	nd	nd	nd	nd	nd
`'ylene	0.002	nd	nd	nd	nd	nd
Dichlorobenzene	0.002	nd	nd	nd	nd	nd
4-Dichlorobenzene	0.002	nd	nd	nd	nd	nd
2-Dichlorobenzene	0.002	nd	nd	nd	nd	nd
rogate Standard Recoveries	(Control L					
)omofluoromethane (70-130%)	Control	100%	102%	99%	99%	101%
"oluene-d8 (70-130%)		108%	113%	104%	109%	110%
romofluorobenzene (70-130%)		89%	85%	94%	88%	86%
onondorodenzene (70-130%)		0370	03%	54 76	00%	00%

PHILIP ANALYTICAL SERVICES

5735 McAdam Road, Mississauga, Ontario, Canada, L4Z 1N9 - Tel: (905) 890-8566 - Fax: (905) 890-8575 - Wats: 1 804-265-90 (0

www.philipanalytical.com

۲

ject Reference: 33828 INCO

Vork Order: G210157

Hrix: Soil

ent: Jacques Whitford Environment Ltd.

VOLATILE ORGANIC COMPOUNDS

Date: 22-Jan-01

Units: micrograms/gram (ug/g) dry weight

		,	Method Bla	nk	S	piked Me	thod Blan	k
	EQL		Upper		%	Lower	Upper	
mpound	ug/g	Result	Limit	Accept	Recovery	Limit	Limit	Accept
oromethane	0.005	nd	0.005	yes	110	60	140	yes
Inyl Chloride	0.002	nd	0.002	yes	105	60	140	yes
romomethane	0.005	nd	0.005	yes	108	60	140	yes
oroelhane	0.005	nd	0.005	yes	122	60	140	yes
hlorofluoromethane	0.005	• nd	0.005	yes	103	60	140	yes
cetone	1.00	nd	1.00	yes	94	60	140	yes
Dichloroethene	0.002	nd	0.002	yes	104	70	130	yes
nloromethane (Methylene Chloride)	0.010	nd	0.010	yes	117	70	130	yes
ans-1,2-Dichloroethene	0.002	nd	0.002	yes	105	70	130	yes
hyl-t-Butyl Ether	0.002	nd	0.002	yes	103	70	130	yes
Dichloroethane	0.002	nd	0.002	yes	104	70	130	yes
hyl Ethyl Ketone (MEK)	0.025	nd	0.025	yes	99	60	140	yes
s-1,2-Dichloroethene	0.002	nd	0.002	yes	104	70	130	yes
'proform	0.002	nd	0.002	yes	102	70	130	yes
Dichloroethane	0.002	nd	0.002	yes	98 .	70	130	yes
1,1-Trichloroethane	0.002	nd	0.002	yes	100	70	130	yes
rbon Tetrachloride	0.002	nd	0.002	yes	100	70	130	yes
zene	0.002	nd	0.002	yes	106	70	130	yes
Dichloropropane	0.002	nd	0.002	yes	106	70	130	yes
richloroethene (Trichloroethylene)	0.002	nd	0.002	yes	98	70	130	yes
modichloromethane	0.002	nd	0.002	yes	101	70	130	yes
1,3-Dichloropropene	0.002	nd	0.002	yes .	107	70	130	yes
einyl Isobutyl Ketone (MIBK)	0.025	nd	0.025	yes .	105	60	140	yes
-ns-1,3-Dichloropropene	0.002	nd	0.002	yes	106	70	130	yes
2-Trichloroethane	0.002	nd	0.002	yes	103	70	130	yes
: ene	0.002	nd	0.002	yes	101	70	130	yes
Hexanone	0.025	nd	0.025	yes	104	60	140	yes
romochloromethane	0.002	nd	0.002	yes	104	70	130	yes
Dibromoethane (Ethylene dibromide)		nd	0.002	yes	102	70	130	yes
strachloroethene (Perchloroethylene)	0.002	nd	0.002	10 Control 10	102	70	130	
1,1,2-Tetrachloroethane	0.002	nd	0.002	yes	103	70	130	yes
robenzene	0.002		0.002	yes	105	70	130	yes
i Ibenzene	0.002	nd nd	0.002	yes	105	70	130	yes
-Xylene & p-Xylene	0.002	nd	0.002	yes	100	70	130	yes
moform	0.002	nd	0.002	yes	102	70	130	yes
	0.002			yes	1 A 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70		yes
, ane	0.002	nd	0.002	yes	109		130	yes
1,2,2-Tetrachloroethane		nd	0.002	yes	108	70	130	yes
Yylene Dichlorobenzene	0.002	nd	0.002	yes	105	70	130	yes
	0.002	nd	0.002	yes	109	70	130	yes
Dichlorobenzene	0.002	nd	0.002	yes	108	70	130	yes
2-Dichlorobenzene	0.002	nd	0.002	yes	107	70	130	yes
ogate Standard Recoveries	(Control L							
 >mofluoromethane 		97%	70-130%	yes	96	70	130	yes
luene-d8		101%	70-130%	yes	100	70	130	yes
romofluorobenzene		98%	70-130%	yes	97	70	130	yes

PHUP ANALYTICAL SERVICES

Client: Jacques Whitford Environment Lt	d.
Project Reference: 33828 INCO	
Nork Order: G210157	
Matrix: Soil	

VOLATILE ORGANIC COMPOUNDS

Date: 22-Jan-01

Legend: EQL = Estimated Quantitation Limit for undiluted samples nd = Not Detected Above EQL Dup. = Duplicate * = Detected below EQL but passed compound identification criteria

Date of sample receipt: January 16, 2001 Date of sample analysis: January 17, 2001

Analytical Method:

The soil samples were analysed by low level purge & trap (US EPA Method 5035) gas chromatography/ mass spectrometry using US EPA Method 8260B (modified).

Note: Estimated quantitation limit is the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

NOTE: All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analysis done. Your samples will be retained by PAS for a period of 30 days following reporting or as per specific contractual arrangement.

Job Approved By:

iou, B.Sc

۲

5735 Mc	P ANALYTICAL SEP Adam Road uga, Ontario L4Z 1N9	Tel: (905) 890-8	575			Work Order:	
Tient: The Cost of the Cost		1	PAS Quote # : Client P.O. # : Client Project # :			<u></u>	Page of
$\frac{1}{1}$		Pic	Sampled by: ase specify Guideline (if	<u> </u>		1 k	
nvoice to (if other than above):	ан: 	Analysis Required:			*some	FOR R	DE ADVANCE NOTICE USH PROJECTS oply, please contact Lab ess Days
Sample Client Sample 1.D.	Date Time Sampled Sampled				Sampl Matri		Comments/Contamination/ Site History
1 SAMPE 53 2 SAVINE 78 3 SA 102 100 4 SA 1016 1115 5	nfrifat Areta Areta Areta Areta	X X X X	•		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
6 7 8 9					-		
10 11 12						-	
amples Relinquished to PAS by Client Signature) amples Received in lab by:	- 612		- Date: Date: C 1 (O	Time:	13.25.	Method Lat Ship	mples upon receipt at tabi

Client:	Jacques Whitford Environment Ltd.	Date Received:	January 5/2001
	1200 Denison Street	Date Reported:	January 11/2001
	Markham, ON, CANADA	Lab Ref#:	G210039
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	33827
Fax:	905-479-9326	Client Ref#:	33827
		Sampled By:	KW/DD
Attn:	Mahaboob Alam		

. .

Attached are your results for PAH's

If you have any questions, please call Elaine Grant, your Service Manager at Philip Analytical Services Corp.

۲

1.1.1.1.1.1.1.1

1000

nt: Jacques Whitford Environmer r ,ect Reference: 33827	it Ltd.	Polynuclear	Aromatic H	ydrocarbons	(PAH's)		
/ork Order Number: G210039B ix: Soil		Units: I	Date:	11-Jan-01			
ompound	EQL µg/g	SOIL 5-1 DF=5	SOIL 7-1	SOIL 10-1	SOIL 11-1		
synthalene	0.05	nd	nd	nd .	nd		
Methylnaphthalene	0.05	nd	nd	nd	nd		
ethylnaphthalene	0.05	nd	nd	nd	nd		
c naphthylene	0.05	nd	nd	nd	nd		
cenaphthene	0.05	nd	nd	nd	nd		
rene	0.05	nd	nd	nd	nd		
. nanthrene	0.05	0.11	0.09	0.07	0.18		
nthracene	0.05	nd	nd	0.06	0.05		
ranthene	0.05	0.31	0.25	nd	0.34		
ne	0.05	0.24	0.18	0.06	0.28		
euzo(a)anthracene	0.05	0.12	0.09	0.05	0.20		
^L rysene	0.05	0.17	0.16	nd	0.25		
:o(b)fluoranthene	0.05	0.14	0.14	nd	0.21		
 20(k)fluoranthene 	0.05	0.13	0.10	nd	0.17		
enzo(a)pyrene	0.05	0.12	nd	nd	0.18		
no(1,2,3-cd)pyrene	0.05	0.12	0.10	nd	0.14		
nzo(a,h)anthracene	0.05	nd	nd	nd	nd		
enzo(ghi)perylene	0.05	0.11	0.08	nd	0.14		
ogate Standard Recoveries (Con	trol Limits)						
cenaphthene-d10 (19-114%)		61%	66%	71%	65%		
thracene-d10 (15-126%)		55%	57%	59%	56%		
:o(a)pyrene-d12 (33-127%)		77%	80%	78%	76%		

1.4

.....

Client: Jacques Whitford Environment Ltd. oject Reference: 33827 ork Order Number: G210039B Aatrix: Soil Polynuclear Aromatic Hydrocarbons (PAH's)

Units: Micrograms/gram (µg/g) dry weight

Date: 11-Jan-01

		Me	ethod Bla	ank	Spiked Method Blank			
	EQL		Upper		%	Lower	Upper	
- mpound	µg/g	Result	Limit	Accept	Recovery	Limit	Limit	Accept
vaphthalene	0.05	nd	0.05	yes	67	29	107	yes
Methylnaphthalene	0.05	nd	0.05	yes	73	32	111	yes
1ethylnaphthalene	0.05	nd	0.05	yes	76	29	116	yes
A_ anaphthylene	0.05	nd	0.05	yes	73	34	115	yes
Acenaphthene	0.05	nd	0.05	yes	67	35	113	yes
orene	0.05	nd	0.05	yes	70	42	116	yes
· enanthrene	0.05	nd	0.05	yes	71	50	119	yes
Inthracene	0.05	nd	0.05	yes	74	53	123	yes
··oranthene	0.05	nd	0.05	yes	73	58	129	yes
ene	0.05	nd	0.05	yes	72	58	129	yes
3enzo(a)anthracene	0.05	nd	0.05	yes	84	57	134	yes
rysene	0.05	nd	0.05	yes	85	57	136	yes
1zo(b)fluoranthene	0.05	nd	0.05	yes	83	53	135	yes
3zo(k)fluoranthene	0.05	nd	0.05	yes	76	52	133	yes
'enzo(a)pyrene	0.05	nd	0.05	yes	80	54	131	yes
eno(1,2,3-cd)pyrene	0.05	nd	0.05	yes	85	45	134	yes
 enzo(a,h)anthracene 	0.05	nd	0.05	yes	83	46	137	yes
lenzo(ghi)perylene	0.05	nd	0.05	yes	80	45	134	yes
. rogate Standard Recoveries (Control Limits)							
:enaphthene-d10		71%			64	19	114	yes
hracene-d10		62%			56	15	126	yes
lunzo(a)pyrene-d12		85%			78	33	127	yes

	1-		-	
		-	_	
10	1			
Concession in such	-	-	-	-

-	-	1.1	1.00
Page	્ય	-nt	2
rage	~	- 01	0

Client: Jacques Whitford Environment Ltd. bject Reference: 33827 brk Order Number: G210039B Vatrix: Soil Polynuclear Aromatic Hydrocarbons (PAH's)

Date: 11-Jan-01

Legend: EQL = Estimated Quantitation Limit nd = Not detected above EQL

> Date received: January 5, 2001 Date extracted: January 9, 2001 Date analysed: January 9-10, 2001

ALYTICAL METHOD:

The soil samples (10 grams wet weight) were mixed with sodium sulfate and extracted with a 1:1 mixture of tone:dichloromethane. The extracts were cleaned up using alumina column chromatography. Analysis was to formed by gas chromatography/mass spectrometry using U.S. EPA Method 8270C (modified).

e: Estimated quantitation limit is the lowest concentration that can be reliably achieved within specified t ts of precision and accuracy during routine laboratory operating conditions.

TE: All work recorded herein has been done in accordance with normal professional standards using epted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost t the pertinent analysis done. Your samples will be retained by PASC for a period of 30 days following porting or as per specific contractual arrangement.

OB APPROVED BY:

KathyHawat Kathy Horval, B.Sc.

Chemist

Client:	Jacques Whitford Environment Ltd.	Date Received:	January 5/2001
	1200 Denison Street	Date Reported:	January 10/2001
	Markham, ON, CANADA	Lab Ref#:	G210039
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	33827
Fax:	905-479-9326	Client Ref#:	33827
		Sampled By:	KW/DD
Attn:	Eric Veska/Kevin Wong		

Attached are your results for Polychlorinated Biphenyls (PCB's)

Instrumentation: If you have any questions, please call Elaine Grant, your Service Manager at Philip Analytical Services Corp.

۲

Client	: Jacques Whitford.Environme 1200 Denison Street Markham ON, L3R 8G6	ent Ltd. Date: January 10, 2001
Contact Client project#	: Eric Veska/ Kevin Wong	
그는 것이 가지 않는 것이 같은 것이 같이 같이 같이 같이 했다.	: G210039	
Contraction of the second second second	; Soil	
		Certificate of Analysis
Analysis Perfor	med:	Polychlorinated Biphenyls (PCB's)
Methodology:		Determination of total PCB's in soil by solvent extraction,
37		followed by florisil cleanup and analysis by capillary GC/ECD with external standard quantitation.
		U.S. EPA Method No. 8082
Instrumentation		Hewlett Packard 5890 II with autosampler and Chemstation
Sample Descrip	lion:	Soil
Results:		Refer to Report of Analysis attached.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done unless otherwise agreed upon by contractual arrangement. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

M. RishMh

Certified By Medhat Riskallah, Ph.D., C.Chem. Manager, Gas Chromatography Section

۲

Client	: Jacques Whitford Environment Ltd.
	1200 Denison Street
	Markham ON, L3R 8G6
Contact	: Eric Veska/ Kevin Wong
Client project#	: 33827
PASC job #	: G210039
Matrix	: Soil

Date: January 10, 2001

Report of Analysis

		Total PCB's ug/g	DCBP % Recovery
	L.O.Q.	0.05	
1	Reagent Blank	ND	99%
2	Spiked Reagent Blank	114%	97%
3	SOIL 5-1	ND	111%
4	SOIL 5-1(Repeat)	ND	114%
5	SOIL 7-1	ND	128%
6	SOIL 10-1	ND	124%
7	SOIL 11-1	0.13	129%

Comment:

1.24

The PCBs detected in sample; SOIL 11-1, is Aroclor 1254.

L.O.Q. = Limit of Quantitation N.D = Not Detected ug/g= micrograms per gram DCBP= Decachlorobiphenyl (surrogate standard)

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Mahaboob Alam sttn:

Date Received:	January 5/2001
Date Reported:	January 11/2001
Lab Ref#:	G210039
Lab Quote#:	EG009-0811
Client PO#:	33827
Client Ref#:	33827
Sampled By:	KW/DD

Certificate of Analysis

Analysis Performed:	Mercury, Cold Vapour AA
	Thallium, Graphite Furnace, Digestion Required
	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	Anions, IC(F, Cl, Br, NO2, NO3, o-PO4 & SO4), Extraction Req'd
	17 Element ICP Scan
lethodology:	 Determination of mercury in soils/sediment by cold vapour atomic absorption spectrophotometry.
	U.S. EPA SW846 Methods No. 7471A & 7470A
	 Analysis of thallium in soil by Graphite Furnace Atomic Absorption.
	U.S. EPA Method No. 7841
	 Analysis of arsenic in soil by Hydride Generation Atomic Absorption.
	U.S. EPA Method No. 7061(Modifications)
	4) Analysis of antimony in soil by hydride generation.
	U.S. EPA Method No. 7042

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip inalytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting as per specific contractual arrangements. PHILIP ANALYTICAL SERVICES

5735 McAdam Road, Mississauga, Ontario, Canada L4Z 1N9 Tel: (905) 890-8566 Fax: (905) 890-8575 Wats: 1-800-263-9040 Page 1 ۲

www.philipanalytical.com

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

rax: 905-479-9326

.ttn: Mahaboob Alam

Date Received:	January 5/2001
Date Reported:	January 11/2001
Lab Ref#:	G210039
Lab Quote#:	EG009-0811
Client PO#:	33827
Client Ref#:	33827
Sampled By:	KW/DD

1010101

e lanas

Data Data in da

Certificate of Analysis

(cont'd)

5) Analysis of selenium in soil by hydride generation. U.S. EPA Method No. 7741(Modification)
6) Analysis of anions in soil by Ion Chromatography. U.S. EPA Method No. 300.0 Standard Methods(1985) No. 429.0
7) Analysis of trace metals in soil by Inductively Coupled

Plasma Spectrophotometry. U.S. EPA Method No. 6010

(Ministry of Environment ELSCAN)

"nstrumentation:

1) Thermo Separation Products Mercury Analyzer

2) Varian Spectro AA 400/Zeeman Graphite Tube Atomizer

3) Varian VGA 76

4, 5) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76

6) Dionex Ion Chromatograph, Series 4500i

7) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip alytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting as per specific contractual arrangements.
PHILP ANALYTICAL SERVICES

5735 McAdam Road, Mississauga, Ontario, Canada L4Z 1N9 Tel: (905) 890-8566 Fax: (905) 890-8575 Wats: 1-800-263-90-i9 Page 2 www.philipanalytical.com

ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received: June 20/2001 Date Reported: July 18/2001 Lab Ref#: Lab Quote#: EG009-0811

Client Ref#:

ONT33826

G212613

Certificate of Analysis

Analysis Performed:	Mercury, Cold Vapour AA
	Arsenic, Hydride Generation AA
	Bismuth, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	Chloride, Ion Chromatography, Extraction Required
	Sulfate, Ion Chromatography, Extraction Required
	Boron(hot water soluble) by ICP
	17 Element ICP Scan
	Sulphur by LECO Induction Furnace
	pH, Hydrogen Ion Activity, Extraction Required
Methodology:	 Determination of mercury in soils/sediment by cold vapour atomic absorption spectrophotometry. U.S. EPA SW846 Methods No. 7471A & 7470A
	 Analysis of arsenic in soil by Hydride Generation Atomic Absorption.
	U.S. EPA Method No. 7061(Modifications)3) Analysis of Bismuth in soil by Hydride Generation Atomic Absorption.
	Standard Methods 3114C (Modified)

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	June 20/2001
Date Reported:	July 18/2001
Lab Ref#:	G212613
Lab Quote#:	EG009-0811

Client Ref#:

ONT33826

Certificate of Analysis

Methodology: (Cont'd)

- Analysis of antimony in soil by hydride generation.
 U.S. EPA Method No. 7042
- Analysis of selenium in soil by hydride generation. U.S. EPA Method No. 7741(Modification)
- Analysis of chloride in soil by Ion Chromatography. U.S. EPA Method No. 300.0
- Analysis of sulfate in soil by aqueous extraction followed by Ion Chromatography.
 - U.S. EPA Method No. 300.0
- Analysis of hot water soluble boron in soil by performing a hot aqueous extraction prior to the analysis using ICPAES.
 U.S. EPA Method No. 6010

Canadian Council Min.Environ. Criteria

- Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.
 U.S. EPA Method No. 6010
 - (Ministry of Environment ELSCAN)
- Analysis of sulphur in soil by LECO Combustion. MOEE Method E3096A

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	June 20/2001
	1200 Denison Street	Date Reported:	July 18/2001
	Markham, ON, CANADA	Lab Ref#:	G212613
	L3R 8G6	Lab Quote#:	EG009-0811
Fax:	905-479-9326	Client Ref#:	ONT33826
Attn:	Mahaboob Alam		

Certificate of Analysis

Methodology: (Cont'd)	
	 Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045
Instrumentation:	1) Thermo Separation Products Mercury Analyzer
	2) Varian VGA 76
	3, 4, 5) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	6, 7) Dionex Ion Chromatograph, Series 4500i
	8, 9) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	10) LECO Induction Furnace
	11) Orion Research Expandable Ion Analyzer EA940
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

m Certified By

Elaine Grant

Account Manager

Certified By Laboratory Supervisor

work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip rtical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting per specific contractual arrangements.

Certificate of Quality Control

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	July 18/2001
Lab Ref # :	G212613
Lab Quote#:	EG009-0811

Client Ref#:

ONT33826

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Mercury	SS2-1	0.01	mg/kg	nd	0.02	yes	110	73	127	yes	0.06	0.05	0.02	0.08	yes	
Arsenic	SS2-1	0.2	mg/kg	nd	0.5	yes	116	84	120	yes	4.1	5.0	3.5	6.5		yes
Bismuth	SS2-1	0.2	mg/kg	nd	6.5	yes	100	60	140	yes	4.7	5.0	3.5	6.5	yes	yes
Antimony	na	0.2	mg/kg	nd	0.5	yes	100	29	157	1.0000	na	5.82	0.0	1.702070-	yes	yes
Selenium	SS2-1	0.2	mg/kg	nd	0.5	yes	80	60	140	yes yes	4.3	na 5.0	na 3.5	na 6.5	na	yes
Chloride	-	0.5	mg/kg	nd	1.0	yes	97	80	120	yes	4.3 na	na		1.000	yes	yes
Sulphate	78	5	mg/kg	nd	10	yes	95	80	227	yes	na	na	na	na	na	yes
Boron(Hot water soluble)	-	0.2	mg/kg	nd	0.4	yes	99	80	120	yes	na		na	na	na	yes
Aluminum		20	mg/kg	nd	40	yes	100	83	117	yes	na	na	na	na	na	yes
Barium	SS2-1	5	mg/kg	nd	10	yes	103	86	113	yes	103	na 100	na 70	120	na	yes
Beryllium	552-1	0.2	mg/kg	0.3	0.4	yes	97	81	121	yes	8.9	10	7	130	yes	yes
Cadmium	552-1	0.5	mg/kg	nd	0.6	yes	12	0	179		1.22	1.063	and a	13	yes	yes
Chromium	SS2-1	1	mg/kg	nd	2	yes	103	81	117	yes	97.7	100	70	130	yes	yes
Cobalt	552-1	2	mg/kg	nd	4	yes	105	87	112	yes	97	100	70	130	yes	yes
Copper	552-1	1	mg/kg	1	4	yes	102	88	112	yes	95	100	70	130	yes	yes
Iron	104	50	mg/kg	nd	100	yes	102	84		yes	98	100	70	130	yes	yes
Lead	\$\$2-1	5	mg/kg	nd	10	yes	100	67	116	yes	na	na	na	na	na	yes
Manganese	552-1	1	mg/kg	nd	2	yes	104	87	1000	yes	96	100	70	130	yes	yes
Molybdenum	552-1	3	mg/kg	nd	6	yes	105	8/ 0	113 426	yes	100	100	70	130	yes	yes
Nickel	SS2-1	2	mg/kg	nd	4	yes	105	86	420	yes yes	189 104	200 100	140 70	260 130	yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted = parameter not detected ns

nd

= trace level less than EQL TR

Certificate of Quality Control

Client :	Jacques	Whitford	Environment	Ltd.
Contact:	Mahabo	ob Alam		

Date Reported:	July 18/2001
Lab Ref # :	G212613
Lab Quote#:	EG009-0811

Client Ref#:

ONT33826

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			М	atrix Spil	ke		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Phosphorus	58	20	mg/kg	nd	40	yes	119	77	123	yes	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	106	61	136	yes	na	na	na	na	na	yes
Titanium	m	5	mg/kg	nd	10	yes	114	51	149	yes	na	na	na	na	na.	179121
Vanadium	SS2-1	1	mg/kg	nd	2	yes	104	81	119	yes	100	100	70	130		yes
Zint	SS2-1	5	mg/kg	nd	10	yes	103	87	113	yes	98	100	70	130	yes	yes
Sulphur as 5	78	0.005	%	nd	0.01	yes	91	90	120	yes	na	na	na	130	yes na	yes yes
рН	-	0.01	Units	nd	0.02	yes	100	90	110	yes	na	na	na	na	na	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence ٠

= Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client:	Jacques Whitford Environment Ltd.	Date Received:	June 20/2001
	1200 Denison Street	Date Reported:	July 18/2001
	Markham, ON, CANADA	Lab Ref#:	G212613
	L3R 8G6	Lab Quote#:	EG009-0811
Fax:	905-479-9326	Client Ref#:	ONT33826
Attn:	Mahaboob Alam		

Certificate of Analysis

Additional Comments:

Arsenic Selenium Bismuth Determination: Sample SS2-1 was re-digested and re-run with matrix spike.

Antimony Determination: Sample SS2-1 was re-digested on three separate occasions with matrix spike. Recoveries were 64%, 48% and 64%.

Waters Soluble Boron Determination: Sample SS5-1 was spiked with 1 mg/kg Boron. Recovery was 1.01 mg/kg (79%).

Report of Analysis

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	July 18/2001
Lab Ref # :	G212613
Lab Quote #:	EG009-0811

Analysis of Soil, expressed on a dry weight basis

Client Ref#: ON

ONT33826

Parameter	EQL	Units	SS10-1	SS11-1	SS12-1	SS13-1	SS2-1
Mercury	0.01	mg/kg	0.06	0.11	0.06	0.04	0.05
Antimony	0.2	mg/kg	0.2	3.6	0.2	nd	nd
Arsenic	0.2	mg/kg	2.8	8.7	5.1	2.4	4.4
Bismuth	0.2	mg/kg	nd	0.3	0.2	nd	nd
Selenium	0.2	mg/kg	0.2	1.1	0.8	0.2	0.5
Chloride	0.5	mg/kg	216	133	147	104	22.2
Sulphate	5	mg/kg	180	29	320	32	56
Aluminum	20	mg/kg	8700	7420	14500	9700	5190
Barium	5	mg/kg	82	127	107	41	46
Beryllium	0.2	mg/kg	0.3	0.3	0.6	0.6	0.2
Boron(Hot water soluble)	0.2	mg/kg	nd	0.3	0.3	0.2	nd
Cadmium	0.5	mg/kg	nd	0.7	nd	nd	nd
Chromium	- E	mg/kg	16	36	21	13	10
Cobalt	2	mg/kg	8	19	19	4	8
Copper	1	mg/kg	43	106	70	11	44
iron	50	mg/kg	13300	14000	25100	11100	11900
Lead	5	mg/kg	16	256	34	13	26
Manganese	1	mg/kg	388	310	440	166	286
folybdenum	3	mg/kg	nd	nd	ba	nd	nd
Vickel	2	mg/kg	102	674	493	15	289
hospho rus	20	mg/kg	1660	1080	1260	736	1060
älver	1	mg/kg	nd	ba	nd	nd	nd
Stanium	5	mg/kg	81	103	99	42	140
anadium	1	mg/kg	19	19	30	20	20
linc	5	mg/kg	75	307	99	45	71
alphur as S	0.005	%	0.080	0.076	0.080	0.060	0.060
H	0.01	Units	7.04	7.52	6.84	7.04	6.65

EQL

Louis

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Report of Analysis

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam
 Report Date:
 July 18/2001

 Lab Ref # :
 G212613

 Lab Quote #:
 EG009-0811

Analysis of Soil, expressed on a dry weight basis

Client Ref#: ONT33826

Parameter	EQL	Units	SS2-1 Replicate	SS4-1	SS5-1	SS6-1	S58-1
Mercury	0.01	mg/kg	0.05	0.09	0.06	0.09	0.04
Antimony	0.2	mg/kg	nd	0.2	nd	nd	0.3
Arsenic	0.2	mg/kg	4.5	7.1	7.5	0.5	8.6
Bismuth	0.2	mg/kg	nd	0.4	nd	nd	nđ
Selenium	0.2	mg/kg	0.5	1.5	0.3	0.8	0.4
Chloride	0.5	mg/kg	22.4	25.6	48.4	23.8	91.3
Sulphate	5	mg/kg	59	68	38	20	423
Aluminum	20	mg/kg	5510	16900	10600	4760	12900
Barium	5	mg/kg	47	133	75	57	69
Beryllium	0.2	mg/kg	0.2	0.8	0.5	nd	0.5
Boron(Hot water soluble)	0.2	mg/kg	nd	0.8	0.2	0.3	nd
Cadmium	0.5	mg/kg	nd	0.9	0.6	nd	nd
Chromium	1	mg/kg	п	23	16	8	19
Cobalt	2	mg/kg	8	20	7	8	9
Copper	1	mg/kg	48	105	25	44	37
ren	50	mg/kg	12300	19400	12500	8170	16900
Lead	5	mg/kg	28	32	19	222	29
Manganese	1	mg/kg	295	221	235	145	422
Molybdenum	3	mg/kg	nd	nd	nd	nd	nd
fickel	2	mg/kg	303	778	27	321	185
Phospbonus	20	mg/kg	1050	917	913	777	1200
ilver	1	mg/kg	nd	nd	nd	nd	nd
litanium	5	mg/tg	142	35	77	90	90
/anadium	1	mg/kg	21	30	23	13	26
line	5	mg/kg	74	125	63	98	64
Sulphur as S	0.005	\$	0.062	0.088	0.076	0.042	0.076
н	0.01	Units		6.00	6.94	7.14	6.63

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Not Requested

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Report of Analysis

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

 Report Date:
 July 18/2001

 Lab Ref # :
 G212613

 Lab Quote #:
 EG009-0811

Analysis of Soil, expressed on a dry weight basis

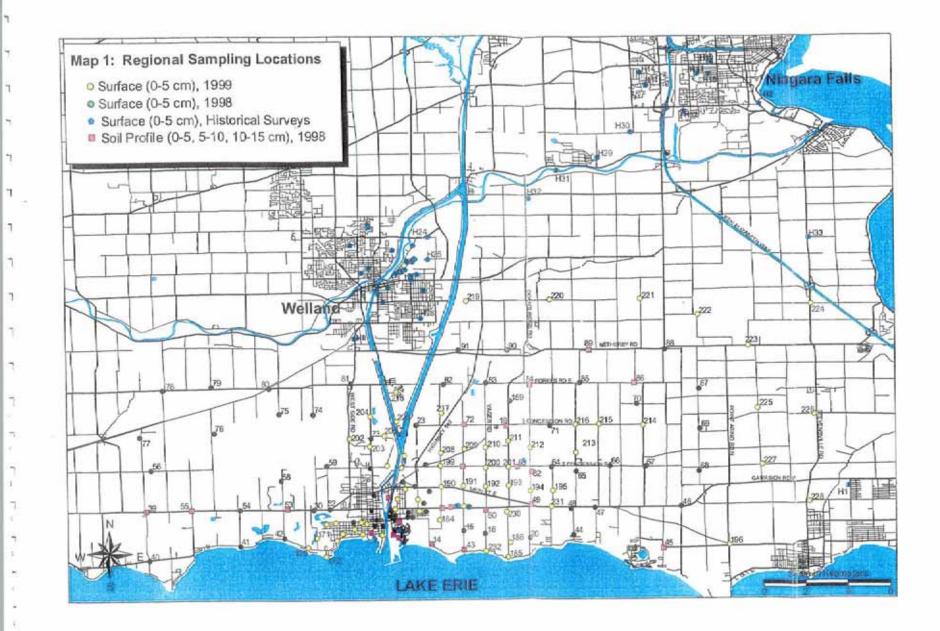
Client Ref#: ONT33826

Parameter	EQL	Units	\$\$9-1		-	
Mercury	0.01	mg/kg	0.04			
Antimony	0.2	mg/kg	nd			
Arsenic	0.2	mg/kg	3.2			
Bismuth	0.2	mg/kg	nd			
Selenium	0.2	mg/kg	0.3			
Chloride	0.5	mg/kg	8.7			
Sulphate	5	mg/kg	57			
Aluminum	20	mg/kg	12800			
Barium	5	mg/kg	69			
Beryllium	0.2	mg/kg	0.5			
Boron(Hot water soluble)	0.2	mg/kg	nd			
Cadmium	0.5	mg/kg	nd			
Chromium	1	mg/kg	16			
Cobalt	2	mg/kg	8			
Copper	1	mg/kg	27			
Iron	50	mg/kg	18300			
Lead	5	mg/kg	21			<u>6</u>
Manganese	1	mg/kg	287		1	
Molybdenum	3	mg/kg	ba			
Nickel	2	mg/kg	120			
Phosphorus	20	mg/kg	909	02	- 1	
Silver	1	mg/kg	nd			
Fitanium	5	mg/kg	106			
Vanadium	1	mg/kg	26			
Zine	5	mg/kg	59			
Sulphur as S	0.005	%	0.048			
H	0.01	Units	7.18			

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

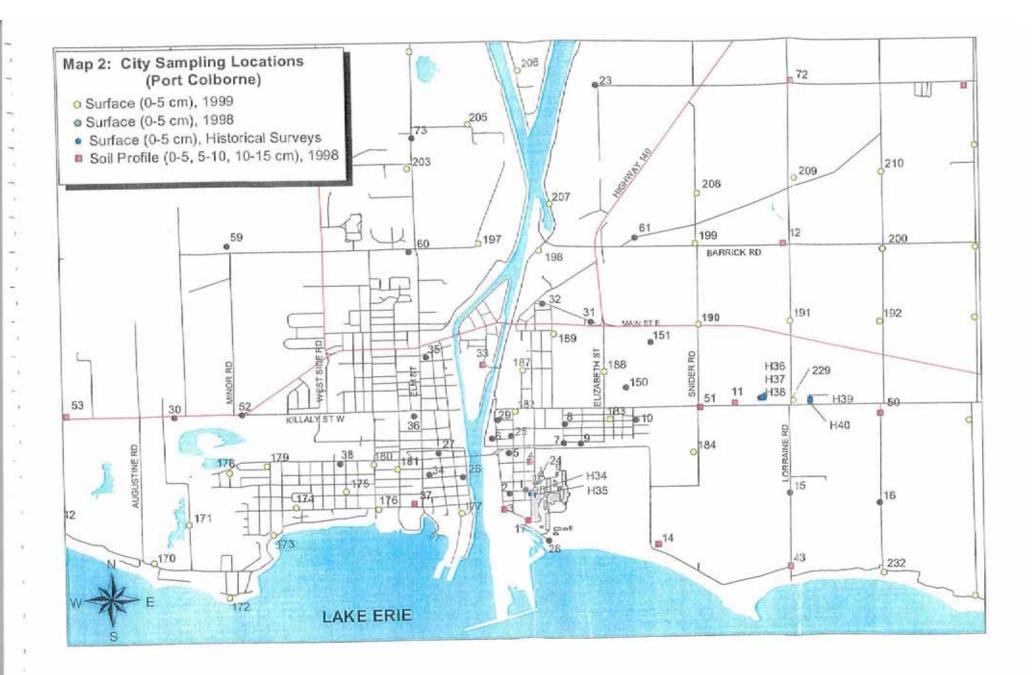
nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client:	Client: JWEL					PASC	Quote # :	JW	EL-1	ENCI	SPE	() A1	Page of
Sector 1	MARKHAM	- 4											Page of
	a	- anger - S		field and			P.O. # : Project # :	C	NT	33	826		11 10 4 A A A A A A A A A A A A A A A A A A
Contact:	M. ALAM	2	12	1 1 1		Sample	1/19/07/20/07/20/07					1	JUN 20'01 PM 1:57
Phone:		Fax:	1	1.1.1.1	Please		Guideline (i	famicable	e)	R	Es.		TABLEA,
		Y.		Analysis Required:		1/	sec.				TAT (Turno	around Tin	
Invoice to	(if other than above):	11		34	3	1	0	1				ASE PROV	IDE ADVANCE NOTICE
		B. A.	<u> </u>	11,0	EX	ick	K 50						RUSH PROJECTS
		AC	cef 1	N. C. S.	12	Tills	4sc				STD)		apply, please contact Lab ness Days
	and year and the second		- Cel	320	E	E'	0				RUSH	Specify	Date
- ²	17 E 19			APEN	RDN	T	AN			2-	14	Time	
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	A1, 41,	Bo	d'	X A S	5			Sample Matrix	No.of Containers	Comments/Contamination/ Site History
. 1	552-1			V	V	1	17	Î			SOIL	1	DISSOSS WITH
2	554-1	1.000	81.0	1	1	1	11/		1 8		v	1	M.ALAM, MATRI
3	55 5-1		e ill a	V.	V	1	11	1			4-	i	SPIKE NEEDS TO BE
1 4	556-1-				V	1	11		1		M	.1	DONE ON THESE
.5	358-1			1	\checkmark	1	1.1		1		v	1	SAMPLES
6	359-1	1		//	V	1					5	I	
7	5510-1		194		\checkmark	1	11				n	1	
8	5511-1			1	V	1	11	1			v	11	
9	5512-1				1	1					v	1	
10	5513-1		lacia.	~	V	V	11	1			n	1	1.4
- 11		-			1	0	18		N		mar i		
12				1.2	1.0						15	-	
Samples I	Relinquished to PAS by gnature)		100			E	late:		Time:		1	Method of Sh	ipment


APPENDIX F

APPENDIX F1

SAMPLE LOCATION MAP MOE 1998 AND 1999 ARCHIVED SOIL SAMPLES



h.

4

÷.

APPENDIX F2

TABLE 1: MOE 1998 AND 1999 ARCHIVED SOIL SAMPLES:

SOIL ANALYTICAL RESULTS (ARSENIC AND SELENIUM) AND COMPARATIVE GUIDELINES

SAMPLE LOCATION [®] (STATION NUMBER)	LAND USE CATEGORY	ARSENIC	MOE LAND USE CRITERIA ^b	SELENIUM	MOE LAND USE CRITERIA	
Station # 001	Residential Property	16.1	25	3.8	10	
Station # 002	Boulevard	12.2	25	2.2	10	
Station # 003	Parkland (Open Space)	12.2	25	1.4	10	
Station # 004	Residential Property	14.4	25	2.7	10	
Station # 005	Boulevard	5.0	25	1.2	10	
Station # 006	Residential Property	5.1	25	0.8	10	
Station # 007	Boulevard	3.1	25	0.5	10	
Station # 008	Residential Property	5.5	25	1.4	10	
Station # 009	Residential Property	14.4	25	2.4	10	
Station # 010 Boulevard		2.2	25	< 0.2	10	
Station # 011	Institutional (School Yard))	7.6	25	1.6	10	
Station # 012	Boulevard (Right of Way)	3.9	25	< 0.2	10	
Station # 014	Residential Property	3.8	25	0.9	10	
Station # 015	Boulevard (Right of Way)	8.0	25	3.4	10	
Station # 016	Residential Property	3.0	25	0.8	10	
Station # 017	Boulevard (Right of Way)	4.0	25	0.5	10	
Station # 019	Residential Property	3.0	25	0.2	10	
Station # 020	Institutional Property	2.8	25	0.5	10	
Station # 023	Residential (ROW)	4.2	25	0.3	10	
Station # 024	Boulevard	10.1	25	2.8	10	
Station # 025	Boulevard)	3.5	25	0.6	10	
Station # 026	Boulevard	3.1	25	1.0	10	
Station # 027	Boulevard	1.9	25	<0.2	10	
Station # 028	Boulevard (Right of Way)	7.4	25	2.3	10	
Station # 029	Residential Property	5.6	25	0.8	10	
Station # 030	Commercial Property	4.2	25	0.3	10	
Station # 031	Boulevard (Right of Way)	2.4	25	0.8	10	

Notes:

3

Sample locations are provided in Drawing 1, Appendix C.

b

 Ontario Ministry of the Environment's Guideline for Use At Contaminated Sites in Ontario, February 1997, (Table A) Potable groundwater use at residential/parkland land use with medium and fine textured soils for all category of land uses except agricultural for which medium grained soils agricultural land use criteria were used (in italics).

Potential CoC Identification In Accordance With TSOW Condition No. 2 Project No. ONT34645

12

SAMPLE LOCATION ⁴ (STATION NUMBER)	LAND USE CATEGORY	ARSENIC	MOE LAND USE CRITERIA ^b	SELENIUM	MOE LAND USE CRITERIA ¹
Station # 032	Parkland	3.0	25	0.8	10
Station # 033	Parkland	4.0	25	0.4	10
Station # 034	Boulevard	3.7	25	1.2	10
Station # 035	Parkland (Baseball Park)	7.1	25	0.5	10
Station # 036	Parkland (Athletic Field)	4.2	25	0.3	10
Station # 037	Parkland	4.9	25	1.0	10
Station # 038	Boulevard	2.4	25	0.3	10
Station # 039	Residential Property	2.0	25	< 0.2	10
Station # 040	Institutional (Fire Hall)	3.6	25	0.2	10
Station # 041	Boulevard (Right of Way)	3.2	25	0.3	10
Station # 042	Residential Property	1.8	25	0.2	10
Station # 043 Boulevard (Right of Way)		5.7	25	0.8	10
Station # 044	Residential Property	1.8	25	0.3	10
Station # 045	Residential Property	3.8	25	0.3	10
Station # 046	Boulevard (Right of		25	0.2	10
Station # 047	Residential Property	2.4	25	0.3	10
Station # 048	Institutional (Church)	3.4	25	0.3	10
Station # 049	Residential Property	4.0	25	0.3	10
Station # 050	Residential Property	3.3	25	0.4	10
Station # 051	Residential Property	10.7	25	2.5	10
Station # 052	Commercial Property	4.8	25	0.3	10
Station # 053	Commercial Property	3.1	25	< 0.2	10
Station # 054	Boulevard (Right of Way)	4.1	25	0.3	10
Station # 055	Residential Property	2.4	25	0.3	10
Station # 056	Residential Property	2.0	25	0.2	10
Station # 058	Residential Property	3.5	25	0.3	10
Station # 059	Residential Property	3.9	25	0.4	10
Station # 060	Residential Property	2.4	25	0.2	10
Station # 061	Residential Property	4.1	25	0.4	10
Station # 062	Residential Property	4.4	25	0.8	10
Station # 063	Institutional (Cemetery)	5.1	25	0.6	10
Station # 064	Parkland (Golf Course)	10.0	25	1.1	10
Station # 065	Residential Property	4.2	25	0.4	10

Notes:

а

b

Sample locations are provided in Drawing 1, Appendix C.

 Ontario Ministry of the Environment's Guideline for Use At Contaminated Sites in Ontario, February 1997, (Table A) Potable groundwater use at residential/parkland land use with medium and fine textured soils for all category of land uses except agricultural for which medium grained soils agricultural land use criteria were used (in italics).

SAMPLE LOCATION ^a (STATION NUMBER)	I AND LCE		MOE LAND USE CRITERIA ^b	SELENIUM	MOE LAND USE CRITERIA
Station # 066	Residential Property	2.1	25	<0.2	10
Station # 067	Residential Property	4.2	25	0.3	10
Station # 068	Residential Property	4.0	25	0.3	10
Station # 069	Residential Property	4.2	25	<0.2	10
Station # 070	Residential Property	4.0	25	0.4	10
Station # 071	Residential Property	1.3	25	<0.2	10
Station # 072	Residential Property	4.2	25	0.3	10
Station # 073	Commercial Property	2.9	25	0.2	10
Station # 074	Residential Property	3.1	25	0.3	10
Station # 075	Residential Property	4.3	25	0.6	10
Station # 076	Residential Property	2.2	25	<0.2	10
Station # 077	Residential Property	3.0	25	0.3	10
Station # 078	Boulevard (Right of Way)	2.7	25	<0.2	10
Station # 079	Boulevard (Right of Way)	3.5	25	< 0.2	10
Station # 080	Residential Property	3.3	25	<0.2	10
Station # 081			25	<0.2	10
Station # 082		3.8	25	0.2	10
Station # 083	Residential Property	4.0	25	0.2	10
Station # 084	Commercial Property	4.0	25	0.2	10
Station # 085	Residential Property	4.0	25	0.2	10
Station # 086	Residential Property	4.4	25	0.2	10
Station # 087	Residential Property	3.9	25	0.3	10
Station # 088	Boulevard (Right of Way)	2.8	25	0.2	10
Station # 090	Residential Property	3.9	25	0.2	10
Station # 091	Residential Property	3.1	25	0.2	10
Station # 170	Right of Way	2.5	25	0.3	10
Station # 171	Right of Way	5.2	25	0.7	10
Station # 172	Agricultural (Vacant Lot)	1.3	25	0.2	2
Station # 173	Agricultural (Vacant lot)	1.5	25	<0.2	2
Station # 174	Residential Property	3.1	25	0.4	10
Station # 175	Residential Property	4.2	25	0.5	10
Station # 176	Parkland	1.9	25	<0.2	10
Station # 177	Residential (Lawn)	5.8	25	1.0	10
Station # 178	Woodlot	5.8	25	0.8	10
Station # 179	Residential Property	3.0	25	0.4	10
Station # 180	Institutional (School Yard)	3.8	25	0.2	10
Station # 181	Boulevard	2.9	25	0.6	10
Station # 182	Residential (Lawn)	6.9	25	0.8	10

Notes:

a b Sample locations are provided in Drawing 1, Appendix C.

 Ontario Ministry of the Environment's Guideline for Use At Contaminated Sites in Ontario, February 1997, (Table A) Potable groundwater use at residential/parkland land use with medium and fine textured soils for all category of land uses except agricultural for which medium grained soils agricultural land use criteria were used (in italics).

SAMPLE LOCATION ³ (STATION NUMBER)	LAND USE CATEGORY	ARSENIC	MOE LAND USE CRITERIA ^b	SELENIUM	MOE LAND USE CRITERIA
Station # 183	Boulevard	5.9	25	1.2	10
Station # 184	Right of Way	9.0	25	2.4	10
Station # 185	Woodlot	1.9	25	0.4	10
Station # 186	Woodlot	3.2	25	1.6	10
Station # 187	Residential Property	4.7	25	0.8	10
Station # 188	Woodlot	4.9	25	1.0	10
Station # 189	Residential Property	4.7	25	0.8	10
Station # 190	Boulevard	5.1	25	0.9	10
Station # 191	Residential Property	4.3	25	0.4	10
Station # 192	Field	4.6	25	1.0	2
Station # 193	Field	4.2	25	0.7	2
Station # 194	Woodlot	5.3	25	1.4	10
Station # 195	Woodlot	5.3	25	0.8	10
Station # 196	Woodlot	3.5	25	0.3	10
Station # 197	Boulevard	3.3	25	0.6	10
Station # 198	Right of Way	4.0	25	0.4	10
Station # 199	Right of Way	3.7	25	0.4	10
Station # 200	Woodlot	5.3	25	1.6	10
Station # 201	Residential (Lawn)	4.1	25	0.7	10
Station # 202	Residential (Lawn)	3.1	25	0.3	10
Station # 203	Residential (Lawn)	2.9	25	<0.2	10
Station # 204	Residential property	4.2	25	0.8	10
Station # 205	Right of Way	2.6	25	<0.2	10
Station # 206	Parkland	4.2	25	0.7	10
Station # 207	Boulevard	4.0	25	0.6	10
Station # 208	Right of Way	43	25	<0.2	10
Station # 209	Right of Way	5.6	25	0.4	10
Station # 210	Field	4.6	25	1.0	2
Station # 211	Field	4.1	25	0.5	2
Station # 212	Field	5.3	25	0.6	2
Station # 213	Woodlot	4.1	25	0.8	10
Station # 214	Woodlot	4.9	25	1.6	10
Station # 215	Woodlot	3.5	25	0.5	10
Station # 216	Field	4.5	25	1.3	2
Station # 217	Residential Property	3.1	25	0.3	10
Station # 218	Residential Property	3.3	25	0.3	10
Station # 219	Field	5.3	25	0.2	2

Notes:

a b Sample locations are provided in Drawing 1, Appendix C.

Ontario Ministry of the Environment's Guideline for Use At Contaminated Sites in Ontario,
 February 1997, (Table A) Potable groundwater use at residential/parkland land use with medium and fine textured soils for all category of land uses except agricultural for which medium grained soils agricultural land use criteria were used (in italics).

SAMPLE LOCATION [®] (STATION NUMBER)	LAND USE CATEGORY	ARSENIC	MOE LAND USE CRITERIA ^b	SELENIUM	MOE LAND USE CRITERIA ^b
Station # 220	Woodlot	6.1	25	0.7	10
Station # 221	Woodlot	3.1	25	1.1	10
Station # 222	Woodlot	3.9	25	0.8	10
Station # 223	Woodlot	5.1	25	0.4	10
Station # 224	Woodlot	4.7	25	0.4	10
Station # 225	Woodlot	4.9	25	0.5	10
Station # 226	Field	6.4	25	0.4	2
Station # 227	Woodlot	3.8	25	0.3	10
Station # 228	Residential (Lawn)	4.2	25	0.3	10
Station # 229	Residential Property	4.2	25	0.8	10
Station # 230	Woodlot	9.4	25	2.5	10
Station # 231	Institutional (School Yard)	3.7	25	0.3	10
Station # 232	Woodlot	3.0	25	0.3	10
Station # 233	Right of Way	4.3	25	0.5	10

Notes:

a b Sample locations are provided in Drawing 1, Appendix C.

 Ontario Ministry of the Environment's Guideline for Use At Contaminated Sites in Ontario, February 1997, (Table A) Potable groundwater use at residential/parkland land use with medium and fine textured soils for all category of land uses except agricultural for which medium grained soils agricultural land use criteria were used (in italics).

APPENDIX F3

LABORATORY CERTIFICATES OF CHEMICAL ANALYSES: MOE 1998 AND 1999 ARCHIVED SOIL SAMPLES (ARSENIC AND SELENIUM)

Jacques Whitford Environment Ltd. Client: Date Received: January 18/2001 1200 Denison Street Date Reported: February 5/2001 Markham, ON, CANADA Lab Ref#: G210186 L3R 8G6 Lab Quote#: EG009-0811 Client PO#: Port Colborne Fax: 905-479-9326 Client Ref#: INCO Sampled By: MOE Attn: Kevin Wong/Eric Veska

Certificate of Analysis

Analysis Performed:	Arsenic, Hydride Generation AA
	Selenium, Hydride Generation
Methodology:	 Analysis of arsenic in soil by Hydride Generation Atomic Absorption. U.S. EPA Method No. 7061(Modifications)
	 Analysis of selenium in soil by hydride generation. U.S. EPA Method No. 7741(Modification)
Instrumentation:	1) Varian VGA 76
	2) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Em Certified By

Elaine Grant Service Manager

uman tified By

Kov N. Boulton, B.Sc., C.Chem. Customer Service Manager

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements. Philip Analytical Services

5735 McAdam Road, Mississauga, Ontario, Canada L4Z 1N9 Tel: (905) 890-8566 Fax: (905) 890-8575 Wats: 1-800-263-9040 Page 1 www.philipanalytical.com

⊕

1-907 .8 (** 15

Certificate of Quality Control

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Date Reported:	February 5/2001
Lab Ref # :	G210186
Lab Quote#:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Analysis of Soil, expressed on a dry weight basis

printing and a second se				Process Blank			Process % Recovery				M	atrix Spil	ke		Overall	
Parameter (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable	
Arsenic	Tak.	0.2	mg/kg	ba	0.5	yes	106	84	120	yes		na	0.8	na	na.	yes
Arsenic	14	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	na	na	na	na	na	yes
Arsenic	=	0.2	mg/kg	nd	0.5	yes	117	84	120	yes	DA	na	na	-	53	yes
Arsenic		0.2	mg/kg	nd	0.5	yes	117	84	120	yes	04	na	-	54	-	yes
Selesium	m	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	D.B.	na	na	na	na	yes
Selenium	-	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	na	na	-	na	na	yes
Selentum	n.	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	na	na	na	na	na	yes
Selenium	DA	0.2	'mg/kg	nd	0.5	yes	80	60	140	yes	CA.	na	na	CA.	ш	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

па

= Not Applicable = Insufficient Sample Submitted 115

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210186
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8287 2292076	8287 2292076 Replicate	8289 2292077	8291 2292075	8293 2292080
Arsenic Selenium	0.2	mg/kg mg/kg	2.2 nd	2.2 nd	3.0 0.3	4.3 0.6	3.3 nd

 EQL
 Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

 nd
 parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210186
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8295 2292078	8297 2292079	8299 2292081	8301 2292074	8305 2292060
Arsenic	0.2	mg/kg	2.7	3.5	3.3	3.1	2.4
Selenium	0.2	mg/kg	nd	bd	bd	0.3	0.2

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210186
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8307 2292059	8309 2292058	8311 2292044	8313 2292048	8315 2292047
Arsenic	0.2	mg/kg	3.9	3.5	1.8	3.4	2.4
Selenium	0.2	.mg/kg	0.4	0.3	0.3	0.3	0.3
			÷				
			8				

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210186
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8317 2292046	8319 2292068	8319 2292068 Replicate	8321 2292069	8324 2292087
Arsenic	0.2	mg/kg	2.5	4.0	4.0	4.2	3.9
Selenium	0.2	mg/kg	0.2	0.3	0.3	nd	0.3

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210186
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8326 2292088	8327 2292067	8329 2292066	8331 2292065	8333 2292061
Arsenic	0.2	mg/kg	2.8	4.2	2.1	4.2	4.1
Selenium	0.2	mg/kg	0.2	0.3	nd	0.4	0.4

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210186
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8337 2292070	8339 2292085	8341 2292071	8343 2292083	8345 2292082
Arsenic	0.2	mg/kg	4.0	4.0	1.3	4.0	3.8
Selenium	0.2	mg/kg	0.4	0.2	nd	0.2	0.2
			· · ·				

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210186
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8348 2292091	8350 2292090	8351 2292029	8351 2292029 Replicate	8353 2292003
Arsenic Selenium	0.2	mg/kg mg/kg	3.1 0.2	3.9 0.2	5.6 0.8	5.6 0.8	12.2 1.4
			±1)				

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210186
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8355 2292064	8359 2292004	8365 2292017	8371 2292014	8377 229201 I
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	10.0 1.1	14.4 2.7	4.0 0.5	3.8 0.9	7.6
							초

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210186
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8383 2292012	8427 2292039	8433 2292055	8439 2292053	8445 2292037
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	3.9 nd	2.0 nd	2.4 0.3	3.1 . nd	4.9 1.0

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

 Client : Jacques Whitford Environment Ltd.
 Report Date:
 February 5/2001

 Contact: Kevin Wong/Eric Veska
 Lab Ref # :
 G210186

 Lab Quote #:
 EG009-0811

 Client PO#:
 Port Colborne

 Analysis of Soil, expressed on a dry weight basis
 Client Ref#:
 INCO

Parameter	EQL	Units	8451 2292033	8457 2292051	8463 2292043	8469 2292050	8469 2292050 Replicate
Arnenic Selenium	0.2	mg/kg mg/kg	4.0 0.4	10.7 2.5	5.7 0.8	3.3 0.4	3.3 0.4

G210186

INCO

Client : Jacques Whitford Environment Ltd. Report Date: February 5/2001 Contact: Kevin Wong/Eric Veska Lab Ref # : Lab Quote #: EG009-0811 Client PO#: Port Colborne Analysis of Soil, expressed on a dry weight basis Client Ref#:

Parameter	EQL	Units	8475 2292049	8481 2292045	8487 2292063	8493 2292062	8499 2292019
Arsenic Selenium	0.2	mg/kg mg/kg	4.0 0.3	3.8 0.3	5.1 0.6	4.4 0.8	3.0 0.2

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210186
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8503 2292073	8505 2292072	8511 2292084	8517 2292086	
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	2.9 0.2	4.2 0.3	4.0 0.2	4.4 0.2	

EQL

Client: Jacques Whitford Environment Ltd. Date Received: January 17/2001 1200 Denison Street Date Reported: February 5/2001 Markham, ON, CANADA Lab Ref#: G210182 L3R 8G6 Lab Quote#: EG009-0811 Client PO#: Port Colborne Fax: 905-479-9326 Client Ref#: INCO Sampled By: MOE Eric Veska/Kevin Wong Attn:

Certificate of Analysis

Analysis Performed:	Arsenic, Hydride Generation AA
	Selenium, Hydride Generation
Methodology:	 Analysis of arsenic in soil by Hydride Generation Atomic Absorption. U.S. EPA Method No. 7061(Modifications)
	 Analysis of selenium in soil by hydride generation. U.S. EPA Method No. 7741(Modification)
Instrumentation:	1) Varian VGA 76
	2) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Certified By

Elaine Grant Service Manager

m ied By

N. Boulton, B.Sc., C.Chem. Customer Service Manager

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements. PHILIP ANALYTICAL SERVICES

5735 McAdam Road, Mississauga, Ontario, Canada L4Z 1N9 Tel: (905) 890-8566 Fax: (905) 890-8575 Wats: 1-800-265-90-40 Page 1

www.philipanalytical.com

۲

۰. al 🗧 . 35 " . Ar

Certificate of Quality Control

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Date Reported:	February 5/2001
Lab Ref # :	G210182
Lab Quote#:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery		(d	M	atrix Spil	ke		Overall
	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	78.	0.2	mg/kg	nd	0.5	yes	100	84	120	yes	na	04				
Arsenic	m	0.2	mg/kg	nd	0.5	yes	102	84	120	yes	0.6	1.11	na	na	na	yes
Arsenic	74	0.2	mg/kg	nd	0.5	yes	114	84	120	yes		na	na	na	04	yes
Arsenic	78	0.2	mg/kg	nd	0.5	yes	114	84	120		na	na	na,	D.3	na	yes
Selenium	m	0.2	mg/kg	nd	0.5				0.000	yes	na	na	na	na	03	yes
Selesium	m	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	na	na	na	na	na	yes
Selenium		0.2	1000	10033	1000	yes	80	60	140	yes	na	na	na	na	na	yes
Selenium		0.2	mg/kg	nd	0.5	yes	80	60	140	yes	na	na	na	na	na	yes
		0.2	mg/kg	nd	0.5	yes	80	60	140	yes	na	na	na	na.	na	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted = parameter not detected ns

nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	1360 2000	1369 2000	1372 2000	3344 2000	3356 2000
Arsenic	0.2	mg/kg	37.7	26.6	4.8	7.4	2.5
Selenium	0.2	mg/kg	5.9	5.3	1.0	0.6	nd
			*				

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	5203 2000	5254 2000	5287 2000	5290 2000	5293 2000
Arsenic	0.2	mg/kg	9.3	6.7	6.7	7.8	5.1
Selenium	0.2	mg/kg	1.8	1.2	1.2	1.4	1.2
						75	

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210182
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	6278 2292171	6280 2292170	6282 2292172	6284 2292173	6286 2292179
Arsenic	0.2	mg/kg	5.2	2.5	1.3	1.5	3.0
Selenium	0.2	mg/kg	0.7	0.3	0.2	nd	0.4
			× - 1				

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6286 2292179 Replicate	6288 2292178	6290 2292181	6292 2292180	6294 2292176
Arsenic Selenium	0.2	mg/kg mg/kg	3.0 0.4	5.8 0.8	2.9 0.6	3.8 0.2	1.9 nd
						Ĩ	

 EQL
 Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

 nd
 parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6296 2292174	6298 2292175	6300 2292177	6302 2292182	6304 2292187
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	3.1 0.4	4.2 0.5	5.8 1.0	6.9 0.8	4.7 0.8
			2				

 Client : Jacques Whitford Environment Ltd.
 Report Date:
 February 5/2001

 Contact: Eric Veska/Kevin Wong
 Lab Ref # :
 G210182

 Lab Quote #:
 EG009-0811

 Client PO#:
 Port Colborne

 Analysis of Soil, expressed on a dry weight basis
 Client Ref#:
 INCO

Parameter	EQL	Units	6306 2292189	6308 2292188	6310 2292183	6312 2292184	6314 2292190
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	4.7 0.8	4.9 1.0	5.9 1.2	9.0 2.4	5.1 0.9

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6316 2292229	6316 2292229 Replicate	6318 2292191	6320 2292209	6322 2292199
Arsenic Selenium	0.2 0,2	mg/kg mg/kg	4.2 0.8	4.2 0.8	4,3 0.4	5.6 ⁻ 0,4	3.7 0.4
							ų.
			£				

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210182
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	6324 2292208	6326 2292217	6328 2292198	6330 2292207	6332 2292197
Arsenic	0.2	mg/kg	43	3.1	4.0	4.0	3.3
Selenium	0.2	mg/kg	ed .	0.3	0.4	0.6	0.6

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence. EQL

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6334 2292203	6336 2292202	6338 2292233	6340 2292205	6342 2292204
Arsenic Selenium	0.2	mg/kg mg/kg	2.9 nd	3.1 0.3	4.3 0.5	2.6 nd	4.2 0.8
			2				

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

 Client : Jacques Whitford Environment Ltd.
 Report Date:
 February 5/2001

 Contact: Eric Veska/Kevin Wong
 Lab Ref # :
 G210182

 Lab Quote #:
 EG009-0811

 Client PO#:
 Port Colborne

 Analysis of Soil, expressed on a dry weight basis
 Client Ref#:
 INCO

Parameter	EQL	Units	6344 2292206	6346 2292218	6346 2292218 Replicate	6362 2292219	6364 2292220
Arsenic	0.2	mg/kg	4.2	3.3	3.3	5.3	6.1
Seleaium	0.2	mg/kg	0.7	0.3	0,3	0.2	0.7

Client : Jacques Whitford Environment Ltd. Contact: Eric Veska/Kevin Wong

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210182
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6366 2292221	6368 2292222	PE SAMPLE PB2	PE SAMPLE PB2 Replicate	
Arsenic Selenium	0.2	mg/kg mg/kg	3.1 1.1	3.9 0.8	6.6 2.4	6.6 2.4	
					4		
					9		

CHAIN	5735 Mc	Adam Road adam Road aga, Ontario			Tel: (905) 8 Fax: (905) 8 ats: 1-800-20	90-8575						mments:	33826. 210182
	JACQUES WHIT 1200 DENISON MAEKHAM ON	57 ·				CI	S Quote ient P.O. # : ent Project	#:) ~	Port	W/ba	HQ Page of
Contact: Phone:	ERIC VESKA/ 416 (495) 8614	Fax:	905) 4-	74-9	3.2.6. is Required:		mpled by: cify Guidel	100	DE ·	BLE	A OK	<i>LOWE</i> naround Tim	
, ZA	(if other than above):			P-wel AsySe	reco netral						PLI	EASE PROV FOR B xceptions o 5-7 Busir Specify I	PROJECTS POPULATION PROJECTS POPULATION PROJECTS POPULATION PROJECTS POPULATION PROJECTS POPULATION PROJECTS POPULATION PROJECTS
Sample	Client Sample I.D.	Date	Time	AA	aqua		11				Sample	Time No.of	Comments/Contamination/
#		Sampled	Sampled	~	a						Matrix	Containers	Site History
2	Total 160 Damy					1				-	501	160.	samples hav
3	see attacked	letter				0				-			bean died /
4									-	-			- und by
5										-	-		mozz ()
6													
7										-			
8									-	-			
9									++	-			
10											1		
п													
12													
Client Sig		Da	5-			· · · ·	Date: /	1/01	Time;	359	5	Method of Shi	pment L Cluspord C/L
Amples Received in lab 5. CCCCCaut v. COC03-10-00 White: Phillip, Vellow: Mail Bink: P						Date: Time: 17/01/01 3:55			5	Condition of samples upon receipt at lats:			

Jacques Whitford Environment Ltd. Tlient: Date Received: January 18/2001 1200 Denison Street Date Reported: February 5/2001 Markham, ON, CANADA Lab Ref#: G210187 L3R 8G6 Lab Quote#: EG009-0811 Client PO#: Port Colborne Fax: 905-479-9326 Client Ref#: INCO Sampled By: MOE ittn: Kevin Wong/Eric Veska

Certificate of Analysis

Analysis Performed:	Arsenic, Hydride Generation AA
	Selenium, Hydride Generation
Methodology:	 Analysis of arsenic in soil by Hydride Generation Atomic Absorption. U.S. EPA Method No. 7061(Modifications)
	 Analysis of selenium in soil by hydride generation. U.S. EPA Method No. 7741(Modification)
Instrumentation:	1) Varian VGA 76
	2) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
Sample Description:	Soil
A/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
"esults:	Refer to REPORT of ANALYSIS attached.

CIRW Certified By

Elaine Grant Service Manager

ied By

N. Boulton, B.Sc., C.Chem. Customer Service Manager

Il work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip salytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting as per specific contractual arrangements. PHILIP ANALYTICAL SERVICES

5735 McAdam Road, Mississauga, Ontario, Canada 14Z 1N9 Tel: (205) 890-8566 Fax: (905) 890-8575 Wats: 1-800-263-90-40 Page 1

www.philipanalytical.com

۲

. Ar...., ... cal Sun ... Jes Lung **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Analysis of Soil, expressed on a dry weight basis

		4		Pr	ocess Bla	nk	Pro	cess % R	ecovery			M	atrix Spi	ke		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	na	0.2	mg/kg	nd	0.5	yes	109	84	120	yes	na	- 14	na	na	na	yes
Arsenic	m	0.2	mg/kg	nd	0.5	yes	115	84	120	yes	na	na	na	na	na	yes
Arsenic		0.2	mg/kg	nd	0.5	yes	115	84	120	yes	DA.	na	na	na	na	yes
Amenic	m	0.2	mg/kg	nd	0.5	yes	120	84	120	yes	na	na	na	na	na	yes
Selenium	-	0.2	mg/kg	ba	0.5	yes	100	60	140	yes	63	na	na	na	па	10000
Selenium	78.	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	na	na	na	na	na	yes yes
Selenium.	-	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	na	na	na	па	na	yes
Selenium	-	0.2	mg/kg	nd	0.5	yes	120	60	140	уса	84	na	na	na	D.A	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * Unavailable due to dilution required for analysis

na = Not Applicable

= Insufficient Sample Submitted = parameter not detected ns

nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	6370 2292224	6370 2292224 Replicate	6372 2292223	6374 2292225	6376 2292226
Arsenic	0.2	mg/kg	4.7	4.7	5.1	4.9	6.4
Selenium	0.2	mg/kg	0.4	0.4	0.4	0.5	0.4
		3					
						×	

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210187
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6378 2292196	6380 2292228	6382 2292227	6384 2292214	6386 2292215
Arsenic Selenium	0.2	mg/kg mg/kg	3.5 0.3	4.2 0.3	3.8 0.3	4.9 1.6	3.5 0.5
			9				

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Parameter	EQI	Units	6388 2292216	6390 2292213	6392 2292195	6394 2292231	6396 2292210
Arsenic	0.2	mg/kg	4.5	4.1	5.3	3.7	4.6
Selenium	0.2	mg/kg	1.3	0.8	0.8	0.3	1.0
	(*)						

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	6398 2292200	6400 2292192	6402 2292232	6404 2292185	6405 2292186
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	5.3 1.6	4.6 1.0	3.0 0.3	1.9 0.4	3.2 1.6

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210187
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter		EQL	Units	6408 2292230	6410 2292193	6412 2292201	6412 2292201 Replicate	6414 2292211
Arsenic Selenium		0.2 0.2	mg/kg mg/kg	9,4 2.5	4.2 0.7	4.1 0.7	4.2 0.7	4.1 0.5
	-							

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210187
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	6416 2292212	6418 2292194	8227 2292026	8229 2292034	8231 2292027
Amenic	0.2	mg/kg	5.3	5.3	3.1	3.7	1.9
Selenium	0.2	mg/kg	0.6	1.4	1.0	1.2	nd
			5				

EQL

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence. nd

parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8233 2292038	8235 2292036	8237 2292030	8239 2292035	8241 2292032
Arsenic	0.2	mg/kg	2.4	4.2	4.2	7.1	3.0
Selenium -	0.2	mg/kg	0.3	0.3	0.3	0.5	0.8

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210187
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8243 2292031	8245 2292010	8247 2292008	8249 2292007	8249 2292007 Replicate
Arsenic Selenium	0.2 0.2	mg/kg mg/kg	2.4 0.3	2.2 nd	5.5 1.4	3.1 0.5	3.1 0.5
			2				

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210187
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8251 229200 9	8253 2292025	8255 2292001	8257 2292002	8259 2292005
Arsenic	0.2	mg/kg	14.4	3.5	16.1	12.2	5:0
Selenium	0.2	mg/kg	2.4	0.6	3.8	2.2	1.2

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8261 2292006	8263 2292028	8265 2292015	8267 2292016	8269 2292020
Arsenic	0.2	mg/kg	5.1	7.4	8.0	3.0	2.8
Selenhum	0.2	mg/kg	0.8	2.3	3.4	0.8	0.5
			e - 1				

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

February 5/2001
G210187
EG009-0811
Port Colborne
INCO

Parameter	EQL	Units	8271 2292023	8273 2292024	8275 2292052	8277 2292054	8279 2292041
Arsenic Selenium	0.2	mg/kg mg/kg	4.2 0.3	10.I 2.8	4.8 0.3	4.1 0.3	3.2 0.3

Client : Jacques Whitford Environment Ltd. Contact: Kevin Wong/Eric Veska

Analysis of Soil, expressed on a dry weight basis

Report Date:	February 5/2001
Lab Ref # :	G210187
Lab Quote #:	EG009-0811
Client PO#:	Port Colborne
Client Ref#:	INCO

Parameter	EQL	Units	8279 2292041 Replicate	8281 2292042	8283 2292040	8285 2292056	
Arsenic	0.2	mg/kg	3.2	1.8	3.6	2.0	
Selenium	0.2	mg/kg	0.3	0.2	0.2	0.2	
80 80							

APPENDIX G

TEST PIT LOGS: JWEL AUGUST 2001 SOIL INVESTIGATION

SYMBOLS AND TERMS USED ON THE BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil	12	mixture of soil and humus capable of supporting good vegetative growth
Peat		fibrous fragments of visible and invisible decayed organic matter
Till		unstratified and unsorted glacial deposit which may include particle sizes from clay to boulders
Fill	×.	materials not identified as deposited by natural geological processes

Terminology describing soil structure:

Desiccated	τ.	having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	-	material breaks along plane of fracture
Varved	-	composed of regular alternating layers of silt and clay
Stratified	15	alternating layers or beds greater than 6mm (1/4") thick
Laminated	-	alternating layers or beds less than 6mm (1/4") thick
Blocky	-	material can be broken into small and hard angular lumps
Lensed	-	irregular shaped pockets of soil with differing textures
Seam		a thin, confined layer of soil having different particle size, texture, or color from materials above and below
Well Graded	~	having wide range in grain sizes and substantial amounts of all intermediate particles sizes
Uniformly Grad	led -	predominantly one grain size

Soil descriptions and classification are based on the Unified Soil Classification System (USCS) (ASTM D-2488), which classifies soils on the basis of engineering properties. The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. This system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm.

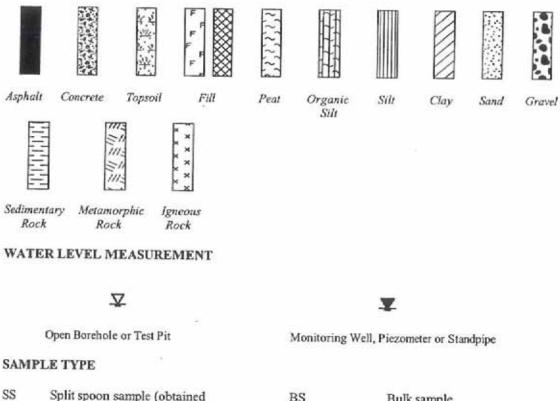
Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present:

Trace or occasional	Less than 10%
Some	10-20%
With	20-30%

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N'-value*.

Compactness	*N2-value
Very loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very dense	>50

SYMBOLS AND TERMS USED ON THE BOREHOLE AND TEST PIT RECORDS


The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis. Standard Penetration Test 'N'-values* can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils.

Consistency	Undrained Shear Strength (kPa)	'N'-Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Note: *'N'-VALUE- The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in millimeters (e.g. 50/75).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

20	Spin spoon sample (obtained	BS	Bulk sample
	from the Standard	WS	Wash sample
	Penetration Test)	HO, NO, BO,etc	. Rock core samples obtained
TW	Thin Wall Sample or Shelby Tube	0.0.0	with the use of standard size
PS	Piston sample		diamond drilling bits.
GS	Grab sample		anning chis.
AS	Auger sample		

G:\General\symbols & terms for BH & TP.doc December 2000

1	BORING01/08/16	TPCELEV.				
DEPTH (m) ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (#)	VAPOUR CONCENTRATIONS	WELL WELL CONSTRUCTION
	FILL: Yellowish brown, silty clay with rock fragments, occasional brick pieces, trace sand and rootlets TOPSOIL: Dark brown to black, silty clay with rootlets and organics CLAY: Grey brown, silty clay, hard and compact, mottled, oxidized BEDROCK: Light grey, very hard carbonate bedrock END OF TEST PIT at 1.0 m			2	100 200 300 400 0 GS 1 0 GS 2 0 GS 3 0 GS 3 0 GS 4 0 GS 5 0 GS 6 0 GS 7 0 GS 7 0 GS 10 0 GS 11 0 GS 11 0 GS 11 0 GS 12 0 GS 13 0 GS 14 0 GS 15 0 GS 16 0 GS 17 0 GS 17 0 GS 18	Soil samples collected at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval t a depth of 50 cm and then at 70 cm and 95 cm

		BORING 01/08/16	F			WATER LEVEL SAMPL	TPC ELEV
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS ● %LEL ▲ ppm	WELL WELL CONSTRUCTION
		TOPSOIL: Dark grey to brown silty clay with rootlets and organics, occasional yellowish red granules, oxidized and reworked, moist CLAY: Grey silty clay, plastic, mottled yellow brown, oxidized, rootlets present, occasional yellowish red granules in the upper layers, become hard with depth	● 「「「」」「「」」」		2 -	● <u>20</u> <u>40</u> <u>60</u> <u>80</u> ■ <u>0</u> <u>GS</u> <u>1</u> ■ <u>0</u> <u>GS</u> <u>1</u> ■ <u>0</u> <u>GS</u> <u>3</u> ■ <u>0</u> <u>GS</u> <u>4</u> ■ <u>0</u> <u>GS</u> <u>3</u> ■ <u>0</u> <u>GS</u> <u>4</u> ■ <u>0</u> <u>GS</u> <u>5</u> ■ <u>0</u> <u>GS</u> <u>10</u> ■ <u>0</u> <u>GS</u> <u>10</u> ■ <u>0</u> <u>GS</u> <u>11</u> ■ <u>0</u> <u>GS</u> <u>12</u> ■ <u>0</u> <u>GS</u> <u>13</u> ■ <u>0</u> <u>GS</u> <u>14</u> ■ <u>0</u> <u>GS</u> <u>14</u> ■ <u>0</u> <u>GS</u> <u>16</u> ■ <u>0</u> <u>GS</u> <u>16</u> ■ <u>0</u> <u>GS</u> <u>17</u> ■ <u>0</u> <u>GS</u> <u>18</u> ■ <u>0</u> <u>GS</u> <u>18</u>	Soil samples collecte at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval to a depth of 50 cm and then at 70 cm and 95 cm

1	BORING01/08/16	I-	_		WATER LEVEL SAMPLE	TPC ELEV.
DEPTH (m) ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (#)	VAPOUR CONCENTRATIONS ● %LEL ▲ ppm	WELL WELL CONSTRUCTION
	TOPSOIL: Dark grey to black silty clay with rootlets and organics, moist REWORKED CLAY: Grey clay, mottled with rootlets and organics, oxidized CLAY: Grey to light grey silty clay, mottled yellow with rootlets.			2 -	20 40 60 80 100 200 300 400 5 6S 1 5 6S 3 5 6S 4 5 6S 3 6 6S 1 6 6S 3 6 6S 3 6 6S 7 6 6S 9 6 6S 10 6 6S 10 6 6S 10 6 6S 12 6 6S 12 6 6S 13 6 6S 15 6 6S 16 6 6S 17 6 6S 17 6 6S 18 7 6S 18 7 6S 18	Soil samples collect at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval t a depth of 50 cm and then at 70 cm and 95 cm

		N <u>Northeast corner of Louis St</u> ORING <u>01/08/21</u>	Teet	1	Dav	WATER LEVEL	DATUM
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS ● %LEL ▲ ppm ↓ 34 W NZ	WELL WELL CONSTRUCTION
1 -		FILL: Yellowish brown sand, medium grained, occasional rootlets with gravel, becoming clay mixed with gravel with depth, dark grey to black silty clay at depth, plastic END OF TEST PIT at 0.51 m			2	20 40 60 80 ■ 100 200 300 400 ■ GS 1 9 GS 1 ■ GS 3 9 GS 4 ■ GS 5 9 GS 5 ■ GS 6 9 7 9 6 8 ■ GS 9 9 6 10 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 11 9 6 13 14 9 6 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	Soil samples collected at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval to a depth of 50 cm

	BORING01/08/16	F	1	Γ	WATER LEVEL SAMPL	TPC ELEV.
ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS	WELL WELL CONSTRUCTION
	TOPSOIL: Dark grey to black silty clay with rootlets and organics, moist CLAY: Grey to light grey silty clay, plastic, mottled yellow, oxidized, occasional yellowish red granules in the upper layer, becoming hard with depth END OF TEST PIT at 1.0 m			2	■ 20 40 60 80 ■ 100 200 300 400 ■ GS 1 ■ G	Soil samples collecte at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval t a depth of 50 cm and then at 70 cm and 95 cm

DATES: 1	1	5	닖		WATER LEVEL SAMPL	ES
ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS	UNTELL WELL CONSTRUCTION
	END OF TEST PIT at 1.0 m			2 -	20 40 60 80 00 200 300 400 0 GS 1 0 GS 3 0 GS 4 0 GS 5 0 GS 5 0 GS 6 0 GS 1 0 GS 1 0 GS 10 0 GS 10 0 GS 10 0 GS 11 0 GS 12 0 GS 13 0 GS 16 0 GS 16 0 GS 17 0 GS 17 0 GS 18	Soil samples collecte at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval to a depth of 50 cm and then at 70 cm and 95 cm

		N <u>Northern Part of Inco Refi</u> BORING <u>01/08/16</u>	nery, l	Sout	th of	Railway Tracks	DATUM TPC ELEV
	z		DT.	/EL	0	VAPOUR	ES
CCT 111 (111)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (#)	CONCENTRATIONS ● %LEL ▲ ppm	WELL CONSTRUCTION
		200000 P					
		TOPSOIL: Dark grey silty clay with rootlets and organics, moist	1			• <u>GS</u> 1 • <u>GS</u> 2	
						• GS 3	
-			2. 21			• GS 4	
			····			0 <u>GS</u> 5 0 <u>GS</u> 6	Soil samples collect at every 2.5 cm
ł		CLAY: Grey to light grey silty	1			••••• 6S 7	interval to a depth o
+		clay, plastic, mottled yellow,				• GS 8	30 cm and then at
		occasional rootlets, yellowish red	V			• GS 9 • GS 10	every 5 cm interval a depth of 50 cm an
		granules in the upper layers, oxidized	VA			• GS 11	then at 70 cm and 9
ł		ON MILLO	1			• GS 12	cm
						• GS 13	
						• GS 14	
			Ø			• GS 15	
			A			• GS 16	
1			N				
			Ø				
1			Ø		2 -		
			A				
			Ø			• GS 17	
L			M				
			VA				
		*	VA				
1			1				
			1		1		
		10	A			• GS 18	
ŀ	1	END OF TEST PIT at 1.0 m	14	+	+		

	IENT _			_			PROJECT N	DONT34646
LC	CATIO	N Vacant Lot at Rodney Street	W	est o	f Far	es Street	DATUM _	
D/	ATES: B	ORING01/08/15	_	_	_	WATER LEVEL	TPC ELEV.	
	NO		LOT	EVEL	£	VAPOUR		WELL
(יוו) בין בסר	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	CONCENTRATIONS ● %LEL ▲ ppm	N-VALUE	CONSTRUCTION
			1.17.			● 20 40 60 80 ▲ 100 200 300 400		
		TOPSOIL: Dark brown silty sand,	14			• GS 1 • GS 2		
		medium grained with rootlets and organics, moist	11 1			• GS 2 • GS 3		
		FILL: Grey to yellow grey silty	FF			• GS 4		
1		sand, medium grained with rootlets	F			0 GS 5		Soil samples collecte
		and occasional organics, moist	F					at every 2.5 cm
			F			0 GS 7		interval to a depth of
4			F		÷.,	• GS 8		30 cm and then at
			F			• GS 9		every 5 cm interval t
			F			• GS 10 • GS 11		a depth of 50 cm and then at 70 cm and 95
			F			• GS 11		cm
1			F		2	• GS 13		
			FF			• GS 14		
1		PEAT: Dark brown to black well	F			• GS 15		
		decomposed organic matter, trace sand, occasional rootlets, very moist	2,2,2			• GS 16		
+		said, occusional toricis, very neusi	222			403 10		
l			2,2					
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
1			2:25		2 -			
			1~					
			12,27					
1			333			• GS 17		
1			$\sim$					
I			12,21					
1			~					
ł			, ~ , ~ ,	- 2				¥(
I			~~					
1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
l			~		-			
			~					
			~~					
1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			• GS 18		
F	-	END OF TEST PIT at 1.1 m	~	-	-			

	CATIO	N Rodney Street, (Front Y ORING01/08/17	ard)					/EL _		•		_	DATU TPC E		
	_		5	ш		1					S	AMPL	ES		
חבריות (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	•	CONC %LEL		ATION	om	TYPE	NUMBER	N-VALUE	со	WELL
,			1.			● 2 ▲ 1			0 8	0	-1.00	-			
		TOPSOIL: Dark brown sandy silt with rootlets and organics, moist	14 1							1	• GS • GS	1			
		indirection and englanded month	12				1223	1111	1111	1111	• GS	3			
1		FILL: Brown to dark brown silty	FF					1111	55 E E	1111	• GS • GS	4		e,	il samples collect
		clay mixed with decomposed	F			::::	1111	333		1111	• GS				every 2.5 cm
		organic matter and sand lenses, occasional pieces of slag in the	F			::::		1111		1111	• GS	7		in	terval to a depth o
		upper layer, moist	FF			::::	::::	1111		::::	o GS				cm and then at
			F					1.11	200		• GS • GS	9 10	-		ery 5 cm interval depth of 50 cm an
			F				1111				o GS	11			en at 70 cm and 9
			F				::::	1999			• GS			ст	n
			F								• GS	13			
			F								• GS	14			
			F								• GS	15			
		SAND: Grey to light grey silty sand with abundant organics, moist									o GS	16			
			ĮIJ.			1111	1111	122	1111		11				
		CLAY: Grey, Sandy clay, mottled yellow brown, oxidized with	V			1	1111	1993			11				
		occasional sand lenses, moist	V	1		1999		1111							
			1		2						11				
		1	V				1111	1111	1111		11				
			V				1111	::::	::::		4				
			V	1							o GS	17			
		SAND: Grey silty sand, very moist	K	1				1			11-	+		5	
		to wet	H				1111				11				
1		- consideration						1111	::::		11				
			filt				::::		1111		11				
			ĽIII	1		1::::	::::	::::	::::	1111	11				
						-	::::	1		::::	-11				
5			[]]]					1999			11-	-	1		
							1111				• GS	18			
1-		END OF TEST PIT at 1.0 m	144	1	-	::::	1111		1111	1111	11	1			
						::::									
							1111			::::	11				

D		ORING01/08/15	F		_	WATER LEVEL SAMPL	TPC ELEV
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS ● %LEL ▲ ppm	
0		TOPSOIL: Dark grey to brown silty clay with organics and rootlets, moist FILL: Grey to light grey silty clay, rootlets, brick fragments, asphalt pieces and occasional sand, moist SAND: Yellow to brown silty sand, medium grained, occasional rootlets, moist			2	20         40         60         80           100         200         300         400         8         1           8         GS         1         8         GS         2           8         GS         3         8         GS         4           8         GS         5         8         6         5           9         GS         6         5         6         5           9         GS         7         7         6         8           9         GS         10         7         7         6         8         11           9         GS         10         7         7         6         11         7         6         11           9         GS         10         7         7         6         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11	Soil samples collecter at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval to a depth of 50 cm and then at 70 cm and 95 cm
1-		END OF TEST PIT at 1.0 m			-	• GS 17 • GS 18	

	IENT _	INCO	TE	51	PI	T RECORD	PROJECT No	TP11 
			ippro	ach	road	of Hamilton Marine	DATUM _	
DA	TES: B	ORING01/08/15				WATER LEVEL	TPC ELEV.	
-	7		5	Ш		SAMP	LES	
חברוח (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS	N-VALUE	
		FILL: Grey, light grey to yellow brown silty sand, loose, occasional organics and rootlets in the upper layer, assorted mixture of glass, brick fragments, asphalt pieces, concrete and construction debris, ceramic tile, moist at the bottom	<u> </u>		2 -	20       40       60       80         100       200       300       400         9       GS       1         9       GS       3         9       GS       3         9       GS       3         9       GS       1         9       GS       1         9       GS       1         9       GS       10         9       GS       11         9       GS       11         9       GS       12         9       GS       13         9       GS       16		Soil samples collecte at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval to a depth of 50 cm and then at 70 cm and 95 cm
T		END OF TEST PIT at 1.0 m						
L	ABORA	ATORY ANALYSES:						MA

		ORING 01/08/15	Ŀ		Ē	WATER LEVEL SAMPL	TPC ELEV.	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS	N-VALUE	WELL
0 -		FILL: Light brown to grey brown	F		_	20 40 60 80     100 200 300 400     100 200 300 400     100 GS 1		Soil samples collecte
		slag, loose at upper 5 cm then becoming very hard and solid	F			• GS 2 • GS 3		at 0-2.5 cm, 2.5-5 cm and 5-10 cm depth
1-		ATORY ANALYSES:			2			

	BORING 01/08/15	TE	1	_	WATER LEVEL SAMPL	TPC ELEV.
ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS ● %LEL ▲ ppm ↓ 2	WELL WELL CONSTRUCTION
	FILL: Grey to light grey sand and gravel, loose mixed with rock fragments, coal pieces, occasional slag, coarse sand, increasing large rock fragments with depth, moist	<u> </u>		2	•       20       40       60       80         •       GS       1       •       GS       1         •       GS       3       •       GS       3         •       GS       5       •       GS       5         •       GS       1       •       GS       3         •       GS       5       •       GS       6         •       GS       10       •       GS       10         •       GS       10       •       GS       11         •       GS       12       •       GS       12         •       GS       12       •       GS       14         •       GS       15       •       GS       16         •       GS       16       •       •       GS       17         •       GS       18       •       •       GS       18	Soil samples collecte at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval to a depth of 50 cm and then at 70 cm and 95 cm

		INCO		00		IT RECORD	PROFEST	TP14 10. ONT34646
			hof	Coal	Yar	d	PROJECT N	0. 0/1134040
		ORING 01/08/15				WATER LEVEL	TPC ELEV.	
			-	-		SAMPL		
Ê	ION		2	Na	£	VAPOUR		WELL
UEPIH (m)	LAT (E)	STRATA DESCRIPTION	TAF	RL	DEPTH (#)	CONCENTRATIONS	3	MELL
ĥ	ELEVATION (m)		STRATA PLOT	WATER LEVEL	DEF	CONCENTRATIONS U BUNCH ● %LEL ▲ ppm ↓ NO	N-VALUE	CONSTRUCTION
			0	3			z	
, -								
		FILL: Brown to dark brown sand and gravel, loose mixed with black	FF			0         GS         1           0         GS         2           0         GS         2           0         GS         3           0         GS         4		
		coal fragments, rock and sandy clay,	F			• GS 2		
		increasing rock fragments with	F			• GS 4		
	1	depth, moist	FF			B GS 5		Soil samples collecte
			F			[ [ [P] GS   6		at every 2.5 cm
			F					interval to a depth of 30 cm and then at
1			FF			• GS 8 • GS 9		every 5 cm interval t
			F			GS 10		a depth of 50 cm and
			F			• GS 11 • GS 12		then at 70 cm and 95
1			FF		- 24			cm
			F			• GS 13		
			F			• GS 14		
			FF					
			F			• GS 15		
			F			• GS 16		
-			FF			0 05 10		
			F					
			F					
1			F					
1			F		2 -			
			F					
			FF					
			FF			• GS 17		
			F					
			FF					
1			F					
			F		- 1		° .	÷.
			FF		- 1			
			F					
			F		- 1			
			F			• GS 18		
+		END OF TEST PIT at 1.0 m	F	-	_			
		or of the first first form			- 1			
						-		
+								
L	ABORA	TORY ANALYSES:						(VAA)
1								

		N <u>Vacant Inco Property, Nort</u> BORING <u>01/08/15</u>		1		ad	TPC ELEV
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	Z	WELL WELL CONSTRUCTION
		FILL: Light grey to grey silty clay mixed with asphalt pieces, brick fragments, plastic pieces, concrete and wooden debris, moist, becoming dark brown and increasing clay content with depth SI ST PIT at 1.0 m	<u> </u>		2	■ 20 40 60 80 ■ 0 GS 1 ■ 0 GS 2 ■ 0 GS 4 ■ 0 GS 4 ■ 0 GS 4 ■ 0 GS 5 ■ 0 GS 4 ■ 0 GS 5 ■ 0 GS 7 ■ 0 GS 10 ■ 0 GS 10 ■ 0 GS 11 ■ 0 GS 11 ■ 0 GS 12 ■ 0 GS 11 ■ 0 GS 12 ■ 0 GS 11 ■ 0 GS 11 ■ 0 GS 13 ■ 0 GS 14 ■ 0 GS 15 ■ 0 GS 16 ■ 0 GS 16 ■ 0 GS 17 ■ 0 GS 18 ■ 0	Soil samples collect at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval a depth of 50 cm and then at 70 cm and 9 cm

	INCO Inco Refinery, East of Parki	ngL	ot			PROJECT NoONT3464
	BORING01/08/17				WATER LEVEL	TPC ELEV.
ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR CONCENTRATIONS	UNTRUCTION
	5	Image:		-	20       40       60       80         ▲       100       200       300       400         ●       GS       1       ●       GS       1         ●       GS       3       ●       GS       3       ●       GS       3         ●       GS       5       ●       GS       6       ●       GS       7       ●       GS       6       0       7       ●       GS       10       ●       GS       11       ●       GS       12       ●       GS       13       ●       GS       14       ●       GS       14       ●       GS       15       ●       GS       16       ●       GS       17       ●       GS       16       ●       GS       17       ●       GS       18       ●       GS       18       ●       GS       18       ●       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Soil samples collect at every 2.5 cm interval to a depth of 30 cm and then at every 5 cm interval a depth of 50 cm and then at 70 cm and 92 cm

		CATION Rodney Street (Front Yard) TES: BORING01/08/17 WATER LEVEL												sv
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	VAPOUR						NUMBER	N-VALUE	WELL
	ш		ST			•	20 -	40	60 :	80 00		Ň	ż	
0 -		TOPSOIL: Dark grey to black	Til.			1	1::::	1::::	1::::	11111	G	5 1		
		sandy silt with rootlets and	4.1			1111	1	1111	1111		o GS	\$ 2		
		organics, moist	174			1111	::::	1::::	1::::	::::	G	3 3		
		FILL Construction of a silt with	2.2					1999		1111	• GS			Coll complex collect
		FILL: Grey brown sandy silt with occasional yellow and brown	F			1111	::::	1::::	1111	1111	o Gs			Soil samples collecte at every 2.5 cm
		mottled clay clasts, occasional slag,	F						1		G			interval to a depth of
	( I	brick fragments and rootlets, moist	F			::::	::::	::::	::::	1111	o GS			30 cm and then at
13			F					1111			o GS			every 5 cm interval t
		PEAT/ORGANICS: Dark brown to	2			1111	::::	::::	1111	1111	o GS	5 10		a depth of 50 cm and
		black well decomposed organic	[~]								• GS	5 11		then at 70 cm and 95
		matter with fine sand, rootlets, moist	2,2,		1						• GS			cm
			5.2.2								• GS	-	-	
1	_	SAND: Court knows allter and				::::	1111	::::	::::	::::				
		SAND: Grey brown silty sand, medium grained, weathers to yellow					1111	11:22			o GS	15		
		brown, oxidized, moist						1233	::::		1	1.		
						2::::	::::	::::	::::	::::	GS	16		
				0.3			::::	1223	1111					
							1111	1111	1111		11			
				- 3			::::	1111	1111	1111	11			
1					2 -				1111		-11			
					1.00	::::	:::::	1111	::::	1111	11			
										1111	11			
J						::::	::::	::::	::::	::::				
1			-				1111			::::	GS	17		
						::::	****	1111	::::	::::	100	-	-	
	1						NO.	1111			11			
1							::::	::::	::::	::::	11			
- 1						1111	1111	1111	1111	1111	11			
										333 B	11			
						::::	::::	::::	::::	::::	11			
					-	1111			1111	3333 P	11			
						1111	::::	::::	1313	::::		-		
						::::			::::		o GS	18		
1+		END OF TEST PIT at 1.0 m		-	-	1111	****	111	****	1111	11-	-		
						::::			::::					
						::::		::::	::::	::::	11			

#### APPENDIX H



#### APPENDIX H1

TABLE 1 TO TABLE 18: SOIL ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: JWEL AUGUST 2001 AND OCTOBER 2001 SOIL SAMPLES



#### TABLE 1 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP1 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP1 (0-2.5 cm)	TP1 (2.5-5.0 cm)	TP1 (5.0-7.5 cm)	TP1 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	0.4	0.3	0.4	0.5	13
Arsenic	9.3	10.9	7,8	6.7	25
Selenium	2.4	1.5	0.9	1.6	10
Aluminum	11800	15100	20300	20000	NV
Barium	107	120	144	140	1000
Beryllium	0.5	0.6	0.9	0.9	1.2
Cadmium	0.6	<0.5	<0.5	<0.5	12
Chronnium	19	23	27	27	1000
Cobalt	61	43	20	21	50
Copper	241	190	89	121	300
Iron	21400	24900	31200	32400	NV
Lead	50	32	23	20	200
Manganese	389	493	537	532	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	2460	1920	920	1020	200
Phosphorous	842	661	694	591	NV
Silver	<1.0	<1.0	<1.0	<1.0	25
Titanium	39	70	306	308	NV
Vanadium	24	29	39	39	250
Zinc	129	100	78	74	800
PH (Unitless)	7.38	7.46	7.78	7.75	5 to 9

Notes:

а

Ministry of Environment's *Guideline For Use At Contaminated Sites in Ontario*, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 1 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP1 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP1 (25-27.5 cm)	TP1 (45-50 cm)	TP1 (70-75 cm)	TP1 (Bedrock >95 cm)	MOE TABLE A CRITERIA
Antimony	0.4	0.3	0.2	<0.2	13
Arsenic	6.7	5.3	2.0	2.0	25
Selenium	1.7	1.2	0.9	<0.2	10
Aluminum	18200	19400	18600	1830	NV
Barium	115	133	72	11	1000
Beryllium	0.8	0.8	0.8	<0.2	- 1.2
Cadmium	<0,5	<0.5	<0.5	<0.2	12
Chromium	29	26	22	7.0	1000
Cobalt	24	13	7.0	2.0	50
Copper	177	62	41	11	300
Iren	29300	28700	13100	3450	NV
Lead	26	12	32	<5.0	200
Manganese	449	524	95	129	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	1970	582	81	45	200
Phosphorous	582	584	735	128	NV
Silver	<1.0	<1.0	<1.0	<1.0	25
Titanium	349	330	162	24	NV
Vanadium	38	37	30	6.0	250
Zine	74	74	69	8.0	800
PH (Unitless)	7.80	7.76	7.23	8.46	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 2 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP2 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

		and the second se					
Parameter	TP2 (0-2.5 cm)	TP2 (2.5-5.0 cm)	TP2 (5.0-7.5 cm)	TP2 (10-12.5 cm)	TP2 (15-17.5 cm)	TP2 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	1.4	1.1	1.2	1.6	1.2	0.2	13
Arsenic	37.8	35.7	45.4	54.8	343	4.8	25
Selenium	7,4	6.9	8.2	7.9	8.7	<0.2	10
Aluminum	17100	21200	22200	19200	21900	21000	NV
Barium	191	164	183	160	165	141	1000
Beryllium	0.7	0.9	1.0	0.9	0.9	0.9	1 2
Cadmium	2.0	2.4	1.3	2.0	1.0	<0.5	12
Chromium	42	35	33	32	32	27	1000
Cobalt	213	159	153	192	131	12	50
Copper	1330	1290	1860	2050	1240	32	300
Iron	17900	20300	20600	19900	19400	30800	NV
Lead	85	47	48	50	38	13	200
Manganese	280	225	227	202	205	441	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	10100	10400	11500	14900	9550	103	200
Phosphorous	830	540	720	684	646	583	NV
Silver	4.0	3.0	2.0	4.0	2.0	<1.0	25
Titanium	77	94	144	145	143	263	NV
Vanadium	45	47	44	42	41	39	250
Zinc	159	149	157	173	140	72	800
PH (Unitless)	6.81	6.56	6.79	6.59	6.57	7.94	5 to 9

Notes:

a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



# TABLE 3 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP3 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP3 (0-2.5 cm)	TP3 (2.5-5.0 cm)	TP3 (5.0-7.5 cm)	TP3 (7.5-10 cm)	TP3 (10-12.5 cm)	TP3 (12.5-15 cm)	MOE TABLE A CRITERIA
Antimony	0.6	0.7	0.7	0.6	0.6	0.6	13
Arsenic	15.8	24.8	37.9	415	37.9	36.8	25
Selenium	4.6	5.0	7.8	8.1	7.5	7.0	10
Aluminum	10600	15000	16100	16500	15900	16000	NV
Barium	123	154	164	169	164	159	1000
Beryllium	0.7	1.1	1.2	1.2	1.2	1.1	1.2
Cadmium	1.1	1.4	1.8	1.9	1.5	1.5	12
Chromium	21	25	27	29	27	28	1000
Cobalt	62	62	80	86	71	71	50
Copper	462	597	838	841	739	705	300
Iron	13700	17900	20200	21400	20100	19800	NV
Lead	46	48	52	59	53	47	200
Manganese	250	222	178	185	156	167	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	2690	3890	5720	5910	4830	4610	200
Phosphorous	1100	1100	1100	1110	1050	1020	NV
Silver	2.0	2.0	3.0	3.0	3.0	3.0	25
Titanium	80	81	89	89	86	88	NV
Vanadium	21	27	31	32	31	32	250
Zinc	124	135	162	161	149	146	800
PH (Unitless)	6.73	6.71	6.59	6.52	6.55	6.55	5 to 9

Notes:

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



# TABLE 3 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP3 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP3 (15-17.5 cm)	TP3 (17.5-20 cm)	TP3 (20-22.5 cm)	TP3 (22.5-25 cm)	TP3 (25-27.5 cm)	TP3 (27.5-30 cm)	MOE TABLE A CRITERIA
Antimony	0.6	0.6	0.6	0.6	<0.2	<0.2	13
Arsenic	34.7	36.8	33.7	29.5	2.5	3.0	25
Selenium	8.0	7.5	7.9	6.3	<0.2	0.2	10
Aluminum	17200	15100	14700	14300	11600	12400	NV
Barium	174	150	145	138	96	108	1000
Beryllium	1.3	1.1	1.1	1.0	0.6	0.6	1.2
Cadmium	2.3	1.3	1.7	1.2	<0.5	<0.5	12
Chromium	30	26	25	24	19	21	1000
Cobalt	75	65	67	52	11	10	50
Copper	806	685	773	584	15	18	300
Iron	20500	19000	17800	17200	19300	20400	NV
Lead	55	50	52	44	11	11	200
Manganese	155	142	138	132	115	111	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	5100	4370	4770	3510	44	36	200
Phosphorous	1140	970	932	815	162	170	NV
Silver	3.0	2.0	3.0	2.0	<1.0	<1.0	25
Titanium	92	83	82	76	121	109	NV
Vanadium	34	30	29	28	33	33	250
Zinc	154	137	134	118	57	58	800
PH (Unitless)	6.45	6.50	6.36	6.38	6.68	6.69	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



#### TABLE 3 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP3 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP3 (30-35 cm)	TP3 (35-40 cm)	TP3 (40-45 cm)	TP3 (45-50 cm)	TP3 (70-75 cm)	TP3 (95-100 cm)	MOE TABLE A CRITERIA
Antimony	0.2	0.2	0.2	0.3	0.4	0.3	13
Arsenic	2.8	3.6	3.8	4.2	8.3	7.1	25
Selenium	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	10
Aluminum	17700	20500	21400	20800	17800	18200	NV
Barium	121	147	154	157	144	159	1000
Beryllium	0.9	1.0	1.0	0.9	0.8	0.8	1.2
Cadmium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12
Chromium	26	29	31	30	26	27	1000
Cobalt	16	14	13	14	13	13	50
Copper	24	25	30	31	27	26	300
lron	24800	30900	31700	41400	32000	32300	NV
Lead	10	10	15	16	11	12	200
Manganese	207	231	261	1210	474	422	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	47	42	40	49	32	32	200
Phosphorous	268	500	568	612	553	578	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	192	218	223	255	275	295	NV
Vanadium	35	39	41	40	35	37	250
Zinc	68	70	71	71	62	65	800
PH (Unitless)	6.83	7.14	7.14	7.43	7.88	7.93	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



## TABLE 4 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP4 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP4 (0-2.5 cm)	TP4 (2.5-5.0 cm)	TP4 (5.0-7.5 cm)	TP4 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	<0.2	0.2	0.3	0.3	13
Arsenie	3.4	3.6	3.5	3.9	25
Selenium	0.6	0.7	0.4	0.6	10
Aluminum	5960	10500	19100	18700	NV
Barium	46	69	105	106	1000
Beryllium	0.3	0.5	0.8	0.9	1.2
Cadmium	<0.5	<0.5	<0.5	<0.5	12
Chromium	12	17	27	27	1000
Cobalt	14	17	14	13	50
Copper	73	75	34	38	300
Iron	12900	15900	22200	21700	NV
Lead	29	43	29	32	200
Manganese	430	426	317	356	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	503	518	153	189	200
Phosphorous	782	719	504	529	NV
Silver	<1.0	<1.0	<1.0	<1.0	25
Titanium	40	32	268	278	NV
Vanadium	19	25	41	41	250
Zinc	90	89	76	75	800
PH (Unitless)	7.07	7.33	7.69	7.78	5 to 9

Notes:

а

NV

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value



# TABLE 4 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP4 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP4 (15-17.5 cm)	TP4 (25-27.5 cm)	TP4 (45-50 cm)	MOE TABLE A CRITERIA
Antimony	0.9	0.8	0.6	13
Arsenic	13.9	19.5	17.1	25
Seleníum	2.2	3.5	4.3	10
Aluminum	9140	12300	13900	NV
Barium	79	96	85	1000
Beryllium	0.7	0.6	0.7	1.2
Cadmium	<0.5	0.9	1.2	12
Chromium	38	24	26	1000
Cobalt	47	67	39	50
Copper	236	477	274	300
Iron	19900	22500	24500	NV
Lead	107	133	70	200
Manganese	478	438	258	NV
Molybdenum	<3.0	<3.0	<3.0	40
Nickel	2630	5690	3520	200
Phosphorous	659	609	688	NV
Silver	<1.0	1.0	<1.0	25
Titanium	272	268	334	NV
Vanadium	32	33	40	250
Zine	195	187	282	800
PH (Unitless)	7.78	7.60	7.34	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 5 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP5 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP5 (0-2.5 cm)	TP5 (2.5-5.0 cm)	TP5 (5.0-7.5 cm)	TP5 (7.5-10 cm)	TP5 (10-12.5 cm)	TP5 (12.5-15 cm)	MOE TABLE A CRITERIA
Antimony	0.7	0.6	0.7	0.6	0.2	0.4	13
Arsenic	47.5	45.6	64.0	65.0	5.5	18.0	25
Selenium	7.1	7,4	9.4	10.0	1.2	3.1	10
Aluminum	29000	29100	33200	33300	22600	23900	NV
Barium	203	204	238	242	132	146	1000
Beryllium	1.6	1.6	1.9	1.9	1.0	1.2	1.2
Cadmium	2.2	2.5	3.1	3.3	0.8	1.1	12
Chromium	37	38	43	43	30	31	1000
Cobalt	108	112	155	160	21	48	50
Copper	818	848	1280	1340	92	324	300
Iron	28100	28800	33800	34500	22600	23500	NV
Lead	50	57	68	71	17	27	200
Manganese	346	329	356	361	175	199	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nicke)	7409	7920	11800	12100	814	3010	200
Phosphorous	1370	1390	1800	1850	262	575	NV
Silver	2	2	4	4	<1.0	<1.0	25
Titanium	157	166	180	181	160	156	NV
Vanadium	51	52	59	59	43	44	250
Zinc	192	195	252	257	92	122	800
PH (Unitless)	6.40	6.33	6.23	6.19	6.33	6.27	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



# TABLE 5 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP5 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP5 (15-17.5 cm)	TP5 (17.5-20 cm)	TP5 (20-22.5 cm)	TP5 (22.5-25 cm)	TP5 (25-27.5 cm)	TP5 (27.5-30 cm)	MOE TABLE A CRITERIA
Antimony	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	13
Arsenic	2.2	2.5	2.7	2.1	2.0	2.7	25
Selenium	0.6	0.8	0.7	0.6	0.5	1.0	10
Aluminum	22100	22000	24400	23000	21700	22900	NV
Barium	129	126	155	144	130	137	1000
Beryllium	1.0	1.0	1.2	1.1	1.1	1.1	1.2
Cadmium	<0.5	<0.5	0.5	0.5	<0.5	<0.5	12
Chromium	29	29	32	30	28	30	1000
Cobalt	15	14	16	17	16	17	50
Copper	21	20	23	21	21	34	300
Iron	24400	23500	27600	26700	25100	27100	NV
Lead	15	14	15	16	13	16	200
Manganese	180	171	187	190	179	187	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	60	71	44	38	46	67	200
Phosphorous	172	162	189	208	227	226	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	179	160	197	207	207	233	NV
Vanadium	45	44	47	46	43	46	250
Zine	86	83	88	87	86	90	800
PH (Unitless)	6.35	6.33	6.44	6.47	6.51	6.49	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



#### TABLE 5 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP5 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP5 (30-35 cm)	TP5 (35-40 cm)	TP5 (40-45 cm)	TP5 (45-50 cm)	TP5 (70-75 cm)	TP5 (95-100 cm)	MOE TABLE A CRITERIA
Antimony	0.2	0.2	0.2	<0.2	0.4	0.3	13
Arsenic	2.7	4.0	4.4	3.8	5.1	5.7	25
Selenium	0.6	0.6	0.3	0.6	<0.2	<0.2	10
Aluminum	24300	26300	27200	27200	19200	17900	NV
Barium	152	167	190	203	153	156	1000
Beryllium	1.2	1.2	13	1.2	0.9	0.8	1.2
Cadmium	0.6	<0.5	<0.5	0.6	0.6	<0.5	12
Chromium	32	34	36	36	26	25	1000
Cobalt	17	17	17	19	12	12	50
Copper	30	35	35	40	25	26	300
Iron	29800	36800	39500	69400	33100	31900	NV
Lead	15	16	14	14	9.0	11	200
Manganese	203	239	358	2140	723	552	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	70	80	82	111	34	30	200
Phosphorous	362	628	695	788	632	600	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	215	232	275	353	298	320	NV
Vanadium	45	46	47	47	35	34	250
Zine	119	199	219	118	72	69	800
PH (Unitless)	6.71	6.94	7.18	7.67	7.87	7.94	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 6 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP6 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP6 (0-2.5 cm)	TP6 (2.5-5.0 cm)	TP6 (5.0-7.5 cm)	TP6 (10-12.5 cm)	TP6 (15-17.5 cm)	TP6 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	1.6	1.1	1.7	1.1	0.6	0.2	13
Arsenic	45	51.2	62.8	46.2	23.7	3.5	25
Selenium	7.9	8.9	12,0	11.0	5.3	<0.2	10
Aluminum	24500	31700	42000	39000	34000	24600	NV
Barium	198	233	280	243	203	152	1000
Beryllium	13	1.8	22	1.2	國	1.1	1.2
Cadmium	2.2	3.3	3.0	2.9	0.8	0.6	12
Chromium	37	44	54	52	44	34	1000
Cobalt	137	168	164	140	66	14	50
Copper	1400	1400	1350	1280	547	34	300
Iron	19300	26100	31700	30200	22500	37300	NV
Lead	85	86	85	78	51	17	200
Manganese	163	179	237	267	180	745	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	9350	11700	11300	9590	4350	66	200
Phospharous	2010	2090	2070	1460	804	644	NV
Silver	5.0	4.0	3.0	4.0	<1.0	<1.0	25
Titanium	25	25	222	175	188	319	NV
Vanadium	56	61	87	80	63	49	250
Zinc	192	243	241	235	157	73	800
PH (Unitless)	5.95	5.90	6.44	6.65	6.92	7.58	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



## TABLE 7 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP7 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP7 (0-2.5 cm)	TP7 (2.5-5.0 cm)	TP7 (5.0-7.5 cm)	TP7 (10-12.5 cm)	TP7 (15-17.5 cm)	TP7 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	0.8	0.6	1.7	0.5	<0.2	0.3	13
Arsenic	48.4	42.1	51.6	17.6	2.9	5.7	25
Selenium	5.4	5.6	9.2	3.3	0.2	<0.2	10
Aluminum	21100	24200	29600	26700	22100	22400	NV
Barium	184	192	203	153	116	138	1000
Beryllium	1.0	1.1	13	1.0	0.9	1.0	1.2
Cadmium	1.8	1.7	1.9	0.7	<0.5	<0.5	12
Chromium	50	36	59	42	32	31	1000
Cobalt	163	147	184	80	20	13	50
Copper	1400	1240	1400	453	20	26	300
Iron	22800	22600	26100	24000	23700	30800	NV
Lead	59	51	70	44	33	23	200
Manganese	181	182	241	206	155	640	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	11400	10200	12600	4160	350	43	200
Phosphorous	1020	1010	1130	530	266	585	NV
Silver	1	2	3	<1.0	<1.0	<1.0	25
Titanium	12	15	174	164	282	307	NV
Vanadium	36	39	60	63	58	45	250
Zinc	197	194	208	125	68	71	800
PH (Unitless)	5.92	5.91	6.46	6.26	6.23	7.95	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



## TABLE 8 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP8 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP8 (0-2.5 cm)	TP8 (2.5-5.0 cm)	TP8 (5.0-7.5 cm)	TP8 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	0.8	0.7	0.5	0.7	13
Arsenic	12.4	11.5	9.9	14.4	25
Selenium	2.7	2.0	0.7	0.9	10
Aluminum	2410	2140	1830	1620	NV
Barium	68	37	20	26	1000
Beryllium	0.2	<0.2	<0.2	<0.2	1.2
Cadmium	1.3	0.9	<0.5	<0.5	12
Chromium	11	11	8.0	6.0	1000
Cobalt	48	27	п	13	50
Copper	165	121	64	75	300
Iron	23900	23000	15700	14300	NV
Lead	78	61	33	27	200
Manganese	1080	446	160	292	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	1730	1250	689	735	200
Phosphorous	1010	672	556	459	NV
Silver	1.0	<1.0	<1.0	<1.0	25
Titanium	94	180	248	184	NV
Vanadium	18	16	12	9.0	250
Zine	224	205	119	113	800
PH (Unitless)	6.56	7.29	7.84	7.83	5 to 9

Notes:

a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



## TABLE 8 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP8 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP8 (15-17,5 cm)	TP8 (30-35 cm)	TP8 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	1.3	0.5	<0.2	13
Arsenic	27	11.7	2.3	25
Selenium	2.5	0.7	<0.2	10
Aluminum	2660	1900	1210	NV
Barium	62	31	23	1000
Beryllium	0.3	<0.2	<0.2	1.2
Cadmium	<0.5	0.6	<0.5	12
Chromium	25	6.0	3.0	1000
Cobalt	48	12	2.0	50
Copper	274	96	15	300
Iron	44800	17000	3670	NV
Lead	105	54	<5.0	200
Manganese	636	171	119	NV
Molybdenum	<3.0	<3.0	<3.0	40
Nickel	2940	954	50	200
Phosphorous	767	681	302	NV
Silver	1.0	<1.0	<1.0	25
Titanium	214	182	115	NV
Vanadium	18	12	7.0	250
Zinc	406	120	12	800
PH (Unitless)	7.60	7.47	6.10	5 to 9

Notes:

a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 9 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP9 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP9 (0-2.5 cm)	TP9 (2.5-5.0 cm)	TP9 (5.0-7.5 cm)	TP9 (7.5-10 cm)	TP9 (10-12.5 cm)	TP9 (12.5-15 cm)	MOE TABLE A CRITERIA
Antimony	1.2	2.0	2.4	2.9	1.0	1.2	13
Arsenic	61	42.7	64.9	95	41.8	55.2	25
Selenium	5.9	6.8	8.8	13.1	4.3	6.7	10
Alamínum	5820	6550	7480	7550	11200	11000	NV
Barium	128	161	199	203	157	211	1000
Beryllium	0.5	0.6	0.8	0.7	0.7	0.8	1.2
Cadmium	3.3	4.0	6.5	8.2	2.0	4.2	12
Chromium	26	33	47	71	25	31	1000
Cobalt	79	m	171	185	58	92	50
Copper	367	608	950	1200	407	738	300
Iron	38200	52600	84200	119000	39800	56100	NV
Lead	260	421	548	421	173	307	200
Manganese	544	870	1380	1550	540	790	NV
Molybdenum	<3.0	<3.0	6.0	8.0	<3.0	<3.0	40
Nickel	3590	5950	8690	11800	4500	6920	200
Phosphorous	1320	1350	1430	1320	653	894	NV
Silver	2.0	3.0	6.0	7.0	3.0	3.0	25
Titanium	120	132	158	175	153	177	NV
Vanadium	23	29	38	37	28	31	250
Zinc	513	706	1060	1380	465	794	800
PH (Unitless)	7.07	7.03	7.04	7.20	7.46	7.40	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



# **TABLE 9 (Continued)** ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP9 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP9 (15-17.5 cm)	TP9 (17.5-20 cm)	TP9 (20-22.5 cm)	TP9 (22.5-25 cm)	TP9 (25-27.5 cm)	TP9 (27.5-30 cm)	MOE TABLE A CRITERIA
Antimony	1.5	1.0	1.0	0.9	0.7	0.7	13
Arsenic	59.1	22.8	17.1	18.1	14.3	15.2	25
Seleníum	4.2	2.4	2.0	2.0	1.8	2.0	10
Aluminam	3850	4980	5060	5730	4220 .	3770	NV
Barium	110	149	147	185	115	103	1000
Beryllium	0.4	0.5	0.5	0.5	0.4	0.3	1.2
Cadmium	4,4	2.4	1.7	2.2	1.0	0.8	12
Chromium	15	11	11	13	9.0	8.0	1000
Cobalt	94	25	20	19	12	11	50
Copper	1610	622	386	452	241	176	300
Iron	58100	30000	28300	26200	20100	17900	NV
Lead	216	263	228	293	180	127	200
Manganese	984	639	485 .	530	339	326	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	11300	4780	2900	2210	1270	1020	200
Phosphorous	1010	1160	990	1080	793	799	NV
Silver	4.0	1.0	<1.0	1.0	<1.0	<1.0	25
Titanium	182	171	152	151	126	119	NV
Vanadium	23	21	20	20	15	15	250
Zinc	726	449	343	382	236	203	800
PH (Unitless)	7.21	7.34	7.28	7.29	7.36	7.36	5 to 9

Notes:

a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 9 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP9 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP9 (30-35 cm)	TP9 (35-40 cm)	TP9 (40-45 cm)	TP9 (45-50 cm)	TP9 (70-75 cm)	TP9 (95-100 cm)	MOE TABLE A CRITERIA
Antimony	0.7	0.5	0.3	0.2	<0.2	<0.2	13
Arsenic	15.2	12.8	7.6	3.2	0.5	2.4	25
Selenium	2.1	2.5	2.0	0.5	<0.2	<0.2	10
Aluminum	3230	2440	2260	2110	3780	5690	NV
Barium	84	64	42	24	22	30	1000
Beryllium	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	1.2
Cadmium	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12
Chromium	7	5	5	4	7	10	1000
Cobalt	9	8	6	2	2	3	50
Copper	123	86	44	16	3	5	300
Iron	15600	9570	6450	3990	4570	7810	NV
Lead	165	45	28	8	9	5	200
Manganese	283	170	99	43	39	71	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	756	580	318	128	6	14	200
Phosphorous	748	619	475	395	283	350	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	106	89	87	124	154	284	NV
Vanadium	13	9	9	6	12	20	250
Zinc	155	87	49	21	19	27	800
PH (Unitless)	7.25	7.03	6.97	6.99	6.96	6.80	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



## TABLE 10 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP10 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP10 (0-2.5 cm)	TP10 (2.5-5.0 cm)	TP10 (5.0-7.5 cm)	TP10 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	1.3 .	1.3	1.0	1.0	13
Arsenic	7.9	8.7	8.7	6.8	25
Selenium	1.9	1.8	1.3	0.8	10
Aluminum	15100	16900	18600	22800	NV
Barium	154	167	159	180	1000
Beryllium	0.9	1.1	1.0	1.2	1.2
Cadmium	1.3	1.6	<0.5	<0.5	12
Chromium	21	22	23	28	1000
Cobalt	41	47	26	20	50
Copper	153	166	104	75	300
Iron	22300	23800	26900	32300	NV
Lead	133	149	105	85	200
Manganese	434	499	677	728	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	1170	1310	683	410	200
Phosphorous	928	929	754	718	NV
Silver	1.0	<1.0	<1.0	<1.0	25
Titanium	191	177	232	266	NV
Vanadium	31	34	35	41	250
Zinc	215	214	153	138	800
PH (Unitless)	7.24	7.25	7.42	7.53	5 to 9

Notes:

a

NV

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value



# TABLE 10 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP10 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP10 (20-22.5 cm)	TP10 (30-35 cm)	TP10 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	1.0	0.9	· <0.2	13
Arsenic	8.7	8.2	<0.2	25
Selenium	1.2	1.2	<0.2	10
Aluminum	17500	14900	2010	NV
Barium	162	136	<5.0	1000
Beryllium	13	1.1	<0.2	1.2
Cadmium	0.8	<0.5	<0.5	12
Chromium	19	15	3.0	1000
Cobalt	18	14	<2.0	50
Copper	119	94	2.0	300
Iron	21000	18100	2090	NV
Lead	105	74	<5.0	200
Manganese	493	430	25	NV
Molybdenum	<3.0	<3.0	<3.0	40
Nickel	760	614	9.0	200
Phosphorous	544	481	230	NV
Silver	<1.0	<1.0	<1.0	25
Titanium	269	222	160	NV
Vanadium	30	24	5.0	250
Zine	163	130	11	800
PH (Unitless)	7.73	7.75	7.55	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 11 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP11 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP11 (0-2.5 cm)	TP11 (2.5-5.0 cm)	TP11 (5.0-7.5 cm)	TP11 (10-12.5 cm)	TP11 (30-35 cm)	TP11 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	1.6	1.2	1.0	1.3	<0.2	<0.2	13
Arsenic	11.9	11.1	10.8	2512	1.9	1.3	25
Selenium	2.5	1.8	2.6	3.5	<0.2	<0.2	10
Aluminum	9040	7980	11100	12200	1650	1350	NV
Barium	138	123	185	206	8.0	8.0	1000
Beryllium	1.2	0.9	13	12	<0.2	<0.2	1.2
Cadmium	1.3	1.4	1.1	1.1	<0.5	<0.5	12
Chromium	22	20	26	26	8.0	4.0	1000
Cobalt	46	41	46	73	<2.0	<2.0	50
Copper	225	257	249	294	10	3.0	300
Iron	47700	39600	46600	72700	17000	4760	NV
Lead	138	147	137	132	8.0	<5.0	200
Manganese	1040	881	1280	1550	157	120	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	1610	1500	1560	2470	32	5.0	200
Phosphorous	685	566	490	579	439	289	NV
Silver	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	288	300	328	346	574	187	NV
Vanadium	22	21	24	28	35	8.0	250
Zinc	311	264	270	460	34	17	800
PH (Unitless)	7.59	7.75	7.69	7.62	8.00	8.07	5 10 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



#### TABLE 12 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP12 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP12 (0 to 2.5 cm)	TP12 (2.5 to 5 cm)	TP12 (5 to 10 cm)	MOE TABLE A CRITERIA '
Antimony	0.9	0.3	0.2	13
Arsenic	15.2	5.9	4.9	25
Selenium	7.5	9.1	9.1	10
Aluminum	42100	41200	36600	NV
Barium	691	201	160	1000
Beryllium	6.1	7.5	四	1.2
Cədmium	1.6	1.0	1.0	12
Chromium	39	23	21	1000
Cobalt	7.0	3.0	<2.0	50
Copper	73	27	20	300
Iron	73100	30300	18300	NV
Lead	11	<5.0	<5.0	200
Manganese	3980	3480	2960	NV
Molybdenum	6.0	<3.0	<3.0	40
Nickel	77	33	22	200
Phosphorous	804	271	226	NV
Silver	<1.0	1.0	2.0	25
Titanium	885	864	841	NV
Vanadium	13	7.0	6.0	250
Zine	153	42	21	800
PH (Unitless)	9.0	10.3	10.5	5-9 (Unitless)

Notes:

3

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



## TABLE 13 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP13 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP13 (0-2.5 cm)	TP13 (2.5-5.0 cm)	TP13 (5.0-7.5 cm)	TP13 (7.5-10 cm)	TP13 (10-12.5 cm)	TP13 (12.5-15 cm)	MOE TABLE A CRITERIA
Antimony	1.3	1.0	0.7	0.7	0.7	0.8	13
Arsenic	34.2	46.4	57.8	73.2	57.8	67.4	25
Selenium	1.7	2.0	0.8	0.7	1.1	1.1	10
Aluminum	8220	10300	5350	5560	6130	6510	NV
Barium	124	160	66	67	73	78	1000
Beryllium	0.7	1.1	0.5	0.5	0.7	0.8	1.2
Cadmium	0.9	1.1	2.0	1.7	2.1	1.1	12
Chromium	45	47	32	31	49	54	1000
Cobalt	17	15	9.0	8.0	12	13	50
Copper	99	91	140	129	158	160	300
Iron	51300	75000	87600	99700	91100	97300	NV
Lead	101	103	71	54	63 .	70	200
Manganese	1850	3070	3930	4740	3550	3850	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	248	249	180	158	238	257	200
Phosphorous	586	440	350	329	297	274	NV
Silver	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	25
Titanium	193	238	175	176	214	231	NV
Vanadium	39	41	22	21	20	20	250
Zinc	337	350	379	330	377	375	800
PH (Unitless)	7.80	7.81	7.92	7.95	7.98	8.19	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 13 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP13 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP13 (15-17.5 cm)	TP13 (17.5-20 cm)	TP13 (20-22.5 cm)	TP13 (22.5-25 cm)	TP13 (25-27.5 cm)	TP13 (27.5-30 cm)	MOE TABLE A CRITERIA
Antimony	0.9	1.2	1.2	0.9	0.4	0.9	13
Arsenic	55	52.1	46.4	38.9	12.9	14.2	25
Selenium	2.7	3.0	3.0	2.8	1.7	2.0	10
Aluminum	9200	9200	5280	6120	1990	2300	NV
Barium	148	144	101	113	42	43	1000
Beryllium	1.2	1.2	0.7	0.8	0.4	0.4	1.2
Cadmium	1.8	1.1	0.6	2.5	<0.5	<0.5	12
Chromium	49	44	39	43	12	15	1000
Cobalt	20	19	17	15	5.0	6.0	50
Соррет	137	131	107	113	30	36	300
Iron	78200	74500	66700	65900	18000	22000	NV
Lead	73	87	63	55	15	31	200
Manganese	2860	2770	3470	3660	647	942	NV
Mołybdenum	3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	517	495	468	452	64	86	200
Phosphorous	407	364	362	444	164	168	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	385	354	344	366	107	125	NV
Vanadium	33	29	38	40	9.0	12	250
Zinc	274	250	175	171	59	71	800
PH (Unitless)	9.16	8.77	7.79	7.85	7.60	7.60	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with medium and fine textured soils.
No Value

NV Bold



#### TABLE 13 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP13 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP13 (30-35 cm)	TP13 (35-40 cm)	TP13 (40-45 cm)	TP13 (45-50 cm)	TP13 (70-75 cm)	TP13 (95-100 cm)	MOE TABLE A CRITERIA
Antimony	0.2	0.3	0.3	0.2	<0.2	0.4	13
Arsenic	11.1	14.7	33.3	10.3	6.9	10.6	25
Selenium	1.8	1.9	1.5	1.6	0.3	1.6	10
Aluminum	1680	2720	1980	2280	5290	9920	NV
Barium	31	58	36	33	17	150	1000
Beryllium	0.3	0.4	0.3	0.3	0.4	13	1.2
Cadmium	<0.5	<0.5	0.5	0.6	0.7	1.8	12
Chromium	8.0	10	12	8.0	14	21	1000
Cobalt	4.0	5.0	4.0	5.0	8.0	11	50
Copper	26	28	34	26	20	76	300
Iron	12900	12400	15500	11300	11300	50200	NV
Lead	11	16	9.0	10	5.0	186	200
Manganese	204	868	961	504	293	1120	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	38	53	51	47	25	209	200
Phosphorous	151	166	202	325	919	502	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	75	99	87	82	105	340	NV
Vanadium	6.0	8.0	9.0	8.0	22	19	250
Zinc	53	54	51	56	29	279	800
PH (Unitless)	7.52	7.82	7.64	7.81	8.41	8.40	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 14 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP14 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP14 (0-2.5 cm)	TP14 (2.5-5.0 cm)	TP14 (5.0-7.5 cm)	TP14 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	2.6	2.5	1.0	0.9	13
Arsenic	17.9	18.8	16.2	14.4	25
Selenium	4.6	4.5	4,4	4.5	10
Aluminum	32000	33900	40400	43200	NV
Barium	408	488	451	550	1000
Beryllium	33	4.2	5.1	5.4	1.2
Cadmium	2.2	2.1	0.6	<0.5	12
Chromium	90	103	29	27	1000
Cobalt	11	11	8.0	7.0	50
Copper	131	173	58	61	300
Iron	175000	185000	81900	81800	NV
Lead	623	665	78	48	200
Manganese	5140	5880	5870	6120	NV
Molybdenum	16	13	3.0	<3.0	40
Nickel	187	188	189	183	200
Phosphorous	368	372	338	344	NV
Silver	<1.0	<1.0	<1.0	<1.0	25
Titanium	617	658	620	695	NV
Vanadium	28	34	27	27	250
Zinc	382	388	154	147	800
PH (Unitless)	8.46	8.35	8.40	8.03	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 14 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP14 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP14 (15-17.5 cm)	TP14 (30-35 cm)	TP14 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	1.0	0.8	1.0	13
Arsenic	16.2	14.4	14.9	25
Selenium	4.9	4.5	1.7	10
Aluminum	47200	44100	10900	NV
Barium	340	291	142	1000
Beryllium	5.9	5.5	13	1.2
Cadmium	<0.5	<0.5	<0.5	12
Chromium	26	23	26	1000
Cobalt	7.0	6.0	9.0	50
Copper	53	45	72	300
Iron	71800	59400	64800	NV
Lead	21	16	300	200
Manganese	5920	5740	1210	NV
Molybdenum	<3.0	<3.0	<3.0	40
Nickel	166	152	146	200
Phosphorous	348	293	372	NV
Silver	<1.0	<1.0	<1.0	25
Titanium	733	655	332	NV
Vanadium	27	22	16	250
Zinc	121	108	252	800
PH (Unitless)	8.71	8.33	7.86	5 to 9

Notes:

2

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 15 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP15 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP15 (0-2.5 cm)	TP15 (2.5-5.0 cm)	TP15 (5.0-7.5 cm)	TP15 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	0.4	1.3	0.6	0.5	13
Arsenic	3.3	6.6	5.8	5.3	25
Selenium	0.3	0.9	0.7	0.6	10
Aluminum	10900	16700	11900	11100	NV
Barium	95	120	92	90	1000
Beryllium	0.5	0.7	0.6	0.5	1.2
Cadmium	1.2	1.2	<0.5	<0.5	12
Chromium	17	24	17	19	1000
Cobalt	8.0	23	11	7.0	50
Copper	71	122	55	38	300
Iron	18700	26900	18400	17900	NV
Lead	44	103	82	197	200
Manganese	425	490	345	302	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	185	1310	444	155	200
Phosphorous	1210	757	717	609	NV
Silver	<1.0	<1.0	<1.0	<1.0	25
Titanium	164	260	211	179	NV
Vanadium	22	34	25	24	250
Zine	146	156	125	107	800
PH (Unitless)	7.32	7.63	7.40	8.72	5 to 9

Notes:

a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 15 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP15 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP15 (15-17.5 cm)	TP15 (30-35 cm)	TP15 (70-75 cm)	MOE TABLE A CRITERIA
Antimony	0.5	0.5	<0.2	13
Arsenic	5.8	4.2	3.6	25
Selenium	0.7	0.5	<0.2	10
Aluminum	9950	18600	23800	NV
Barium	94	126	145	1000
Beryllium	0.5	0.9	1.0	1.2
Cadmium	0.8	<0.5	<0.5	12
Chromium	18	24	30	1000
Cobalt	8.0	12	15	50
Соррет	42	39	34	300
Iron	14600	22700	31300	NV
Lead	91	562	18	200
Manganese	301	406	415	NV
Molybdenum	<3.0	<3.0	<3.0	. 40
Nickel	250	164	220	200
Phosphorous	719	617	756	NV
Silver	<1.0	<1.0	<1.0	25
Titanium	188	227	230	NV
Vanadium	23	35	43	250
Zine	150	97	81	800
PH (Unitless)	7.41	7.43	7.54	5 to 9

Notes:

а

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV No Value Bold Exceeds Table A Guideline Value

## TABLE 16 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP16 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP16 (0-2.5 cm)	TP16 (2.5-5.0 cm)	TP16 (5.0-7.5 cm)	TP16 (10-12.5 cm)	MOE TABLE A CRITERIA *
Antimony	<0.2	<0.2	<0.2	9.4	13
Arsenic	4.2	3.8	8.2	333	25
Selenium	0.8	0.6	1.4	19.2	10
Aluminum	18000	15900	16700	8350	NV
Barium	123	107	116	162	1000
Beryllium	0.7	0.6	0.7	0.5	1.2
Cadmium	<0.5	<0.5	<0.5	2.9	12
Chromium	26	23	29	47	1000
Cobalt	16	12	31	909	50
Copper	56	43	142	7190	300
Iron	26400	24600	24900	34700	NV
Lead	9.0	11	19	147	200
Manganese	515	467	489	304	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	195	141	855	48400	200
Phosphorous	586	567	571	326	NV
Silver	<1.0	<1.0	<1.0	9.0	25
Titanium	165	171	322	396	NV
Vanadium	31	30	37	33	250
Zine	75	74	69	-111	800
PH (Unitless)	7.82	7.95	7.77	7.59	5 to 9

Notes:

а

NV

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value



# TABLE 16 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP16 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP16 (15-17.5 cm)	TP16 (25-27.5 cm)	TP16 (45-50 cm)	TP16 (70-75 cm)	MOE TABLE A CRITERIA '
Antimony	10.4	0.8	<2.0	0.5	13
Arsenic	361	18.6	7.5	5.2	25
Selenium	7.8	<2.0	<2.0	<2.0	10
Aluminum	10900	17600	9240	5920	NV
Barium	211	63	69	47	1000
Beryllium	0.7	0.7	0.4	0.2	1.2
Cadmium	<0.5	1.6	2.0	1.3	12
Chromium	52	43	17	13	1000
Cobalt	874	294	478	209	50
Copper	7390	13300	15700	7670	300
Iron	94900	57800	17700	11500	NV
Lead	373	119	45	40	200
Manganese	283	112	317	182	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	58300	27600	39300	18300	200
Phosphorous	235	347	176	346	NV
Silver	10	6	5	2	25
Titanium	760	1700	403	342	NV
Vanadium	39	62	28	36	250
Zinc	163	78	133	56	800
PH (Unitless)	7.53	7.14	8.46	9.56	5 to 9

Notes:

а.

NV

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value



## TABLE 17 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP17 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP17 (0-2.5 cm)	TP17 (2.5-5.0 cm)	TP17 (5.0-7.5 cm)	TP17 (7.5-10 cm)	TP17 (10-12.5 cm)	TP17 (12.5-15 cm)	MOE TABLE A CRITERIA
Antimony	0.8	1.7	1.7	1.6	0.6	0.6	13
Arsenic	23.7	47.9	71.2	79	īīi	12.2	25
Selenium	2.9	4.6	4.5	4.8	2.1	1.0	10
Aluminum	3220	4300	4050	4040	6650	3770	NV
Barium	76	112	113	108	109	64	1000
Beryllium	0.3	0.5	0.4	0.4	0.5	0.3	1.2
Cadmium	1.6	3.9	5.0	4.3	2.7	0.8	12
Chromium	21	46	51	37	16	8.0	1000
Cobalt	48	107	100	97	25	9.0	50
Copper	262	589	764	989	548	152	300
Iron	27700	62400	82900	79900	25100	11500	NV
Lead	216	398	448	476	170	87	200
Manganese	541	1040	1290	1140	487	232	NV
Molybdenum	<3.0	3.0	5.0	3.0	<3.0	<3.0	40
Nickel	2200	5310	6660	8390	2790	810	200
Phosphorous	945	1390	1100	883	802	528	NV
Silver	1.0	3.0	4.0	4.0	2.0	<1.0	25
Titanium	75	86	105	125	147	98	NV
Vanadium	15	26	24	19	18	11	250
Zine	403	825	1120	1030	349	139	800
PH (Unitless)	6.85	6.81	6.86	7.03	7.06	7.17	5 10 9

Notes:

a -

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 17 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP17 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP17 (15-17.5 cm)	TP17 (17.5-20 cm)	TP17 (20-22.5 cm)	TP17 (22.5-25 cm)	TP17 (25-27.5 cm)	TP17 (27.5-30 cm)	MOE TABLE A CRITERIA
Antimony	0.5	0.5	0.5	0.5	0.5	0.4	13
Arsenic	6.6	6.4	5.7	5.1	4.4	3.7	25
Selenium	0.6	0.8	1.0	0.6	0.7	0.6	10
Aluminum	2380	4490	9710	4370	3380	2570	NV
Barium	53	71	102	67	58	48	1000
Beryllium	<0.2	0.5	13	0.5	0.4	0.3	1.2
Cadmium	<0.5	<0.5	0.9	1.0	0.5	<0.5	12
Chromium	6.0	5.0	4.0	6.0	5.0	5.0	1000
Cobalt	4.0	3.0	2.0	4.0	4.0	3.0	50
Copper	58	45	47	56	39	26	300
Iron	7210	8840	12300	13400	11000	7390	NV
Lead	54	43	36	53	46	43	200
Manganese	130	227	423	282	231	169	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	333	208	177	249	179	116	200
Phosphorous	530	519	610	717	664	574	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	77	134	244	159	121	95	NV
Vanadium	9.0	11	12	13	10	7.0	250
Zinc	100	117	105	124	104	78	800
PH (Unitless)	7.11	7.28	7.42	7.38	7.39	7.33	5 to 9

Notes:

3

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# TABLE 17 (Continued) ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES: TP17 (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP17 (30-35 cm)	TP17 (35-40 cm)	TP17 (40-45 cm)	TP17 (45-50 cm)	TP17 (70-75 cm)	TP17 (95-100 cm)	MOE TABLE A CRITERIA
Antimony	0.3	0.4	0.4	0.2	<0.2	<0.2	13
Arsenic	3.7	4.5	6.3	4.5	0.7	0.5	25
Selenium	0.5	0.4	<0.2	<0.2	<0.2	<0.2	10
Aluminum	1770	1530	1190	1200	1980	1450	NV
Barium	35	28	14	10	8.0	5.0	1000
Beryllium	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.2
Cadmium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	12
Chromium	4.0	4.0	4.0	4.0	4.0	3.0	1000
Cobalt	<2.0	2.0	<2.0	<2.0	<2.0	<2.0	50
Copper	13	16	6.0	4.0	4.0	2.0	300
Iron	6690	4630	1850	1640	3050	2290	NV
Lead	83	23	5.0	<5.0	5.0	<5.0	200
Manganese	122	78	18	17	25	17	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	40
Nickel	47	87	33	22	11	4.0	200
Phosphorous	534	459	261	168	319	246	NV
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25
Titanium	92	113	143	132	124	97	NV
Vanadium	7.0	6.0	5.0	6.0	9.0	5.0	250
Zinc	57	44	10	8.0	13	11	800
PH (Unitless)	7.33	7.34	7.39	7.58	7.61	7.44	5 to 9

Notes: a

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



#### TABLE 18 ANALYTICAL RESULTS AND COMPARATIVE GUIDELINES TP A, TP C, TP D AND TP E (Selected Metal Parameters) (mg/kg or ppm except as noted) INCO, Port Colborne, Ontario

Parameter	TP A (0-5.0 cm)	TP C (0-5.0 cm)	TP D (0-5.0 cm)	TP E (0-5.0 cm)	MOE TABLE A CRITERIA
Antimony	0.3	0.6	0.4	0.3	13
Arsenic	5.4	16.8	9.6	6.7	25
Selenium	1.0	3.6	2.3	1.6	10
Aluminum	12500	11300	10800	13900	NV
Barium	100	113	93	118	1000
Beryllium	0.7	0.7	0.6	0.8	1.2
Cadmium	0.6	0.8	1.0	0.8	12
Chromium	18	22	22	21	1000
Cobalt	11	37	34	20	50
Copper	51	211	193	93	300
Iron	21300	22800	19100	25300	NV
Lead	104	89	45	30	200
Manganese	303	548	395	341	NV
Molybdenum	<3.0	<3.0	<3.0	<3.0	40
Nickel	241	1840	1290	549	200
Phosphorous	790	961	1440	1350	NV
Silver	<1.0	<1.0	<1.0	<1.0	25
Titanium	100	118	99	109	NV
Vanadium	28	28	26	28	250
Zine	120	169	133	103	800
PH (Unitless)	7.19	7.02	6.84	7.24	5 to 9

Notes: a

Ministry of Environment's *Guideline For Use At Contaminated Sites in Ontario*, revised February, 1997, (Table A) potable groundwater use at residential/parkland sites with medium and fine textured soils. No Value

NV Bold



# APPENDIX H2

# LABORATORY CERTIFICATES OF CHEMICAL ANALYSES: JWEL AUGUST 2001 AND OCTOBER 2001 SOIL SAMPLES





Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:August 28/2001Date Reported:September 21/2001Lab Ref#:G214056Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1Sampled By:M.Alam

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Acid Digestion
	Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	2) Analysis of antimony in soil by hydride generation.
	U.S. EPA Method No. 7042
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	4) Analysis of trace metals in soil by Inductively Coupled
	Plasma Spectrophotometry.
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)



Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	August 28/2001
Date Reported:	September 21/2001
Lab Ref#:	G214056
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1
Sampled By:	M.Alam

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045
	6) Acid digestion of soils for metals determination by
	inductively coupled plasma atomic emission spectrometry
	and/or flame or furnace atomic absorption spectroscopy.
	U.S. EPA Method No. 3050(Modification)
	<ol><li>Determination of the moisture content of soil by weight.</li></ol>
	ASTM Method No. D2216-80
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Thermolyne Hotplate/Hot Block

7) Precision Mechanical Convention Oven/Sartorius Basic Balance



Client:	Jacques Whitford Environment Ltd.	Date Received:	August 28/2001
	1200 Denison Street	Date Reported:	September 21/2001
	Markham, ON, CANADA	Lab Ref#:	G214056
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34651.1
Atta:	Mahaboob Alam	Sampled By:	M.Alam

#### **Certificate of Analysis**

Instrumentation: (Cont'd)	
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Certified By Elaine Grant Account Manager Certified By

Laboratory Supervisor

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	September 21/2001
Lab Ref # :	G214056
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP 13 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	86	84	120	yes			•		•	yes
Arsenic	TP 13 (45-50CM)	0.2	mg/kg	nd	0.5	yes	112	84	120	yes	5.3	5.0	3.5	6.5	yes	yes
Antimony	TP 13 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	4.4	5.0	3.5	6.5	yes	yes
Antimony	TP 13 (45-50CM)	0.2	mg/kg	nd	0.5	yes	100	29	157	yes	4.0	5.0	3.5	6.5	yes	yes
Selenium	TP 13 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	80	60	140	yes	4.6	5.0	3.5	6.5	yes	yes
Selenium	TP 13 (45-50CM)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	1.3	5.0	3.5	6.5	no	yes
Aluminum	na	20	mg/kg	nd	40	yes	100	74	125	yes	na	na	na	na	na	yes
Aluminum	na	20	mg/kg	nd	40	yes	95	74	125	yes	na	na	na	na	na	yes
Barium	156.	5	mg/kg	nd	10	yes	100	82	113	yes	па	na	na	na	na	yes
Barium	TP 13 (0-2.5CM)	5	mg/kg	nd	10	ves	96	82	113	yes	101	100	70	130	yes	yes
Beryllium	-	0.2	mg/kg	nd	0.4	yes	84	72	124	yes	na	na	na	na	na	yes
Beryllium	TP 13 (0-2.5CM)	0.2	mg/kg	nd	0.4	yes	80	72	124	yes	8.8	10	7	13	yes	yes
Cadmium	na	0.5	mg/kg	nd	0.6	yes	88	0	180	yes	na	na	na	na	па	yes
Cadmium	TP 13 (0-2.5CM)	0.5	mg/kg	nd	0.6	yes	97	0	180	yes	93.7	100	70	130	yes	yes
Chromium	na.	1	mg/kg	nd	2	yes	109	72	124	yes	na	na	па	na	na	yes
Chromium	TP 13 (0-2.5CM)	1	mg/kg	nd	2	yes	103	72	124	yes	91	100	70	130	yes	yes
Cobalt	na	2	mg/kg	nd	4	yes	102	85	123	yes	na	na	na	130	na	yes
Cobalt	TP 13 (0-2.5CM)	2	mg/kg	nd	4	yes	97	85	123	yes	87	100	70	130	yes	yes
Copper	14	1	mg/kg	nd	4	yes	105	78	122	yes	na	na	na	na	na	승규가
Copper	TP 13 (0-2.5CM)	1	mg/kg	1	4	yes	98	78	122	yes	96	100	70	130	Ves	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted = parameter not detected ns

nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	September 21/2001
Lab Ref # :	G214056
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	na	50	mg/kg	nd	100	yes	91	85	119	yes	na	na	na	na	na	yes
Iron	na	50	mg/kg	nd	100	yes	94	85	119	yes	na	na	na	na	na	yes
Lead	na	5	mg/kg	nd	10	yes	105	48	152	yes	na	na	na	na	na	yes
Lead	TP 13 (0-2.5CM)	5	mg/kg	nd	10	yes	99	48	152	yes	86	100	70	130	yes	yes
Manganese	na l	1	mg/kg	nd	2	yes	102	85	115	yes	na	na	na	na	na	yes
Manganese	TP 13 (0-2.5CM)	1	mg/kg	nd	2	yes	98	85	115	yes	•	•			•	yes
Molybdenum	- mi	3	mg/kg	nd	6	yes	147	0	210	yes	na	па	na	na	na	yes
Molybdenum	TP 13 (0-2.5CM)	3	mg/kg	nd	6	yes	120	0	210	yes	175	200	140	260	yes	yes
Nickel	na	2	mg/kg	nd	4	yes	98	86	116	yes	na	na	na	na	na	yes
Nickel	TP 13 (0-2.5CM)	2	mg/kg	nd	4	yes	94	86	116	yes	84	100	70	130	yes	yes
Phosphorus	-	20	mg/kg	nd	40	yes	113	73	130	yes	na	na	na	na	na	yes
Phosphorus	na	20	mg/kg	nd	40	yes	119	73	130	yes	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	106	25	200	yes	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	113	25	200	yes	na	na	na	na	na	yes
Titanium	m	5	mg/kg	nd	10	yes	125	37	174	yes	na	na	na	na	na	yes
Titanium	14	5	mg/kg	nd	10	yes	132	37	174	yes	na	na	na	na	па	yes
Vanadium	na	1	mg/kg	nd	2	yes	107	81	119	yes	na	na	na	na	na	yes
Vanadium	TP 13 (0-2.5CM)	1	mg/kg	nd	2	yes	101	81	119	yes	90	100	70	130	yes	yes
Zinc	na.	5	mg/kg	nd	10	yes	97	85	112	yes	na	na	na	na	na	yes
Zinc	TP 13 (0-2.5CM)	5	mg/kg	nd	10	yes	94	85	112	yes	105	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	September 21/2001
Lab Ref # :	G214056
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	1	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pH	74	0.01	Units	nd	0.02	yes	100	90	110	yes	na	na	na	па	na	yes
pH	na	0.01	Units	nd	0.02	yes	100	90	110	yes	na	na	na	na	na	yes
						1.										
a .																
															:	

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

па = Not Applicable

= Insufficient Sample Submitted TIS .

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	September 21/2001
Lab Ref # :	G214056
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP 13 (0-2.5CM)	TP 13 (0-2.5CM) Replicate	TP 13 (10-12.5CM	TP 13 (12.5-15CM	TP 13 (15-17.5CM
Antimony	0.2	mg/kg	1.3	1.2	0.7	0.8	0.9
Arsenic	0.2	mg/kg	34.2	34.2	57.8	67.4	55.0
Seleniam	0.2	mg/kg	1.7	1.7	1.1	1.1	2.7
Aluminum	20	mg/kg	8220	8970	6130	6510	9200
Barium	5	mg/kg	124	134	73	78	148
Beryllium	0.2	mg/kg	0.7	0.8	0.7	0.8	1.2
Cadmium	0.5	mg/kg	0.9	1.6	2.1	LI	1.8
Chromium	1	mg/kg	45	49	49	54	49
Cobalt	2	mg/kg	17	18	12	13	20
Copper	1	mg/kg	99	107	158	160	137
iron	50	mg/kg	51300	53800	91100	97300	78200
Lead	5	mg/kg	101	101	63	70	73
Manganese	1	mg/kg	1850	1980	3550	3850	2860
Molybdenum	3	mg/kg	nd	nd	nd	nd	3
Nickel	2	mg/kg	248	281	238	257	517
Phospherus	20	mg/kg	586	668	297	274	407
Silver	1	mg/kg	nd	nd	nd	nd	nd
Titanium	5	mg/kg	193	210	214	231	385
Vanadium	1	mg/kg	39	42	20	20	33
Zinc	5	mg/kg	337	362	377	375	274
H	0.01	Units	7.80	7.81	7.98	8.19	9.16
Moisture Content	0.01	8	10.0	10.3	3.07	4.30	8.22

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of	Soil	expressed	on a dry	weight	hasis
a service y cos			VII a urr	WEIGHT	04313

Report Date:	September 21/2001
Lab Ref # :	G214056
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

arameter	EQL	Units	TP 13 (17.5-20CM	TP 13 (2.5-5CM)	TP 13 (20-22.5CM	TP 13 (22.5-25CM	TP 13 (25-27.5CM
Antimony	0.2	mg/kg	1.2	1.0	1.2	0.9	0.4
Arsenic	0.2	mg/kg	52.1	46.4	46.4	38.9	12.9
lelenium	0.2	mg/kg	3.0	2.0	3.0	2.8	1.7
Uuminum	20	mg/kg	9200	10300	5280	6120	1990
larium	5	mg/kg	144	160	101	113	42
leryllium	0.2	mg/kg	1.2	1.1	0.7	0.8	0.4
Cadmiuna	0.5	mg/kg	1.1	1.1	0.6	2.5	nd
hromium	1	mg/kg	44	47	39	43	12
lobali	2	mg/kg	19	15	17	15	5
Copper	1	mg/kg	131	91	107	113	30
ror.	50	mg/kg	74500	75000	66700	65900	18000
cau	5	mg/kg	87	103	63	55	15
Augennese	1	mg/kg	2770	3070	3470	3660	647
of the owners	3	mg/kg	nd	nd	nd	nd	nd
lick I	2	mg/kg	495	249	468	452	64
hosphours	20	mg/kg	364	440	362	444	164
it	1	mg/kg	nđ	nd	nd	nđ	nd
Marsham.	5	mg/kg	354	238	344	366	107
anodiam	1	mg/kg	29	41	38	40	9
in.	5	mg/kg	250	350	175	171	59
н	0.01	Units	8.77	7.81	7.79	7.85	7.60
forstare Contenii	0.01	5	13.3	14.0	11.4	9.62	6.02

EQL distincted Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil,	expressed	on a	dry	weight	basis
-------------------	-----------	------	-----	--------	-------

Report Date:	September 21/2001
Lab Ref # :	G214056
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Parameter	EQL	Units	TP 13 (27.5-30CM	TP 13 (30-35CM)	TP 13 (35-40CM)	TP 13 (40-45CM)	TP 13 (45-50CM)
Antimony	0.2	mg/kg	0.9	0.2	0.3	0.3	0.2
Arsenic	0.2	mg/kg	14.2	11.1	14.7	33.3	10.3
Selenium	0.2	mg/kg	2.0	1.8	1.9	1.5	1.6
Aluminum	20	mg/kg	2300	1680	2720	1980	2280
Barium	5	mg/kg	43	31	.58	36	33
Beryllium	0.2	mg/kg	0.4	0.3	0.4	0.3	0.3
Cadmium	0.5	mg/kg	nd	nd	nd	0.5	0.6
Chromium	1	mg/kg	15	8	10	12	8
Cobalt	2	mg/kg	6	4	5	4	5
Copper	1	mg/kg	36	26	28	34	26
na	50	mg/kg	22000	12900	12400	15500	11300
Lead	5	mg/kg	31	11	16	9	10
Manganese	1	mg/kg	942	204	868	961	504
dolybdenum	3	mg/kg	nd	nd	nd	nd	nd
lickel	2	mg/kg	86	38	53	51	47
bosphorus	20	mg/kg	168	151	166	202	325
ilver	1	mg/kg	nd	nd	nd	nd	nd
Itanium	5	mg/kg	125	75	99	87	82
fanadium	1	mg/kg	12	6	8	9	8
line	5	mg/kg	71	53	54	51	56
н	0.01	Units	7.60	7.52	7.82	7.64	7.81
foisture Content	0.01	*	7.04	9.69	10.5	10.5	9.06

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client - Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil, expressed on a dry weight basis

Report Date:	September 21/2001
Lab Ref # :	G214056
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Parameter	EQL	Units	TP 13 (45-50CM) Replicate	TP 13 (5-7.5CM)	TP 13 (7.5-10CM)	TP 13 (70-75CM)	TP 13 (95-100CM)
Antimony	0.2	mg/kg	0.2	0.7	0.7	nd	0.4
Arseni	0.2	mg/kg	9.7	57.8	73.2	6.9	10.6
Seler in	0.2	mg/kg	1.6	0.8	0.7	0.3	1.6
Alternation	20	mg/kg	× 1	5350	5560	5290	9920
Baiton	5	mg/kg		65	67	17	150
Be+y‡ticom	0.2	mg/kg		0.5	0.5	0.4	1.3
Catmium	0.5	mg/kg		2.0	1.7	0.7	1.8
Chromium	1	mg/kg	- Q	32	31	14	21
Celsalt	2	mg/kg		9	8	8	11
Copper	1	mg/kg		140	129	20	76
ton .	50	mg/kg	1 A 1	87600	99700	11300	50200
Le-s	5	mg/kg		71	54	5	186
Mangalitese	1	mg/kg	- x - 1	3930	4740	293	1120
Motyteleana	3	mg/kg		nd	nd	nd	nd
Nakei	2	mg/kg	•	180	158	25	209
Philiphicius	20	mg/kg	- × -	350	329	919	502
Silver	1	mg/kg		1	nd	nd	ba
Fitanium	5	mg/kg		175	176	105	340
Vasadium	1	mg/kg	- × - 1	22	21	22	19
Zin	5	mg/kg		379	330	29	279
аH	0.01	Units	7.81	7.92	7.95	8.41	8.40
Monstaire Coupleton	0.01	2	9.62	5.09	3.59	5.96	13.5

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

- Not Requested

Client:	Jacques Whitford Environment Ltd.	Date Received:	August 28/2001
	1200 Denison Street	Date Reported:	September 21/2001
	Markham, ON, CANADA	Lab Ref#:	G214056
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34651.1
Attn:	Mahaboob Alam	Sampled By:	M.Alam

#### Certificate of Analysis

#### Additional Comments:

Selenium Matrix Spike:

Please note low matrix spike recovery for sample TP 13 (45-50CM). Please view selenium results with discretion.

CHAIN	5735 McAdam Mississauga, C N OF CUSTODY RECOR	Ontario L42	2 1N9	Fax: Wats:	(905) 1-800	890-8575 -263-9040				5			Com	nments:(	624056
Client:	JWEL							S Quo	te # :	JI	NEL-	INCO	SF	ECIAL	- Page of
1.	MARKHA	M	1	$-\vec{e}$				ent P.O.				S	64		
		7. 5-	47	1	100	-	Cli	ent Proj	ect # :	01	VT3	3465	1.1	1	AUG 28'01 PM 5:13
.• Contact:	MALA	M	5-1	30.2	1.1		Sar	npled by	v:		\$1. N.	- A.	i an	¥	
hone:		Fax:		-		Ple	ase spe	cify Gu	ideline (i	f applicab	ie) Tr	JCO S	SPE	CIAL	PROTOCOL
•				ARA A	ysis Re					-	-			around Tim	
nvoice to	(if other than above):			NE										ASE PROV	IDE ADVANCE NOTIC
				N	r								22		USH PROJECTS
÷				XX								GT			pply, please contact Lo less Days
		<i>M</i>		GFA									JSH	Specify D	
	<u> </u>	1.5	<u>1.</u> /.	P	-								30.0	Time	
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	IC	A				1				Sample	No.of	Comments/Contamination
1	TP 13 (30-35m)		Sampred	1	1				-	2		1 1 2	oil	Containers	FOLLOW
2	TP13 (35-40cm)	1.15		V	1		1					5	v	1	1 where is
3	TP13(40-45cm)		25.000	1	1		1.5						,	1	PROTOCOL
4	TP 13 (45-504)	1		V	1		1						v	1	1
5	TP13 (70-75~)		0.11	V	V		-		-		-		u	4	
6	TP13 (95-100-)	4	1 8 1	V	V		1		100				N	1	
7		à	. See .	1.3				1							3
8.							1.1					-			
9															
10													_		
· 11 · · ·	Golf				1		-	-							
12			-				-	-	-		-				
amples R Client Sig	elinquished to PAS by nature)		-				1	Date:			Time:			Method of Ship	pment
amples R	eceived in lab by:	1+6		-				Date:	111	19	Time:	,7.1	~	Condition of sa	NO ICE

	JWEL	1				4				7.1	10-	THEI	PECIA	1
Client:	MARKHA	11			_	-	PA	S Quote	#: _	110	00-1	JNEL	SICCIA	1 10628 01 Mas 5:13 of
	MARKAIN	141		64 <u>.</u>	-	-		ent P.O. #	÷. –			\$4651.		Alei Coscio II. Alla Transferi
	MIALAN	И		1	1.00	<u>-</u>		ent Projec	t#: -	01				
Contact:				1	1	-		npled by:	-			1. ALAN		DRUTOCOL
Phone:		Fax:	100	K	-		ase spe	cify Guid	eline (if a	pplicable	) 10	4		PRUTOCOL
	ω.			AN	ysis Re	equired:	1	TT.	TT	-	11	the second se	around Tim	the second se
invoice to	(if other than above):			3								PL	FOR R	IDE ADVANCE NOTICI
				1-2	1 1								xceptions a	pply, please contact Lo
- e				GEAA								STD	5-7 Busin	ness Days
1		- 50	1.5	-			1	- 1				RUSH	Specify [	Date
	1	_	12.00	0	-	- 1		2 6				· · · · · · · · · · · · · · · · · · ·	Time	
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	ZI	9					- 2		Sample Matrix	No.of Containers	Comments/Contamination Site History
1	TP13(0-2.5 cm)			V	V							Soil	1	FOLLOW
2	TP 13 (2.5-50m)		1.5	1	V									PROTOCOL
3	TP13(5-7.54)	1.6		V	V									
4	TP13 (7.5-100)		1.1.1.1	V	V									
5	TP 13(10-12:5~)	-		V	V									
6	TP13 (12:5-15m)			V	V			-						
7	TP13(15-17.5m)	×		V	V									
8	TP13(17.5-200)			V	1							1.		
9	TP 13(20-22:5w)			V	1									
10	TP13(22.5-25+)	10		V	V									
11	TP13(25-27.54)			V	V									4
12	TP 13(27.5-300)		1.2	V	V									
Samples Relinquished to PAS by (Client Signature)						-	Date: Time: Method of Shipm							

-	-	-	

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

### Certificate of Analysis

REVISED

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	1) Analysis of arsenic in soil by Hydride Generation
	Atomic Absorption.
	U.S. EPA Method No. 7061(Modifications)
	<ol><li>Analysis of antimony in soil by hydride generation.</li></ol>
	U.S. EPA Method No. 7042
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	4) Analysis of trace metals in soil by Inductively Coupled
	Plasma Spectrophotometry.
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Date Reported: September 25/2001 Lab Ref#: G214052 Lab Quote#: EG009-0811 Client PO#: INCO Client Ref#: ONT34651.1



## REVISED

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:August 28/2001Date Reported:September 25/2001Lab Ref#:G214052Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1

#### Certificate of Analysis

Methodology: (Cont'd)	
	<ol> <li>Determination of the moisture content of soil by weight. ASTM Method No. D2216-80</li> </ol>
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Epa Certified By

Elaine Grant

Account Manag

Certified By Laboratory Supervisor

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## **REVISED**

Date Reported:	September 25/2001
Lab Ref # :	G214052
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

	Provide the second s			Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	ke .		Overall
Parameter (spike) EQL Ur	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable		
Arsenic	TP9 (45-50CM)	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	4.4	5.0	3.5	6.5	yes	yes
Arsenic	TP9 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	114	84	120	yes						yes
Antimony	TP9 (45-50CM)	0.2	mg/kg	nd	0.5	yes	100	29	157	yes	4.1	5.0	3.5	6.5	yes	yes
Antimony	TP9 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	100	29	157	yes	3.7	5.0	3.5	6.5	yes	yes
Selenium	TP9 (45-50CM)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.0	5.0	3.5	6.5	yes	yes
Selenium	TP9 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.0	5.0	3.5	6.5	yes	yes
Aluminum	m	20	mg/kg	nd	40	yes	84	74	125	yes	na	па	na	na	na	yes
Aluminum	na	20	mg/kg	nd	40	yes	85	74	125	ycs	na	na	na	na	na	yes
Barium	TP9 (45-50CM)	5	mg/kg	nd	10	yes	94	82	113	yes	95	100	70	130	yes	
Barium	TP9 (0-2.5CM)	5	mg/kg	nd	10	yes	92	82	113	yes	93	100	70	130	yes	yes yes
Beryllium	TP9 (45-50CM)	0.2	mg/kg	nd	0.4	yes	73	72	124	yes	9.1	10	7	13	yes	yes
Beryllium	TP9 (0-2.5CM)	0.2	mg/kg	nd	0.4	yes	74	72	124	yes	9.3	10	7	13	10000	1.000
Cadmium	TP9 (45-50CM)	0.5	mg/kg	nd	0.6	yes	101	0	180	yes	93.8	100	70	130	yes	yes
Cadmium	TP9 (0-2.5CM)	0.5	mg/kg	nd	0.6	yes	82	o	180	yes	95.0	100	70	130	yes yes	yes
Chromium	TP9 (45-50CM)	1	mg/kg	nd	2	yes	96	72	124	yes	95	100	70	130	ves	yes
Chromium	TP9 (0-2.5CM)	1	mg/kg	nd	2	yes	95	72	124							yes
Cobalt	TP9 (45-50CM)	2	mg/kg	nd	4		95	85	124	yes	92	100	70	130	yes	yes
Cobalt	TP9 (0-2.5CM)	2	mg/kg	nd	4	yes yes	95 96	85	123	yes	94 81	100	70 70	130	yes	yes
Copper	TP9 (45-50CM)	ī	mg/kg	nd	4		96	78		yes				130	yes	yes
Copper	TP9 (0-2.5CM)	1	mg/kg	nd	4	yes yes	90 95	78	122 122	yes yes	93 89	100 100	70 70	130 130	yes yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis ٠

118

 Not Applicable
 Insufficient Sample Submitted
 parameter not detected ns

nd

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam



Date Reported:	September 25/2001
Lab Ref # :	G214052
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery		Matrix Spike					Overall
-	SAMPLE ID (spike) EQL Units	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable	
Iron .	па	50	mg/kg	nd	100	ycs	86	85	119	yes	na	na	na	na	na	yes
Iron	ra.	50	mg/kg	nd	100	yes	90	85	119	ycs	na	na	na	na	na	yes
Lead	TP9 (45-30CM)	5	mg/kg	nd	10	yes	86	48	152	yes	97	100	70	130	yes	yes
Lead	TP9 (0-2.5CM)	5	mg/kg	nd	10	yes	109	48	152	yes	84	100	70	130	yes	yes
Manganese	TP9 (45-50CM)	1	mg/kg	nd	2	yes	97	85	115	yes	92	100	70	130	yes	yes
Manganese	TP9 (0-2.5CM)	1	mg/kg	nd	2	yes	96	85	115	yes	107	100	70	130	yes	yes
Molybdenum	TP9 (45-50CM)	3	mg/kg	nd	6	yes	25	0	210	yes	184	200	140	260	yes	yes
Molybdenum	TP9 (0-2.5CM)	3	mg/kg	nd	6	yes	116	0	210	yes	188	200	140	260	yes	yes
Nickel	TP9 (45-50CM)	2	mg/kg	nd	4	yes	92	86	116	yes	78	100	70	130	yes	yes
Nickel	TP9 (0-2.5CM)	2	mg/kg	nd	4	yes	91	86	116	yes						yes
Phosphorus	m	20	mg/kg	nd	40	yes	108	73	130	yes	na	na	0.4	-	na	yes
Phosphorus	m	20	mg/kg	nd	40	yes	112	73	130	yes	na	na	па	na	na	yes
Silver	m	1	mg/kg	nd	2	yes	103	25	200	yes	na	na	na	na	na	yes
Silver	-	1	mg/kg	nd	2	yes	136	25	200	yes	<b>64</b>	0.4	na	na	na	yes
Titanium	na	5	mg/kg	nd	10	yes	96	37	174	yes	-	na	na	na	na	yes
Titanium	na.	5	mg/kg	nd	10	yes	97	37	174	yes	na	na	na	na	na	yes
Vanadium	TP9 (45-50CM)	1	mg/kg	nd	2	yes	92	81	119	yes	94	100	70	130	yes	Steller .
Vanadium	TP9 (0-2.5CM)	1	mg/kg	nd	2	yes	91	81	119	yes	92	100	70	130	yes	yes yes
Zinc	TP9 (45-50CM)	5	mg/kg	nd	10	yes	92	85	112	yes	90	100	70	130	yes	yes
Zinc	TP9 (0-2.5CM)	5	mg/kg	nd	10	yes	93	85	112	yes	67	100	70	130	no	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

REVISED

September 25/2001
G214052
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

			Pr	ocess Bla	nk	Pro	cess % R	ecovery	1		M	atrix Spil	ce		Overall
SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	1.000		Result	Target		Upper Limit		QC Acceptable
m	0.01	Units	na	na	na	100	90	110	yes	na	na	na	na	na	yes
m	0.01	Units	na	na	na	100	90	110	yes	na	na	na	na	na	yes
														1	
	(spike) na	(spike) EQL na 0.01	(spike) EQL Units m 0.01 Units	SAMPLE ID (spike) EQL Units Result m 0.01 Units na	SAMPLE ID (spike)         EQL         Units         Result         Upper           na         0.01         Units         na         na           na         0.01         Units         na         na	(spike)     EQL     Units     Result     Limit     Accept       ma     0.01     Units     na     na     na       ma     0.01     Units     na     na     na	SAMPLE ID (spike)     EQL     Units     Result     Upper Limit     Accept     Result       na     0.01     Units     na     na     na     100       na     0.01     Units     na     na     na     100       na     0.01     Units     na     na     na     100	SAMPLE ID (spike)     EQL     Units     Result     Upper Limit     Accept     Result     Lower       na     0.01     Units     na     na     na     100     90       na     0.01     Units     na     na     na     100     90       na     0.01     Units     na     na     na     100     90	SAMPLE ID (spike)     EQL     Units     Result     Upper Limit     Accept     Result     Lower     Upper Limit       na     0.01     Units     na     na     na     na     100     90     110       na     0.01     Units     na     na     na     na     100     90     110       na     0.01     Units     na     na     na     na     100     90     110	SAMPLE ID (spike)     EQL     Units     Result     Upper Limit     Accept     Lower     Upper Limit     Lower     Upper Limit     Accept       na     0.01     Units     na     na     na     na     100     90     110     yes       na     0.01     Units     na     na     na     na     100     90     110     yes       na     0.01     Units     na     na     na     na     100     90     110     yes       na     0.01     Units     na     na     na     na     na     100     90     110     yes	SAMPLE ID (spike)     EQL     Units     Result     Upper Limit     Accept     Result     Lower     Upper Limit     Lower     Upper Limit     Accept     Result       ma     0.01     Units     na     na     na     na     100     90     110     yes     na       ma     0.01     Units     na     na     na     na     100     90     110     yes     na       ma     0.01     Units     na     na     na     na     100     90     110     yes     na       ma     0.01     Units     na     na     na     na     na     100     90     110     yes     na	SAMPLE ID (spike)     EQL     Units     Result     Limit     Accept     Result     Lower     Upper       na     0.01     Units     na     na     na     100     90     110     yes     na     na       na     0.01     Units     na     na     na     100     90     110     yes     na     na       na     0.01     Units     na     na     na     100     90     110     yes     na     na       na     0.01     Units     na     na     na     na     na     na     na	SAMPLE ID (spike)     EQL     Units     Result     Upper Limit     Accept     Result     Lower     Upper Limit     Limit     Accept     Result     Accept     Result     Limit     Accept     Result     Limit     Accept     Result     Limit     Accept     Result     Limit     Accept     Result     Accept     Result     Limit     Accept     Result     Accept     Result     Target     Limit       na     0.01     Units     na     na </td <td>SAMPLE ID (spike)     EQL     Units     Result     Limit     Accept     Result     Lower     Upper     Limit     Accept     Result     Limit     Accept     Result     Limit     Accept     Result     Limit     Lower     Upper       na     0.01     Units     na     na     na     100     90     110     yes     na     na     na     na       na     0.01     Units     na     na     na     100     90     110     yes     na     na     na     na       na     0.01     Units     na     na     na     na     100     90     110     yes     na     na     na     na       na     0.01     Units     na     na     na     na     100     90     110     yes     na     na     na</td> <td>SAMPLE ID (splke)         EQL         Units         Result         Upper Limit         Accept         Result         Lower         Upper         Limit         Accept         Result         Target         Lower         Upper           na         0.01         Units         na         na</td>	SAMPLE ID (spike)     EQL     Units     Result     Limit     Accept     Result     Lower     Upper     Limit     Accept     Result     Limit     Accept     Result     Limit     Accept     Result     Limit     Lower     Upper       na     0.01     Units     na     na     na     100     90     110     yes     na     na     na     na       na     0.01     Units     na     na     na     100     90     110     yes     na     na     na     na       na     0.01     Units     na     na     na     na     100     90     110     yes     na     na     na     na       na     0.01     Units     na     na     na     na     100     90     110     yes     na     na     na	SAMPLE ID (splke)         EQL         Units         Result         Upper Limit         Accept         Result         Lower         Upper         Limit         Accept         Result         Target         Lower         Upper           na         0.01         Units         na         na

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

September 25/2001
G214052
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP9 (0-2.5CM)	TP9 (0-2.5CM) Replicate	TP9 (2.5-5CM)	TP9 (5-7.5CM)	TP9 ( 10-12.5CM)
Antimony	0.2	mg/kg	1.2	1.2	2.0	2.4	1.0
Arsenie	0.2	mg/kg	61.0	62.0	42.7	64.9	41.8
Selenium	0.2	mg/kg	5.9	6.2	6.8	8.8	4.3
Aluminum	20	mg/kg	5820	6490	6550	7480	11100
Barium	5	mg/kg	128	134	161	199	157
Beryllium	0.2	mg/kg	0.5	0.5	0.6	0.8	0.7
Cadmium	0.5	mg/kg	3.3	4.1	4.0	6.5	2.0
Chromium	1	mg/kg	26	27	33	47	25
Cobalt	2	mg/kg	79	89	111	171	58
Copper	1	mg/kg	367	394	608	950	407
lron	50	mg/kg	38200	42700	52600	84200	39800
Lead	5	mg/kg	260	278	421	548	173
Manganese	1	mg/kg	544	589	870	1380	540
Molybdenum	3	mg/kg	nd	nd	nd	6	nd
Nickel	2	mg/kg	3590	3640	5950	8690	4500
Phosphorus	20	mg/kg	1320	1480	1350	1430	653
Silver	1	mg/kg	2	3	3	6	3
Titanium	5	mg/kg	120	132	132	158	153
Vanadium	1	mg/kg	23	26	29	38	28
Zinc	5	mg/kg	513	507	706	1060	465
μH	0.01	Units	7.07	7.07	7.03	7.04	7.46
Moisture Content	0.01	%	28.4	27.8	26.0	23.9	16.9

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

Report Date:	September 25/2001
Lab Ref # :	G214052
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP9 ( 12.5-15CM)	TP9 ( 15-17.5CM)	TP9 ( 17.5-20CM)	TP9 ( 20-22.5CM)	TP9 ( 22.5-25CM)
Antimony	0.2	mg/kg	1.2	1.5	1.0	1.0	0.9
Arsenic	0.2	mg/kg	55.2	59.1	22.8	17.1	18.1
Selenium	0.2	mg/kg	6.7	4.2	2.4	2.0	2.0
Aleminum	20	mg/kg	11000	3850	4980	5060	5730
Barium	5	mg/kg	211	110	149	147	185
Beryllium	0.2	mg/kg	0.8	0.4	0.5	0.5	0.5
Cadmium	0.5	mg/kg	4.2	4.4	2.4	1.7	2.2
Chromium	1	mg/kg	31	15	11	11	13
Cobalt	2	mg/kg	92	94	25	20	19
Copper	1	mg/kg	738	1610	622	386	452
ron	50	mg/kg	56100	58100	30000	28300	26200
.ead	5	mg/kg	307	216	263	228	293
Mangamese	1	mg/kg	790	984	639	485	530
dolybdenum	3	mg/kg	ba	nd	nd	pd	nd
Vickel	2	mg/kg	6920	11300	4780	2900	2210
hosphorus	20	mg/kg	894	1010	1160	990	1080
ilver	1	mg/kg	3	4	1	nd	1
Stanium	5	mg/kg	177	182	171	152	151
anadium	1	mg/kg	31	23	21	20	20
linc	5	mg/kg	794	726	449	343	382
н	0.01	Units	7.40	7.21	7.34	7.28	7.29
loistare Content	0.01	5	18.0	15.0	22.1	25.8	27.6

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Report Date:	September 25/2001
Lab Ref # :	G214052
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Antimony Arsenic Selenium Aluminum Barium Baryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese Molybdenum	0.2 0.2 20 5 0.2 0.5 1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.7 14.3 1.8 4220 115 0.4 1.0 9 12 241 20100	0.7 15.2 2.0 3770 103 0.3 0.8 8 11 176	0.7 15.2 2.1 3230 84 0.3 0.5 7 9 123	0.5 12.8 2.5 2440 64 nd 5 8 8 8	0.3 7.6 2.0 2260 42 nd nd 5 6 44
Selenium Aluminum Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese	0.2 20 5 0.2 0.5 1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1.8 4220 115 0.4 1.0 9 12 241	2.0 3770 103 0.3 0.8 8 11 176	2.1 3230 84 0.3 0.5 7 9	2.5 2440 64 nd 5 8	2.0 2260 42 nd nd 5 6
Ahuminum Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese	20 5 0.2 0.5 1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	4220 115 0.4 1.0 9 12 241	3770 103 0.3 0.8 8 11 176	3230 84 0.3 0.5 7 9	2440 64 nd 5 8	2260 42 nd 5 6
Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese	5 0.2 0.5 1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	115 0.4 1.0 9 12 241	103 0.3 0.8 8 11 176	84 0.3 0.5 7 9	64 nd nd 5 8	42 nd 5 6
Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese	0.2 0.5 1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.4 1.0 9 12 241	0.3 0.8 8 11 176	0.3 0.5 7 9	nd nd 5 8	nd nd 5 6
Cadmium Chromium Cobalt Copper Iron Lead Manganese	0.5 1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg mg/kg	1.0 9 12 241	0.8 8 11 176	0.5 7 9	nd 5 8	nd nd 5 6
Chromium Cobalt Copper Iron Lead Manganese	1 2 1 50 5	mg/kg mg/kg mg/kg mg/kg	9 12 241	8 11 176	7 9	5 8	5 6
Cobalt Copper Iron Lead Manganese	2 1 50 5	mg/kg mg/kg mg/kg	12 241	11 176	9	8	5 6
Copper Iron Lead Manganese	1 50 5	mg/kg mg/kg	241	176		8	
iron Lead Manganese	50 5	mg/kg			123	86	44
Lead Manganese	5	0146733240	20100		Constant La Constant		
Manganese	252	mg/kg	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17900	15600	9570	6450
			180	127	165	45	28
Molybdenum	1	mg/kg	339	326	283	170	99
	3	mg/kg	ba	nd	nd	nd	nd
Nickel	2	mg/kg	1270	1020	756	583	318
Phosphorus	20	mg/kg	793	799	748	619	475
Silver	1	mg/kg	nd	nd	nd	nd	nd
litanium	5	mg/kg	126	119	106	89	87
Vanadium	1	mg/kg	15	15	13	9	9
Zinc	5	mg/kg	236	203	155	87	49
ън	0.01	Units	7.36	7.36	7.25	7.03	6.97
Moisture Content	0.01	5	33.3	33.6	42.2	48.8	52.1

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

## Report of Analysis REVISED

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	September 25/2001
Lab Ref # :	G214052
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP9 ( 45-50CM)	TP9 ( 45-50CM) Replicate	TP9 ( 7.5-10CM)	TP9 ( 70-75CM)	TP9 ( 95-100CM)
Antimony	0.2	mg/kg	0.2	0.2	2.9	nd	nd
Arsenic	0.2	mg/kg	3.2	3.1	95.0	0.5	2.4
Selenium	0.2	mg/kg	0.5	0.5	13.1	nd	nd
Aluminum	20	mg/kg	2110	2040	7550	3780	5690
Barium	5	mg/kg	24	23	203	22	30
SeryIlium	0.2	mg/kg	nd	nd	0.7	nd	nd
Cadmium	0.5	mg/kg	nd	nd	8.2	nd	nd
Chromium	1	mg/kg	4	4	71	7	10
Cobalt	2	mg/kg	2	2	185	2	3
Copper	1	mg/kg	16	15	1200	3	5
ron	50	mg/kg	3390	3120	119000	4570	7810
.cad	5	mg/kg	8	9	421	9	5
langanese	1	mg/kg	43	41	1550	39	71
lolybdenum	3	mg/kg	nd	nd	8	nd	nd
lickel	2	mg/kg	128	110	11800	6	14
hosphorus	20	mg/kg	395	365	1320	283	350
ilver	1	mg/kg	nd	nd	7	nd	nđ
Ttanium	5	mg/kg	124	119	175	154	284
anadium	1	mg/kg	6	6	37	12	20
linc	5	rog/kg	21	20	1380	19	27
н	0.01	Units	6.99	6.99	7.20	6.96	6.80
foisture Content	0.01	5	23.5	25.5	17.9	18.0	23.9

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client:	Jacques Whitford Envir	onment Ltd.	Date Received:	August 28/2001
	1200 Denison Street		Date Reported:	September 25/2001
	Markham, ON, CANAI	DA	Lab Ref#:	G214052
	L3R 8G6		Lab Quote#:	EG009-0811
		REVISED	Client PO#:	INCO
Fax:	905-479-9326	NEVISED	Client Ref#:	ONT34651.1

Attn: Mahaboob Alam

#### **Certificate of Analysis**

Additional Comments:

ICAP Analysis of Soil:

The digestion and post digest spike recovery for Zinc for sample TP9(0-2.5CM) is below QC criteria (67% recovery, 70-130% acceptance.) This sample appears to be a charcoal like material which may be affecting the spike recoverys.

Revised Report: Antimony added.

	PHILIP AN/	ALYTICAL	SERVICE	ES				11		LA	ABORATORY USE ONLY
HAIN	5735 McAdam Mississauga, C	Intario L42	Z 1N9	Fax: (	905) 890-8566 905) 890-8575 -800-263-9040		а И	*		nments:	G 214052
ient:	JWEL		S. 1. 19			PAS Quote # :	Ju	VEL-	INCO		Page of
	MARKHAN	1				Client P.O. # :				All	G28201 PM 3:49
	2/13 11 160-16					Client Project # :	ON	1734	4651.1		ara pin 040
ntact:	MIALAM			1		and the second second					
ne:		Fax:		3	Ple	ase specify Guideline	(if applicabl	) IN	CO SPECI	AL (FOL	LOW JWELTNO PROTOC
		Sec.		Antrys	is Required:				TAT (Turn	around Tim	e) PROTOC
vice to	(if other than above):	$\frac{1}{4}$	ella a s	Y					PLE	ASE PROV	IDE ADVANCE NOTICE USH PROJECTS
		-	1	-23					some ex		oply, please contact Lab
				44	<b>A</b> .				STD		ess Days
				GFAA.				~ 1	RUSH	Specify D	Date
1		10 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -	in all	0						Time	
mple #	Client Sample I.D.	Date Sampled	Time Sampled	IC	E				Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP9 (30-35 m)			VI					SOIL	1	FOLLOW
2	TP9 (35-210m)	ite (int		1					M	1	PROTOCOL
3	TP9(405-45m)			1	1V				Ą	1	
4	TP9(45-50 m)	1.1		1		-			м	1	
5	TP9 (70-75 m)			1					ч	1	
6	TP9 (95-100m)		1	VI					N	V.	
7		2									
8		4)=2) 1 2			-		1				
9 10		1	365	april 1			-	-			
11		-		-					1 4 1 ⁵		
12		8-17-30	10					+	1		
nples R	elinquished to PAS by (nature)					Date:		Time:		Method of Ship	pment
	eceived in lab by:	0 /				Date:	-175	Time:	(:50		imples upon receipt at lab:

¢.

	PHILIP AN/	ALYTICAL	SERVICE	ES				11		LA	ABORATORY USE ONLY
HAIN	5735 McAdam Mississauga, C	Intario L42	Z 1N9	Fax: (	905) 890-8566 905) 890-8575 -800-263-9040		а И	*		nments:	G 214052
ient:	JWEL		S. 1. 19			PAS Quote # :	Ju	VEL-	INCO		Page of
	MARKHAN	1				Client P.O. # :				All	G28201 PM 3:49
	2/13 11 160-16					Client Project # :	ON	1734	4651.1		ara pin 040
ntact:	MIALAM			1		and the second second					
ne:		Fax:		3	Ple	ase specify Guideline	(if applicabl	) IN	CO SPECI	AL (FOL	LOW JWELTNO PROTOC
		Sec.		Antrys	is Required:				TAT (Turn	around Tim	e) PROTOC
vice to	(if other than above):	$\frac{1}{4}$	ella a s	Y					PLE	ASE PROV	IDE ADVANCE NOTICE USH PROJECTS
			1	-23					some ex		oply, please contact Lab
				44	<b>A</b> .				STD		ess Days
				GFAA.				~ 1	RUSH	Specify D	Date
1		10 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -	in all	0						Time	
mple #	Client Sample I.D.	Date Sampled	Time Sampled	IC	E				Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP9 (30-35 m)			VI					SOIL	1	FOLLOW
2	TP9 (35-210m)	ite (int		1					M	1	PROTOCOL
3	TP9(405-45m)			1	1V				Ą	1	
4	TP9(45-50 m)	1.1		1		-			м	1	
5	TP9 (70-75 m)			1					ч	1	
6	TP9 (95-100m)		1	VI					N	N.	
7		2									
8		4)=2) 1 2			-		1				
9 10		1	365	after -			-	-			
11		-	a ser en	-					1 4 1 ⁵		
12		8-17-30	10					+	1		
nples R	elinquished to PAS by (nature)					Date:		Time:		Method of Ship	pment
	eceived in lab by:	0 /				Date:	-175	Time:	(:50		imples upon receipt at lab:

¢.

	OF CUSTODY RECOR	<u> </u>							13.6	33					
int:	JWEL	,	1.		_		PAS	Quote #	: 1	W	EL-I	NCO		Page	of _
12	MARKHAM	(	ja st.	12.	_		Clien	nt P.O. # :	_	D A /					
1	M.ALAM		200	-				t Project #	G42	1.1	12.5	651.1			
act: .	TITLAM			4			Samp	led by:			TIAL	AM	INA	PROTOCO	
e:		Fax:	100	Z		Ple	ase specif	fy Guideli	ne (if appl	licable)	INC	O SPECI	AL (1-00	PRDINC	NC
	an sector da	Sec.14		Andelis	is Requ	ired:				1	-		alound mine	3)	
e to (	(if other than above):	te		3	1	12						PL	ASE PROVI	DE ADVANCE NOTI JSH PROJECTS	ICE
				d	1	193	8		1	1		SOTTING O		ply, please contact	La
		1.172		AA	B			- 33				(STD)	5-7 Busin		
-				T	Ľ				di sa			RUSH	Specify D	ate	
-		1 /A		PA	SORGN								Time		
ple t	Client Sample I.D.	Date Sampled	Time Sampled	IC	E OK	2			- 01	ŧ,	1	Sample Matrix	No.of Containers	Comments/Contaminat Site History	tion/
6.3	TP9(0-2.5)	gên i r	41	V	F1				1	100	1.1	SOIL	1	FOLLOW	
	TP9 (2.5-5cm)			V	1							N	1	PROTOCOL	
5	TP9 (5-7.5m)			1	r v			+				ĸ	1		
	TP9 (7.5-10 m)		#I	1	V							N	1		
	TP9(10-12.5~)				ľ v							*	1		
	TP9 (12:5-150)			1	rv							N	1		
	TP9(15-17.54)	e	4.5.2	1	1v							. w	1		
	TP9(17.5-20m)			1	V			4				N	1	50 S	
	TP9 (20-22.5m)	)	100	1	1.	1.						M	1		
, ,	TP9 (22.5-25m)		12	1	YV	1						M	1		_
	TP9(25-27.5m)			VV	Yv			A (8.)				~	1		
1				1	V.	/						R	1		
1	TP9 (27.5-30 m) elinquished to PAS by nature)	()		VV	rv										

÷

A DESCRIPTION OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY



Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

RECUIRECEIVED 1 -10- 2001 Date Received: September 12/2001 Date Reported: - September 19/2001 Lab Ref#: G214452 Lab Quote#: EG009-0811 Client PO#: INCO Client Ref#: ONT34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA							
	Antimony, Hydride Generation, Digestion Required							
	Selenium, Hydride Generation							
	17 Element ICP Scan							
	pH, Hydrogen Ion Activity, Extraction Required							
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>							
	U.S. EPA Method No. 7061(Modifications)							
	2) Analysis of antimony in soil by hydride generation.							
	U.S. EPA Method No. 7042							
	3) Analysis of selenium in soil by hydride generation.							
	U.S. EPA Method No. 7741(Modification)							
	4) Analysis of trace metals in soil by Inductively Coupled							
	Plasma Spectrophotometry.							
	U.S. EPA Method No. 6010							
	(Ministry of Environment ELSCAN)							
	5) Analysis of pH in soil by electrode.							
	U.S. EPA Method No. 9045							



Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

A

N

Attn: Mahaboob Alam

## REVISED

RECN/RECEIVED n 1 -10- 2001 Date Received --- August 28/2001

Date Reported:September 25/2001Lab Ref#:G214050Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	1) Analysis of arsenic in soil by Hydride Generation
	Atomic Absorption.
	U.S. EPA Method No. 7061(Modifications)
	2) Analysis of antimony in soil by hydride generation.
	U.S. EPA Method No. 7042
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	4) Analysis of trace metals in soil by Inductively Coupled
	Plasma Spectrophotometry.
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

-	_	1-	_		
		ŕ-	-	_	
		-	-		£.
111	and in case	1000	- Longo a	-	-

## REVISED

ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

- Fax: 905-479-9326
- Attn: Mahaboob Alam

Date Received:August 28/2001Date Reported:September 25/2001Lab Ref#:G214050Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	6) Determination of the moisture content of soil by weight.
	ASTM Method No. D2216-80
Instrumentation:	I) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	<ol> <li>Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer</li> </ol>
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

vé Epon

Certified By Elaine Grant

Account Manager

Certified By Laboratory Supervisor

#### Philip Analytical Services Corp Certificate of Quality Control

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214050
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

							Pre	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	4.2	5.0	3.5	6.5	yes	yes
Arsenic	TP17 (45-50CM)	0,2	mg/kg	nd	0.5	yes	117	84	120	yes	3.8	5.0	3.5	6.5	yes	yes
Arsenic	TP3 (30-35CM)	0.2	mg/kg	nd	0.5	yes	117	84	120	yes	5.4	5.0	3.5	6.5	yes	yes
Antimony	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	114	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP17 (45-50CM)	0.2	mg/kg	nd	0.5	yes	114	29	157	yes	4.0	5.0	3.5	6.5	yes	yes
Antimony	TP3 (30-35CM)	0.2	mg/kg	nd	0.5	yes	100	29	157	yes	4.7	5.0	3.5	6.5	yes	yes
Selenium	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	80	60	140	yes	3.6	5.0	3.5	6.5	yes	yes
Selenium	TP17 (45-50CM)	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.0	5.0	3.5	6.5	yes	yes
Selenium	TP3 (30-35CM)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.9	5.0	3.5	6.5	yes	yes
Aluminum	<b>m</b> .	20	mg/kg	nd	40	yes	102	74	125	yes	na	ma	na	па	na	yes
Aluminum	76	20	mg/kg	nd	40	yes	93	74	125	yes	na	na.	na	na	па	yes
Aluminum	na	20	mg/kg	nd	40	yes	99	74	125	yes	na	na	na	na	na	yes
Barium	TP17 (0-2.5CM)	5	mg/kg	nd	10	yes	100	82	113	yes	101	100	70	130	yes	yes
Barium	TP17 (45-50CM)	5	mg/kg	nd	10	yes	98	82	113	ycs	95	100	70	130	yes	yes
Barium	TP3 (30-35CM)	5	mg/kg	nd	10	yes	96	82	113	yes	88	100	70	130	yes	yes
Beryllium	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.4	yes	84	72	124	yes	9.4	10	7	13	yes	yes
Beryllium	TP17 (45-50CM)	0.2	mg/kg	nd	0.4	yes	80	72	124	yes	8.8	10	7	13	yes	yes
Beryllium	TP3 (30-35CM)	0.2	mg/kg	nd	0.4	yes	76	72	124	yes	8.4	10	7	13	1.500	(
Cadmium	TP17 (0-2.5CM)	0.5	mg/kg	nd	0.6	yes	162	0	180	yes	95.4	10	70	130	yes	yes
Cadmium	TP17 (45-50CM)	0.5	mg/kg	nd	0.6	yes	112	0	180	yes	91.1	100	70	130	yes yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214050
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmium	TP3 (30-35CM)	0.5	mg/kg	nd	0.6	yes	145	0	180	yes	86.7	100	70	130	yes	yes
Chromium	TP17 (0-2.5CM)	1	mg/kg	nd	2	yes	108	72	124	yes	96	100	70	130	yes	yes
Chromium	TP17 (45-50CM)	1	mg/kg	nd	2	yes	104	72	124	yes	92	100	70	130	yes	yes
Chromium	TP3 (30-35CM)	1	mg/kg	nd	2	yes	104	72	124	yes	89	100	70	130	yes	yes
Cobalt	TP17 (0-2.5CM)	2	mg/kg	nd	4	yes	102	85	123	yes	94	100	70	130	yes	yes
Cobalt	TP17 (45-50CM)	2	mg/kg	nd	4	yes	97	85	123	yes	90	100	70	130	yes	yes
Cobalt	TP3 (30-35CM)	2	mg/kg	nd	4	yes	96	85	123	yes	85	100	70	130	yes	yes
Copper	TP17 (0-2,5CM)	1	mg/kg	nd	4	yes	107	78	122	yes	98	100	70	130	yes	yes
Copper	TP17 (45-50CM)	1	mg/kg	nd	4	yes	100	78	122	yes	90	100	70	130	yes	yes
Copper	TP3 (30-35CM)	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Iron	14	50	mg/kg	nd	100	yes	90	85	119	yes	na	ria	na	na	na	yes
Iron	(14)	50	mg/kg	nd	100	yes	96	85	119	yes	na	na	na	na	na	yes
Iron	78.	50	mg/kg	nd	100	yes	97	85	119	yes	na	na	na	na	na	yes
Lead	TP17 (0-2.5CM)	5	mg/kg	nd	10	yes	107	48	152	yes	110	100	70	130	yes	yes
Lead	TP17 (45-50CM)	5	mg/kg	nd	10	yes	100	48	152	yes	87	100	70	130	yes	yes
Lead	TP3 (30-35CM)	5	mg/kg	nd	10	yes	83	48	152	yes	85	100	70	130	yes	yes
Manganese	TP17 (0-2.5CM)	1	mg/kg	nd	2	yes	103	85	115	yes	94	100	70	130	yes	yes
Manganese	TP17 (45-50CM)	1	mg/kg	nd	2	yes	101	85	115	yes	91	100	70	130	yes	yes
Manganese	TP3 (30-35CM)	1	mg/kg	nd	2	yes	97	85	115	yes	74	100	70	130	yes	yes
Molybdenum	TP17 (0-2.5CM)	3	mg/kg	nd	6	yes	130	0	210	yes	186	200	140	260	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis na = Not Applicable

= Insufficient Sample Submitted = parameter not detected ns

nd

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

September 25/2001
G214050
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

							Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdenum	TP17 (45-50CM)	3	mg/kg	nd	6	yes	113	0	210	yes	177	200	140	260	yes	yes
Molybdenum	TP3 (30-35CM)	3	mg/kg	nd	6	yes	104	0	210	yes	169	200	140	260	yes	yes
Nickel	TP17 (0-2.5CM)	2	mg/kg	nd	4	yes	98	86	116	yes			•	•	•	yes
Nickel	TP17 (45-50CM)	2	mg/kg	nd	4	yes	96	86	116	yes	93	100	70	130	yes	yes
Nickal	TP3 (30-35CM)	2	mg/kg	nd	4	yes	93	86	116	yes	84	100	70	130	yes	yes
Phosphorus	-	20	mg/kg	nd	40	yes	111	73	130	yes	na	na	na	na	na	yes
Phosphorus		20	mg/kg	nd	40	yes	114	73	130	yes	na	na	na	na	na	yes
Phosphorus	14	20	mg/kg	nd	40	yes	116	73	130	yes	na	na	na	na	na	yes
Silver	. m.	1	mg/kg	nd	2	yes	111	25	200	yes	na	na	na	na	na	yes
Silver	na.	1	mg/kg	nd	2	yes	134	25	200	ycs	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	138	25	200	yes	na	na	na	na	na	yes
Titanium	na	5	mg/kg	nd	10	yes	119	37	174	yes	na	na	na	na	па	yes
Titanium	na	5	mg/kg	nd	10	yes	126	37	174	yes	na	na	na	na	na	yes
Titanium	m	5	mg/kg	nd	10	yes	131	37	174	yes	na	na	na	na	na	yes
Vanadium	TP17 (0-2.5CM)	1	mg/kg	nd	2	yes	105	81	119	yes	96	100	70	130	yes	yes
Vanadium	TP17 (45-50CM)	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Vanadium	TP3 (30-35CM)	1	mg/kg	nd	2	yes	99	81	119	yes	87	100	70	130	yes	yes
Zinc	TP17 (0-2.5CM)	5	mg/kg	nd	10	yes	101	85	112	yes	104	100	70	130	yes	yes
Zine	TP17 (45-50CM)	5	mg/kg	nd	10	yes	98	85	112	yes	89	100	70	130	yes	yes
Zinc	TP3 (30-35CM)	5	mg/kg	nd	10	yes	91	85	112	yes	81	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

	OF CUSTODY RECOR	<u> </u>							13.6	33					
int:	JWEL	,	1.		_		PAS	Quote #	: 1	W	EL-I	NCO		Page	of _
12	MARKHAM	(	ja st.	12.	_		Clien	nt P.O. # :	_	D A /					
1	M.ALAM		200	-				t Project #		1.1	12.5	651.1			
act: .	TITLAM			4			Samp	led by:			TIAL	AM	INA	PROTOCO	
e:		Fax:	100	Z		Ple	ase specif	fy Guideli	ne (if appl	licable)	INC	O SPECI	AL (1-00	PRDINC	NC
	an sector da	Sec.14		Andelis	is Requ	ired:				1	-		alound mine	3)	
e to (	(if other than above):	te		3	1	12						PL	ASE PROVI	DE ADVANCE NOTI JSH PROJECTS	ICE
			1	d	1	193	8		1	1		SOTTING O		ply, please contact	La
		1.172		AA	B			- 33				(STD)	5-7 Busin		
-				T	Ľ				di sa			RUSH	Specify D	ate	
-		1 /A		PA	SORGN								Time		
ple t	Client Sample I.D.	Date Sampled	Time Sampled	IC	E OK	2			- 01	ŧ,	1	Sample Matrix	No.of Containers	Comments/Contaminat Site History	tion/
6.3	TP9(0-2.5)	gên i r	41	V	F1				1	100	1.1	SOIL	1	FOLLOW	
	TP9 (2.5-5cm)			V	1							N	1	PROTOCOL	
5	TP9 (5-7.5m)			1	r v			+				ĸ	1		
	TP9 (7.5-10 m)		#I	1	V							N	1		
	TP9(10-12.5~)				ľ v							*	1		
	TP9 (12:5-150)			1	rv							N	1		
	TP9(15-17.54)	e	4.5.2	1	1v							. w	1		
	TP9(17.5-20m)			1	V			4				~	1	50 S	
	TP9 (20-22.5m)	)	100	1	1.	1.						M	1		
, ,	TP9 (22.5-25m)		12	1	YV	1						M	1		_
	TP9(25-27.5m)			VV	Yv			A (8.)				~	1		
1				1	V.	/						R	1		
1	TP9 (27.5-30 m) elinquished to PAS by nature)	()		VV	rv										

÷

A DESCRIPTION OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY

#### Philip Analytical Services Corp Certificate of Quality Control

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214050
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

							Pre	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	4.2	5.0	3.5	6.5	yes	yes
Arsenic	TP17 (45-50CM)	0,2	mg/kg	nd	0.5	yes	117	84	120	yes	3.8	5.0	3.5	6.5	yes	yes
Arsenic	TP3 (30-35CM)	0.2	mg/kg	nd	0.5	yes	117	84	120	yes	5.4	5.0	3.5	6.5	yes	yes
Antimony	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	114	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP17 (45-50CM)	0.2	mg/kg	nd	0.5	yes	114	29	157	yes	4.0	5.0	3.5	6.5	yes	yes
Antimony	TP3 (30-35CM)	0.2	mg/kg	nd	0.5	yes	100	29	157	yes	4.7	5.0	3.5	6.5	yes	yes
Selenium	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.5	yes	80	60	140	yes	3.6	5.0	3.5	6.5	yes	yes
Selenium	TP17 (45-50CM)	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.0	5.0	3.5	6.5	yes	yes
Selenium	TP3 (30-35CM)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.9	5.0	3.5	6.5	yes	yes
Aluminum	<b>m</b> .	20	mg/kg	nd	40	yes	102	74	125	yes	na	ma	na	па	na	yes
Aluminum	76	20	mg/kg	nd	40	yes	93	74	125	yes	na	na.	na	na	па	yes
Aluminum	na	20	mg/kg	nd	40	yes	99	74	125	yes	na	na	na	na	na	yes
Barium	TP17 (0-2.5CM)	5	mg/kg	nd	10	yes	100	82	113	yes	101	100	70	130	yes	yes
Barium	TP17 (45-50CM)	5	mg/kg	nd	10	yes	98	82	113	ycs	95	100	70	130	yes	yes
Barium	TP3 (30-35CM)	5	mg/kg	nd	10	yes	96	82	113	yes	88	100	70	130	yes	yes
Beryllium	TP17 (0-2.5CM)	0.2	mg/kg	nd	0.4	yes	84	72	124	yes	9.4	10	7	13	yes	yes
Beryllium	TP17 (45-50CM)	0.2	mg/kg	nd	0.4	yes	80	72	124	yes	8.8	10	7	13	yes	yes
Beryllium	TP3 (30-35CM)	0.2	mg/kg	nd	0.4	yes	76	72	124	yes	8.4	10	7	13	1.500	(
Cadmium	TP17 (0-2.5CM)	0.5	mg/kg	nd	0.6	yes	162	0	180	yes	95.4	10	70	130	yes	yes
Cadmium	TP17 (45-50CM)	0.5	mg/kg	nd	0.6	yes	112	0	180	yes	91.1	100	70	130	yes yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214050
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmium	TP3 (30-35CM)	0.5	mg/kg	nd	0.6	yes	145	0	180	yes	86.7	100	70	130	yes	yes
Chromium	TP17 (0-2.5CM)	1	mg/kg	nd	2	yes	108	72	124	yes	96	100	70	130	yes	yes
Chromium	TP17 (45-50CM)	1	mg/kg	nd	2	yes	104	72	124	yes	92	100	70	130	yes	yes
Chromium	TP3 (30-35CM)	1	mg/kg	nd	2	yes	104	72	124	yes	89	100	70	130	yes	yes
Cobalt	TP17 (0-2.5CM)	2	mg/kg	nd	4	yes	102	85	123	yes	94	100	70	130	yes	yes
Cobalt	TP17 (45-50CM)	2	mg/kg	nd	4	yes	97	85	123	yes	90	100	70	130	yes	yes
Cobalt	TP3 (30-35CM)	2	mg/kg	nd	4	yes	96	85	123	yes	85	100	70	130	yes	yes
Copper	TP17 (0-2,5CM)	1	mg/kg	nd	4	yes	107	78	122	yes	98	100	70	130	yes	yes
Copper	TP17 (45-50CM)	1	mg/kg	nd	4	yes	100	78	122	yes	90	100	70	130	yes	yes
Copper	TP3 (30-35CM)	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Iron	14	50	mg/kg	nd	100	yes	90	85	119	yes	na	ria	na	na	na	yes
Iron	(14)	50	mg/kg	nd	100	yes	96	85	119	yes	na	na	na	na	na	yes
Iron	78.	50	mg/kg	nd	100	yes	97	85	119	yes	na	na	na	na	na	yes
Lead	TP17 (0-2.5CM)	5	mg/kg	nd	10	yes	107	48	152	yes	110	100	70	130	yes	yes
Lead	TP17 (45-50CM)	5	mg/kg	nd	10	yes	100	48	152	yes	87	100	70	130	yes	yes
Lead	TP3 (30-35CM)	5	mg/kg	nd	10	yes	83	48	152	yes	85	100	70	130	yes	yes
Manganese	TP17 (0-2.5CM)	1	mg/kg	nd	2	yes	103	85	115	yes	94	100	70	130	yes	yes
Manganese	TP17 (45-50CM)	1	mg/kg	nd	2	yes	101	85	115	yes	91	100	70	130	yes	yes
Manganese	TP3 (30-35CM)	1	mg/kg	nd	2	yes	97	85	115	yes	74	100	70	130	yes	yes
Molybdenum	TP17 (0-2.5CM)	3	mg/kg	nd	6	yes	130	0	210	yes	186	200	140	260	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis na = Not Applicable

= Insufficient Sample Submitted = parameter not detected ns

nd

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

September 25/2001
G214050
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter				Process Blank			Process % Recovery				Matrix Spike					Overall
	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdenum	TP17 (45-50CM)	3	mg/kg	nd	6	yes	113	0	210	yes	177	200	140	260	yes	yes
Molybdenum	TP3 (30-35CM)	3	mg/kg	nd	6	yes	104	0	210	yes	169	200	140	260	yes	yes
Nickel	TP17 (0-2.5CM)	2	mg/kg	nd	4	yes	98	86	116	yes			•	•	•	yes
Nickel	TP17 (45-50CM)	2	mg/kg	nd	4	yes	96	86	116	yes	93	100	70	130	yes	yes
Nickal	TP3 (30-35CM)	2	mg/kg	nd	4	yes	93	86	116	yes	84	100	70	130	yes	yes
Phosphorus	-	20	mg/kg	nd	40	yes	111	73	130	yes	na	na	na	na	na	yes
Phosphorus		20	mg/kg	nd	40	yes	114	73	130	yes	na	na	na	na	na	yes
Phosphorus	14	20	mg/kg	nd	40	yes	116	73	130	yes	na	na	na	na	na	yes
Silver	. m.	1	mg/kg	nd	2	yes	111	25	200	yes	na	na	na	na	na	yes
Silver	na.	1	mg/kg	nd	2	yes	134	25	200	ycs	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	138	25	200	yes	na	na	na	na	na	yes
Titanium	na	5	mg/kg	nd	10	yes	119	37	174	yes	na	na	na	na	па	yes
Titanium	na	5	mg/kg	nd	10	yes	126	37	174	yes	na	na	na	na	na	yes
Titanium	m	5	mg/kg	nd	10	yes	131	37	174	yes	na	na	na	na	na	yes
Vanadium	TP17 (0-2.5CM)	1	mg/kg	nd	2	yes	105	81	119	yes	96	100	70	130	yes	yes
Vanadium	TP17 (45-50CM)	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Vanadium	TP3 (30-35CM)	1	mg/kg	nd	2	yes	99	81	119	yes	87	100	70	130	yes	yes
Zinc	TP17 (0-2.5CM)	5	mg/kg	nd	10	yes	101	85	112	yes	104	100	70	130	yes	yes
Zine	TP17 (45-50CM)	5	mg/kg	nd	10	yes	98	85	112	yes	89	100	70	130	yes	yes
Zinc	TP3 (30-35CM)	5	mg/kg	nd	10	yes	91	85	112	yes	81	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214050
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Process Blank		Process % Recovery				Matrix Spike				Overall		
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	0.0	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pH	na	0.01	Units	na	na	na	100	90	110	yes	na	na	na	na	na	yes
pH	74	0.01	Units	na	na	na	100	90	110	yes	na	na	na	na	na	yes
рН	та	0.01	Units	па	na	na	100	90	110	yes	na	na	na	na	na	yes
			41 6													

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted ns

nd = parameter not detected

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Report Date:	September 25/2001
Lab Ref # :	G214050
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP17 (0-2.5CM)	TP17 (0-2.5CM) Replicate	TP17 (2.5-5CM)	TP17 (5-7.5CM)	TP17 (35-40CM)
Antimony	0.2	mg/kg	0.8	0.8	1.7	1.7	0.4
Arsenic	0.2	mg/kg	23.7	22.7	47.9	71.2	4.5
Selenium	0.2	mg/kg	2.9	3.2	4.6	4.5	0.4
Aluminum	20	mg/kg	3220	3370	4300	4050	1530
Barium	5	mg/kg	76	82	112	113	28
Beryllium	0.2	mg/kg	0.3	0.3	0.5	0.4	nd
Cadmium	0.5	mg/kg	1.6	1.2	3.9	5.0	nd
Chromium	1	mg/kg	21	24	46	51	4
Cobalt	2	mg/kg	48	50	107	100	2
Copper	1	mg/kg	262	266	589	764	16
ron	50	mg/kg	27700	28600	62400	82900	4630
lead	5	mg/kg	216	226	398	448	23
Manganese	1	mg/kg	541	519	1040	1290	78
Molybdenum	3	mg/kg	nd	nd	3	5	nd
Vickel	2	mg/kg	2200	2220	5310	6660	87
hosphorus	20	mg/kg	945	984	1390	1100	459
silver	1	mg/kg	1	1	3	4	nd
litanium	5	mg/kg	75	80	86	105	113
anadium	1	mg/kg	15	15	26	24	6
Zinc	5	mg/kg	403	406	82.5	1120	44
н	0.01	Units	6.85	6.87	6.81	6.86	7.34
Hoisture Content	0.01	%	21.3	21.4	18.2	15.9	9.45

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

September 25/2001
G214050
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP17 (40-45CM)	TP17 (45-50CM)	TP17 (45-50CM) Replicate	TP17 (7.5-10CM)	TP17 (70-75CM)
Antimony	0.2	mg/kg	0.4	0.2	0.2	1.6	nd
Arsenic	0.2	mg/kg	6.3	4.5	4.0	79.0	0.7
felenium	0.2	mg/kg	nd	ba	nd	4.8	nd
Aluminum	20	mg/kg	1190	1200	1160	4040	1980
Sarium	5	mg/kg	14	10	10	108	8
Beryllium	0.2	mg/kg	nd	ba	nd	0.4	nd
Cadmium	0.5	mg/kg	nd	ba	nd	4.3	ba
Intomium	1	mg/kg	4	4	4	37	4
lobalt	2	mg/kg	nd	nd	nd	97	nd
Copper	1	mg/kg	6	4	3	989	4
ron	50	mg/kg	1850	1640	1530	79900	3050
.ead	5	mg/kg	5	nd	11	476	5
danganese	1	mg/kg	18	17	17	1140	25
folybdenum	3	mg/kg	nd	nd	nd	3	nd
lickel	2	mg/kg	33	22	20	8390	11
hosphorus	20	mg/kg	261	168	143	883	319
üver	1	mg/kg	nd	nd	nd	4	nd
ltanium	5	mg/kg	143	132	126	125	124
anadium	1	mg/kg	5	6	6	19	9
inc	5	mg/kg	10	8	8	1030	13
н	0.01	Units	7.39	7.58	7.60	7.03	7.61
foisture Content	0.01	z	7.48	3.92	3.76	17.0	5.00

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Report Date:	September 25/2001
Lab Ref # :	G214050
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nd 0.5 nd 1450 5 nd nd 3 nd 2 2290 nd 17	0.6 111 2.1 6650 109 0.5 2.7 16 25 548 25100 170 487	0.6 12.2 1.0 3770 64 0.3 0.8 8 9 152 11500 87	0.5 6.6 0.6 2380 53 nd nd 6 4 58 7210 54	0.5 6.4 0.8 4490 71 0.5 nd 5 3 45 8840 43
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nd 1450 5 nd 3 nd 2 2290 nd 17	2.1 6650 109 0.5 2.7 16 25 548 25100 170	1.0 3770 64 0.3 0.8 8 9 152 11500 87	0.6 2380 53 nd nd 6 4 58 7210	0.8 4490 71 0.5 nd 5 3 45 8840
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1450 5 nd 3 nd 2 2290 nd 17	6650 109 0.5 2.7 16 25 548 25100 170	3770 64 0.3 0.8 8 9 152 11500 87	2380 53 nd nd 6 4 58 7210	4490 71 0.5 nd 5 3 45 8840
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	5 nd 3 nd 2 2290 nd 17	109 0.5 2.7 16 25 548 25100 170	64 0.3 0.8 8 9 152 11500 87	53 nd nd 6 4 58 7210	71 0.5 nd 5 3 45 8840
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nd nd 3 nd 2 2290 nd 17	0.5 2.7 16 25 548 25100 170	0.3 0.8 9 152 11500 87	nd 6 4 58 7210	0.5 nd 5 3 45 8840
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nd 3 nd 2 2290 nd 17	2.7 16 25 548 25100 170	0.8 8 9 152 11500 87	nd 6 4 58 7210	nd 5 3 45 8840
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 nd 2 2290 nd 17	16 25 548 25100 170	8 9 152 11500 87	6 4 58 7210	5 3 45 8840
mg/kg mg/kg mg/kg mg/kg mg/kg	nd 2 2290 nd 17	25 548 25100 170	9 152 11500 87	4 58 7210	3 45 8840
mg/kg mg/kg mg/kg mg/kg	2 2290 nd 17	548 25100 170	152 11500 87	58 7210	45 8840
mg/kg mg/kg mg/kg	2290 nd 17	25100 170	11500 87	7210	8840
mg/kg mg/kg	nd 17	170	87		
mg/kg	17	1000		54	43
	1200	487	1 10.0 2020		
mg/kg	1.5		232	130	227
	nd	nd	nd	ba	nd
mg/kg	4	2790	810	333	208
mg/kg	246	802	528	530	519
mg/kg	nd	2	nd	nd	nd
mg/kg	97	147	98	77	134
mg/kg	5	18	11	9	11
mg/kg	11	349	139	100	117
Units	7.44	7.06	7.17	7.11	7.28
5	4.46	16.0	12.2	9.81	11.5
	mg/kg mg/kg mg/kg Units	mg/kg 97 mg/kg 5 mg/kg 11 Units 7.44	mg/kg 97 147 mg/kg 5 18 mg/kg 11 349 Units 7.44 7.06	mg/kg 97 147 98 mg/kg 5 18 11 mg/kg 11 349 139 Units 7.44 7.06 7.17	mg/kg 97 147 98 77 mg/kg 5 18 11 9 mg/kg 11 349 139 100 Units 7.44 7.06 7.17 7.11

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

Report Date:	September 25/2001
Lab Ref # :	G214050
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

	EQL	Units	20-22.5CM)	TP17 ( 22.5-25CM)	TP17 ( 25-27.5CM)	TP17 ( 27.5-30CM)	TP17 ( 30-30.5CM)
Antimony	0.2	mg/kg	0.5	0.5	0.5	0.4	0.3
Arsenic	0.2	mg/kg	5.7	5.1	4.4	3.7	3.7
Selenium	0.2	mg/kg	1.0	0.6	0.7	0.6	0.5
Aluminum	20	mg/kg	9710	4370	3380	2570	1770
Barium	5	mg/kg	102	67	58	48	35
Beryllium	0.2	mg/kg	1.3	0.5	0.4	0.3	nd
Cadmium	0.5	mg/kg	0.9	1.0	0.5	nd	nd
Chromium	1	mg/kg	-4	6	5	5	4
Cobalt	2	mg/kg	2	4	4	3	nd
Copper	1	mg/kg	47	56	39	26	13
Iron	50	mg/kg	12300	13400	11000	7930	6690
Lead	5	mg/kg	36	53	46	43	83
Manganese	1	mg/kg	423	282	231	169	122
Molybdenum	3	mg/kg	nd	nd	nd	ba	nd
Nickel	2	mg/kg	177	249	179	116	47
Phospherus	20	mg/kg	610	717	664	574	534
Silver	1	mg/kg	nd	nd	nd	nd	nd
Titanium	5	mg/kg	244	159	121	95	92
Vanadium	1	mg/kg	12	13	10	7	7
Zinc	5	mg/kg	105	124	104	78	57
pH	0.01	Units	7.42	7.38	7.39	7.33	7.33
Moisture Content	0.01	5	13.6	13.6	13.3	14.6	12.0

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Report Date:	September 25/2001
Lab Ref # :	G214050
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP3 (0-2.5CM)	TP3 (2.5-5CM)	TP3 (30-35CM)	TP3 (30-35CM) Replicate	TP3 (35-40CM)
Antimony	0.2	mg/kg	0.6	0.7	0.2	0.2	0.2
Arsenic	0.2	mg/kg	15.8	24.8	2.8	3.0	3.6
Selenium	0.2	mg/kg	4.6	5.0	0.4	0.3	nd
Aluminum	20	mg/kg	10600	15000	17700	19300	20500
Barium	5	mg/kg	123	154	121	129	147
Beryllium	0.2	mg/kg	0.7	1.1	0.9	0.9	1.0
Cadmium	0.5	mg/kg	1.1	1.4	ba	nd	nd
Chromium	1	mg/kg	21	25	26	28	29
Cobalt	2	mg/kg	62	62	16	17	14
Copper	1	mg/kg	462	597	24	25	25
Iron	50	mg/kg	13700	17900	24800	26100	30900
Lead	5	mg/kg	46	48	10	14	10
Manganese	1	mg/kg	250	222	207	214	231
Molybdenum	3	mg/kg	ba	nd	nd	nd	nd
Nickel	2	mg/kg	2690	3890	47	52	42
Phosphorus	20	mg/kg	1100	1100	268	290	500
Silver	1	mg/kg	2	2	nd	nd	nd
Titanium	5	mg/kg	80	81	192	215	218
Vanadium	1	mg/kg	21	27	35	38	39
Zinc	5	mg/kg	124	135	68	72	70
pH	0.01	Units	6.73	6.71	6.83	6.83	7.14
Moisture Content	0.01	%	27.0	23.7	15.6	15.6	18.2

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

### REVISED

September 25/2001
G214050
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP3 (40-45CM)	TP3 (45-50CM)	TP3 (5-7.5CM)	TP3 (7.5-10CM)	TP3 (70-75CM)
Antimony	0.2	mg/kg	0.2	0.3	0.7	0.6	0.4
Arsenic	0.2	mg/kg	3.8	4.2	37.9	41.1	8.3
Selenium	0.2	mg/kg	nd	nd	7.8	8.1	ba
Muminum	20	mg/kg	21400	20800	16100	16500	17800
Sarium	5	mg/kg	154	157	164	169	144
Seryllium	0.2	mg/kg	1.0	0.9	1.2	1.2	0.8
Cadmium	0.5	mg/kg	nd	nd	1.8	1.9	nd
hromium	1	mg/kg	31	30	27	29	26
lobalt	2	mg/kg	13	14	80	86	13
Copper	1	mg/kg	30	31	838	841	27
ron	50	mg/kg	31700	41400	20200	21400	32000
.ead	5	mg/kg	15	16	52	59	11
fanganese	1	mg/kg	261	1210	178	185	474
folybdenum	3	mg/kg	nd	nd	nd	nd	nd
lickel	2	mg/kg	40	49	5720	5910	32
hasphorus	20	mg/kg	568	612	1100	1110	553
ilver	1	mg/kg	nd	nd	3	3	nd
Titanium	5	mg/kg	223	255	89	89	275
/anadium	1	mg/kg	41	40	31	32	35
linc	5	mg/kg	71	71	162	161	62
н	0.01	Units	7.14	7.43	6.59	6.52	7.88
foisture Content	0.01	%	17.8	17.2	21.9	19.5	18.4

 $\mathbb{C}_{2}$ 

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

REVISED

Report Date:	September 25/2001
Lab Ref # :	G214050
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP3 (95-100CM)	TP3 ( 10-12.5CM)	TP3 ( 12.5-15CM)	TP3 ( 15-17.5CM)	TP3 ( 17.5-20CM)
Antimony	0.2	mg/kg	0.3	0.6	0.6	0.6	0.6
Arsenic	0.2	mg/kg	7.1	37.9	36.8	34.7	36.8
Selenium	0.2	mg/kg	nd	7.5	7.0	8.0	7.5
Aluminum	20	mg/kg	18200	15900	16000	17200	15100
Barium	5	mg/kg	159	164	159	174	150
Beryllium	0.2	mg/kg	0.8	1.2	1.1	1.3	1.1
Cadmium	0.5	mg/kg	nd	1.5	1.5	2.3	1.3
Chromium	1	mg/kg	27	27	28	30	26
Cobalt	2	mg/kg	13	71	71	75	65
Copper	1	mg/kg	26	739	705	806	685
Iron	50	mg/kg	32300	20100	19800	20500	19000
Lead	5	mg/kg	12	53	47	55	50
Manganese	1	mg/kg	422	156	167	155	142
Molybdenum	3	mg/kg	nd	nd	nd	nd	nd
Nickel	2	mg/kg	32	4830	4610	5100	4370
Phosphorus	20	mg/kg	578	1050	1020	1140	970
Silver	1	mg/kg	nd	3	3	3	2
Fitanium	5	mg/kg	295	86	88	92	83
Vanadium	1	mg/kg	37	31	32	34	30
Zinc	5	mg/kg	65	149	146	154	137
ъH	0.01	Units	7.93	6.55	6.55	6.45	6.50
Moisture Content	0.01	%	20.6	18.5	22.0	22.9	23.0

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Report Date:	September 25/2001
Lab Ref # :	G214050
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Selenium Aluminum Barium Beryllium Cadmium Chromium Cobalt	0.2 0.2 0.2 20 5 0.2 0.5 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.6 33.7 7.9 14700 145 1.1	0.6 29.5 6.3 14300 138	nd 2.5 nd 11600 96	nd 3.0 0.2 12400
Aluminum Barium Beryllium Cadmium Chromium Cobalt	0.2 20 5 0.2 0.5 1	mg/kg mg/kg mg/kg mg/kg	7.9 14700 145	6.3 14300 138	nd 11600	0.2
Selenium Aluminum Barium Caryllium Cadmium Chromium Cobalt Copper	20 5 0.2 0.5 1	mg/kg mg/kg mg/kg	14700 145	14300 138	11600	
Barium Beryllium Cadmium Chromium Cobalt	5 0.2 0.5 1	mg/kg mg/kg	145	138		12400
Beryllium Cadmium Chromium Cobalt	0.2 0.5 1	mg/kg		1000	96	· · · · · · · · · · · · · · · · · · ·
Cadmium Chromium Cobalt	0.5 1		1.1	10000		108
Chromium Cobalt	1	mg/kg		1.0	0.6	0.6
Cobalt			1.7	1.2	nd	nd
	444	mg/kg	25	24	19	21
Copper	2	mg/kg	67	52	11	10
	1	mg/kg	773	584	15	18
Iron	50	mg/kg	17800	17200	19300	20400
Lead	5	mg/kg	52	44	11	11
Manganese	1	mg/kg	138	132	115	111
Molybdenum	3	mg/kg	nd	nd	nđ	ba
Nickel	2	mg/kg	4770	3510	44	36
Phosphorus	20	mg/kg	932	815	162	170
Silver	1	mg/kg	3	2	nd	nd
Titanium	5	mg/kg	82	76	121	109
Vanadium	1	mg/kg	29	28	33	33
Zinc	5	mg/kg	134	118	57	58
pH	0.01	Units	6.36	6.38	6.68	6.69
Moisture Content	0.01	%	24.6	23.5	13.6	10.6

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client:	Jacques Whitford Environment	t Ltd.	Date Received:	Augus
	1200 Denison Street		Date Reported:	Septembe
	Markham, ON, CANADA		Lab Ref#:	
	L3R 8G6		Lab Quote#:	EG
Fax:	905-479-9326	THE THE YEAR AND A MANA AND	Client PO#: Client Ref#:	ON

ist 28/2001 er 25/2001 G214050 G009-0811 INCO ONT34651.1

Attn: Mahaboob Alam

**Certificate of Analysis** 

Additional Comments:

Revised Report: Antimony analysis of soil added.

ARKHAM MIALAM	) Fax:	<i>a</i> 2		_		Client P.O.							JG 23 '01 phoen 1:28 - of -
M. ALAM	Fax:				ANK	Client Proj		0	NT	34	1651.	/	
5			41	6	5	Sampled b	w:	Ŭ					IINCO PROTOCOL
			Anditais	Required:				4501/			TAT (Turne	around Tim	θ)
an above):			P/GFAA-231			-				1 ×	RUSH	FOR R ceptions a 5-7 Busin Specify E Time	
ient Sample I.D.	Date Sampled	Time Sampled	H	DA							Sample Matrix	No.of Containers	Comments/Contamination/ Site History
7 (0-2.5~)		112112	VV	1							SOIL	1	FOLLOW
7 (2.5-5~)	1,430	1997	VV	~							v	1	PROTOCOL
7/5-7.50			VV	1							v	1	
10 10	1. 6. 4	so feres	VY	1							٧	1	
	100	1. A.	VV	V							¥	1	
			VE	1							k	1	1
			V	V							И	1	
			V	V							v	1	
1(20-22.5 cm)			~								v	1	
(22.5-25~)		1.1	VU	1		1000	-	-			v	1	
(25-27.5m)	1410-	1	VI	N.							v	1	
177-5-300	0	I	~	1							v	1	
	7(2.5-5) 7(5-7.5) 7(5-10) (10-12.5) (12-15) (15-17.5) (17.5-20) (20-22.5) (22.5-25)	$\begin{array}{c} \text{Sampled} \\ 7 (0-2:5w) \\ 7 (2:5-5w) \\ 7 (5-7:5w) \\ 7 (5-7:5w) \\ 7 (7:5-10w) \\ (10-12:5w) \\ (10-12:5w) \\ (12:5-15w) \\ (12:5-15w) \\ (17:5-20w) \\ (20-22:5w) \\ (22:5-25w) \\ \end{array}$	$\begin{array}{c c} Sampled & Sampled \\ \hline 7 (0-2:5w) & \hline 7 (2:5-5w) & \hline 7 (5-7:5w) & \hline 7 (5-7:5w) & \hline 7 (7:5-10w) & \hline 7 (10-12:5w) & \hline 7 (10-12:5w) & \hline 7 (12:5-15w) & \hline 7 (12:5-15w) & \hline 7 (20-22:5w) & \hline 7 (20-22:5w) & \hline 7 (22:5-25w) & \hline 7$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CHAIN	N OF CUSTODY RECOR	D												
Client:	JWEL			1.2	- 10 - 14 	F	AS QU	ote # :	1. j	JW	EL- "	ENCO		Page of
	MARKHAM	1		-			lient P.C	O.#: oject#:	C	DNT	346	51.1		
Contact: Phone:	M, ALAM	Fax:	2012	TAL		S Please s	ampled	by:				SPECIA	L	AUC 20 '01 PH 1:28
Invoice to	(if other than above):			AA-23 M	ysis Required:							PLE	ASE PROV FOR R	e) IDE ADVANCE NOTICE USH PROJECTS pply, please contact Lab ness Days
				PlaF	ING						-	RUSH	Specify [ Time	Date
Sample	Client Sample I.D.	, Date Sampled	Time Sampled	IC	ad		-				ţ	Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP17 (30-35m)			V	11							102	1	52
2	TP17 (35-40 m)		12.5	V	VV.				1.5	1 a M	1. 1ª C	M	1	FOLLOW PROTOCOL
3	TP17 140-45cm)		100	V	11							~	1	110000
4	TP17 (45-50a)		1	1	r/		100	-				v	1	
5	TP17(70-75 cm)		1000	V	11							v	1	
6	TP 17 (95-100 4)		0.353	V	1							v	1	
• 7		1	A 193						1.1					
8 %				1										
9			He -				1					_		
10			1.1			1	1.2					9		
11		in gang				(4)	1.2	3			17			
12					2 - 2		12.3							
Samples I	Relinquished to PAS by gnature)			1		1.1.	Date	0:		Tu	me:	-	Method of Shi	pment

	N OF CUSTODY RECOR			-		1001 27	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1			
Client:	JWEL			Č.,			PA	S Quote #	: IA	100	- JI	NEL	SPEGI	AL Page of
- 50	MARKHAP	1					Cli	ent P.O. # :	0	1	-	( = ) 1	·	
		14					Cli	ent Project #	_01	JT		651.1		
Contact:	M.ALAI	M		1.0	-		San	npled by:			MIA	ALAM	0	HP-90 104 - 1 45
Phone:		Fax:		1	-	Ple	ase spe	cify Guidelin	e (if applicabl	e) I	NCO	SPE	CIAL 7	1988701 00 123
					sis Req	uired:						and the second se	around Tim	
Invoice to	(if other than above):			3 M	1 - 14 - 14 - 14							PLE	ASE PROV	VIDE ADVANCE NOTIC
				10		÷		12 1 1					Contract of the second	pply, please contact Lo
	· · · · · · · · · · · · · · · · · · ·			FAA.							(	(STD)		ness Days
				5								RUSH	Specify I	Date
8. S.	<u> 100 a cu</u>		- 4 v	0	-			- 2					Time	
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	H	PH							Sample Matrix	No.of Containers	Comments/Contamination Site History
1	TP3 (0-2.5~)	1.5	1.2	1	V			1211				SOIL	1.	FOLLOW
2	TP3 (215-5 m)			V	V							и	1	PROTOCOL
3	TP3 (5-7.5cm)			V	V							J	1	
4	TP3 (7.5-100)			V	V			2 . 1				и	1	
5	TP3 (10-12.50		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	1							N	1	
6	TP3 (12:5-15cm)		N 1	1	1						1	N	1	
7.	TP3 (15-17:5~)	ič. 117	120700	~	1							и	1	
8	TP3 (17.5-20m)	)		V	1				-			ч	1	
9	TP3(20-22.50	.)		1	1							u	Y	
10	TP3 (22:5-250	-)	1.1	1	1	-						v	I.	
11	TP3(25-27.50	~)		~	1		1					м	1	
12	TP3 (27.5-30	-		1	1	4.					1.1	А	1	
Samples I	Relinquished to PAS by gnature)		2 - 2 - H		1.16		1.2-	Date:		Time:			Method of Sh	ipment

Client:	JWEL		2.7		8 - A. M. A.	D/	AS Quote	. <b>.</b> .	1	INCO	0	JWEL	SPEC	NAL Page of
chun.	MARKH	AM	2											Page of
							ient P.O. #		C	ONT	3	465	11	
Contact:	M. ALAM	1												G 28 '01 m 1.23
Phone:		Fax:		L		Please sp	ecify Guid	eline (if a	onlicable	T	NC	0 SP	ECIAL	1628'01 pm 1:23 PROTOCOL
				ADAD	sis Required:	1							around Tim	
invoice to	(if other than above):			S			1.10	1				and the second se	ASE PROV	IDE ADVANCE NOTICE
	5			23	100									USH PROJECTS
	11.74			1000	6. E. C.							(STD)		pply, please contact Lab less Days
				FA								RUSH	Specify D	
		1.	- 194	P/GFAA-	-				1.			I KOON	Time	
Sample	Client Sample I.D.	Date Sampled	Time Sampled	IC	PH							Sample Matrix	No.of Containers	Comments/Contamination/
1	TP3(30-35w)	Sampled	Sampled	V					-			SOIL	. 1	FOLLOW
2	TP3 (35-40m)		. 19	1	1				-		1	N	1	PROTOCOL
3	TP3 (40-45 m)		1.61	V	1				-		-	v	1	/ Rend au
4	TP3 (45-500)	)	1 12 12 13	1	1				-		1	~	1	
5	TP3 (70-75m)	-		1	1	27					1	и	1	
6	TP3 (95-100 cm)	)		1	1							N	1	
7	1 1 1 (B) 41		1.44	1.7.8							1			
• 8			· · · · · ·											
* '9							1. 1.							
10												1		
11	e										-			
12														0
	Relinquished to PAS by					1		-	_					

135

*



REVISED

RECH	1200	CEIVED
n 1	-10-	2001

Date Received:August 30/2001Date Reported:September 25/2001Lab Ref#:G214120Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1Sampled By:M. Alam

ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA Antimony, Hydride Generation, Digestion Required Selenium, Hydride Generation 17 Element ICP Scan pH, Hydrogen Ion Activity, Extraction Required Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> <li>U.S. EPA Method No. 7061(Modifications)</li> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> <li>U.S. EPA Method No. 6010 (Ministry of Environment ELSCAN)</li> <li>Analysis of pH in soil by electrode.</li> <li>U.S. EPA Method No. 9045</li> </ol>

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

<u> </u>			
	and the second second	- 1	1
		-	-

ANALYTICAL SERVICES

### REVISED

Client:	Jacques Whitford Environment Ltd.	Date Received:	August 30/2001
	1200 Denison Street	Date Reported:	September 25/2001
	Markham, ON, CANADA	Lab Ref#:	G214120
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34651.1
		Sampled By:	M. Alam
Attn:	Mahaboob Alam		

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	6) Determination of the moisture content of soil by weight.
	ASTM Method No. D2216-80
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Fare Eput Certified By

Elaine Grant

Account Manager

Oernfied By Laboratory Supervisor

* Il work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip alytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

### **REVISED**

Date Reported:	September 25/2001
Lab Ref # :	G214120
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP5(0-2.5C M)	0.2	mg/kg	nd	0.5	yes	117	84	120	yes		•		•	•	yes
Arsenic	TP5(45-50C M)	0.2	mg/kg	nd	0.5	yes	102	84	120	yes	4.1	5.0	3.5	6.5	yes	yes
Antimony	TP5(0-2.5C M)	0.2	mg/kg	0,2	0.5	yes	100	29	157	yes	4.4	5.0	3.5	6.5	yes	yes
Antimony	TP5(45-50C M)	0.2	mg/kg	nd	0.5	yes	114	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Selenium	TP5(0-2.5C M)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.9	5.0	3.5	6.5	yes	yes
Selenium	TP5(45-50C M)	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.6	5.0	3.5	6.5	yes	yes
Aluminum	-	20	mg/kg	nd	40	yes	104	74	125	yes	na	na	na	na	na	yes
Aluminum	па	20	mg/kg	nd	40	yes	106	74	125	yes	па	na	na	na	na	yes
Barlum	TP5(0-2.5C M)	5	mg/kg	nd	10	yes	100	82	113	yes	108	100	70	130	yes	yes
Barium	TP5(45-50C M)	5	mg/kg	nd	10	yes	101	82	113	yes	87	100	70	130	yes	yes
Boryllium	TP5(0-2.5C M)	0.2	mg/kg	nd	0.4	yes	87	72	124	yes	9.8	10	7	13	yes	yes
Beryllium	TP5(45-50C M)	0.2	mg/kg	nd	0.4	yes	88	72	124	yes	8.8	10	7	13	yes	yes
Cadmium	TP5(0-2.5C M)	0.5	mg/kg	nd	0.6	yes	162	0	180	yes	97.4	100	70	130	yes	yes
Cadmium	TP5(45-50C M)	0.5	mg/kg	nd	0.6	yes	153	0	180	yes	91.5	100	70	130	yes	yes
Chromium	TP5(0-2.5C M)	1	mg/kg	nd	2	yes	108	72	124	yes	96	100	70	130	yes	yes
Chromium	TP5(45-50C M)	1	mg/kg	nd	2	yes	110	72	124	yes	86	100	70	130	yes	yes
Cobalt	TP5(0-2.5C M)	2	mg/kg	nd	4	yes	104	85	123	yes	96	100	70	130	yes	yes
Cobalt	TP5(45-50C M)	2	mg/kg	nd	4	yes	107	85	123	yes	87	100	70	130	yes	yes
Copper	TP5(0-2.5C M)	1	mg/kg	nd	4	yes	106	78	122	yes	106	100	70	130	yes	yes
Copper	TP5(45-50C M)	1	mg/kg	nd	4	yes	103	78	122	Yes	90	100	70	130	yes	Yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

### REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214120
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	na	50	mg/kg	nd	100	yes	100	85	119	yes	na	na	na	na	na	yes
Iron	na	50	mg/kg	nd	100	yes	101	85	119	yes	na	na	na	na	na	yes
Lead	TP5(0-2.5C M)	5	mg/kg	nd	10	yes	103	48	152	yes	96	100	70	130	yes	yes
Lead	TP5(45-50C M)	5	mg/kg	nd	10	yes	113	48	152	yes	87	100	70	130	yes	yes
Manganese	TP5(0-2.5C M)	1	mg/kg	nd	2	yes	104	85	115	yes	100	100	70	130	yes	yes
Manganese	TP5(45-50C M)	1	mg/kg	nd	2	yes	106	85	115	yes					•	yes
Molybdenum	TP5(0-2.5C M)	3	mg/kg	nd	6	yes	156	0	210	yes	186	200	140	260	yes	yes
Molybdenum	TP5(45-SOC M)	3	mg/kg	nd	6	yes	121	0	210	yes	178	200	140	260	yes	yes
Nickel	TP5(0-2.5C M)	2	mg/kg	nd	- 4	yes	101	86	116	yes		•				yes
Nickel	TP5(45-50C M)	2	mg/kg	nd	4	yes	102	86	116	yes	82	100	70	130	yes	yes
Phosphorus	na	20	mg/kg	nd	40	yes	121	73	130	yes	na	na	na	na	03	yes
Phosphorus	na	20	mg/kg	nd	40	yes	122	73	130	yes	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	122	25	200	yes	na	na	na	па	na -	yes
Silver	na	1	mg/kg	nd	2	yes	143	25	200	yes	na	na	na	na	na	yes
Titanium	TP5(0-2.5C M)	5	mg/kg	nd	10	yes	142	37	174	yes	123	100	70	130	yes	yes
Titanium	TP5(45-50C M)	5	mg/kg	nd	10	yes	146	37	174	yes	115	100	70	130	yes	yes
Vanadium	TP5(0-2.5C M)	1	mg/kg	nd	2	yes	106	81	119	yes	99	100	70	130	yes	yes
Vanadium	TP5(45-50C M)	1	mg/kg	bn	2	yes	109	81	119	yes	88	100	70	130	yes	yes
Zine	TP5(0-2.5C M)	5	mg/kg	nd	10	yes	104	85	112	yes	103	100	70	130	yes	yes
Zinc	TP5(45-50C M)	5	mg/kg	nd	10	yes	108	85	112	yes	91	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

- Unavailable due to dilution required for analysis
- na = Not Applicable
- ns = Insufficient Sample Submitted
- nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

### REVISED

Date Reported:	September 25/2001
Lab Ref # :	G214120
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

-----

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	12.23.20	Accept	QC Acceptable
рН	nă	0.01	Units	na	na	па	95	90	110	yes	na	na	na	na	nă	yes
						1										-

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

Report Date:	September 25/2001
Lab Ref # :	G214120
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP1(BEDROC K)	TP5(0-2.5C M)	TP5(0-2.5C M) Replicate	TP5(10-12. 5CM)	TP5(12.5-1 5CM)
Antimony	0.2	mg/kg	nd	0.7	0.7	0.2	0.4
Arsenic	0.2	mg/kg	1.5	47.5	47.5	5.5	18.0
Selenium	0.2	mg/kg	nd	7.1	7.1	1.2	3.1
Aluminom	20	mg/kg	1300	29000	27800	22600	23900
Barium	5	mg/kg	12	203	198	132	146
Beryllium	0.2	mg/kg	nd	1.6	1.6	1.0	1.2
Cadmium	0.5	mg/kg	nd	2.2	2.4	0.8	1.1
Chromium	1	mg/kg	6	37	36	30	31
Cobalt	2	mg/kg	nd	108	109	21	48
Copper	1	mg/kg	10	818	823	92	324
DD	50	mg/kg	3120	28100	28000	22600	23500
lead	5	mg/kg	nd	50	52	17	27
Manganese	1	mg/kg	153	346	339	175	199
Molybdenum	3	mg/kg	nd	nd	nd	nd	nd
Vickel	2	mg/kg	7	7400	7510	814	3010
hosphorus	20	mg/kg	132	1370	1360	262	575
lilver	1	mg/kg	nđ	2	2	nd	nd
litanium	5	mg/kg	15	157	162	160	156
anadium	1	mg/kg	4	51	50	43	44
Zine	5	mg/kg	6	192	191	92	122
н	0.01	Units	8.44	6.40	6.40	6.33	6.27
Moisture Content	0.01	*	is	19.5	19.5	14.3	14.5

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

is Insufficient Sample for analysis.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

September 25/2001
G214120
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP5(15-17. 5CM)	TP5(17.5-2 0CM)	TP5(2.5-5C M)	TP5(20-22. 5CM)	TP5(22.5-2 5CM)
Antimony	0.2	mg/kg	nd	nd	0.6	nd	ba
Arsenic	0.2	mg/kg	2.2	2.5	45.6	2.7	2.1
Selenium	0.2	mg/kg	0.6	0.8	7.4	0.7	0.6
Ahuminum	20	mg/kg	22100	22000	29100	24400	23000
Barium	5	mg/kg	129	126	204	155	144
Beryllium	0.2	mg/kg	1.0	1.0	1.6	1.2	1.1
Cadmium	0.5	mg/kg	nd	nd	2.5	0.5	0.5
Chromium	1	mg/kg	29	29	38	32	30
Cobalt	2	mg/kg	15	14	112	16	17
Copper	1	mg/kg	21	20	848	23	21
ron	50	mg/kg	24400	23500	28800	27600	26700
Lead	5	mg/kg	15	14	57	15	16
Manganese	1	mg/kg	180	171	329	187	190
Molybdenum	3	mg/kg	nd	nd	nd	nd	nd
Nickel	2	mg/kg	60	71	7920	44	38
Phosphorus	20	mg/kg	172	162	1390	189	208
Silver	1	mg/kg	nd	nd	2	nd	nd
litanium	5	mg/kg	179	160	166	197	207
Vanadium	1	mg/kg	45	-44	52	47	46
Zinc	5	mg/kg	86	83	195	88	87
н	0.01	Units	6.35	6.33	6.33	6.44	6.47
Moisture Content	0.01	×	14.0	12.6	19.8	16.1	13.6

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

## REVISED

Report Date:	September 25/2001
Lab Ref # :	G214120
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Antimony	0.2					M)	M
Sector Sect	0.2	1 - 1 - 1 - 1					
	1.5353	mg/kg	nd	nd	0.2	0.2	0.2
Arsenic	0.2	mg/kg	2.0	2.7	2.7	4.0	4.4
Selenium	0.2	mg/kg	0.5	1.0	0.6	0.6	0.3
Aluminum	20	mg/kg	21700	22900	24300	26300	27200
Barium	5	mg/kg	130	137	152	167	190
Beryllium	0.2	mg/kg	1.1	1.1	1.2	1.2	1.3
Cadmium	0.5	mg/kg	nd	nd	0.6	ba	ba
Chromium	1	mg/kg	28	30	32	34	36
Cobalt	2	mg/kg	16	17	17	17	17
Copper	1	mg/kg	21	34	30	35	35
Iron	50	mg/kg	25100	27100	29800	36800	39500
Lead	5	mg/kg	13	16	15	16	14
Manganese	1	mg/kg	179	187	203	239	358
Molybdemum	3	mg/kg	nd	nd	nđ	nd	nd
Nickel	2	mg/kg	46	67	70	80	82
Phosphorus	20	mg/kg	227	226	362	628	695
Silver	1	mg/kg	nd	nd	nd	nd	nd
Titanium	5	mg/kg	207	233	215	232	275
Vanadium	1	mg/kg	43	45	45	46	47
Zinc	5	mg/kg	86	90	119	199	219
PH	0.01	Units	6.51	6.49	6.71	6.94	7.18
Moisture Content	0.01	%	14.6	14.9	14.9	13.4	17.5

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

September 25/2001
G214120
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

r EQL Units M)		TP5(45-50C M) Replicate	TP5(5-7.5C M)	TP5(7.5-10 CM)	TP5(70-75C M)	
0.2	mg/kg	nd	nd	0.7	0.6	0.4
0.2	mg/kg	3.8	4.0	64.0	65.0	5.1
0.2	mg/kg	0.6	0.6	9.4	10.0	nd
20	mg/kg	27200	27600	33200	33300	19200
5	mg/kg	203	204	238	242	153
0.2	mg/kg	1.2	1.2	1.9	1.9	0.9
0.5	mg/kg	0.6	0.6	3.1	3.3	0.6
1	mg/kg	36	36	43	43	26
2	mg/kg	19	19	155	160	12
1	mg/kg	40	40	1280	1340	25
50	mg/kg	69400	69600	33800	34500	33100
5	mg/kg	14	13	68	71	9
1	mg/kg	2140	2100	356	361	723
3	mg/kg	nd	nd	nd	nd	nd
2	mg/kg	111	110	11800	12100	34
20	mg/kg	788	789	1800	1850	632
1	mg/kg	nd	nd	4	- 4	nd
5	mg/kg	353	358	180	181	298
1	mg/kg	47	48	59	59	35
5	mg/kg	118	118	252	257	72
0.01	Units	7.67	7.69	6.23	6.19	7.87
0.01	x	20.8	18.9	22.7	22.6	15.3
	0.2 0.2 20 5 0.2 20 5 1 2 1 50 5 1 3 2 20 1 5 1 3 2 20 1 5 1 5 1 5 0.01	0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 20 mg/kg 5 mg/kg 0.2 mg/kg 0.5 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 5 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 2 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 5 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 5 mg/kg 1 mg/kg	EQL         Units         M)           0.2         mg/kg         nd           0.2         mg/kg         3.8           0.2         mg/kg         0.6           20         mg/kg         27200           5         mg/kg         203           0.2         mg/kg         1.2           0.5         mg/kg         0.6           1         mg/kg         0.6           1         mg/kg         0.6           1         mg/kg         1.2           0.5         mg/kg         0.6           1         mg/kg         40           5         mg/kg         19           1         mg/kg         40           50         mg/kg         69400           5         mg/kg         14           1         mg/kg         14           1         mg/kg         nd           2         mg/kg         11           20         mg/kg         11           20         mg/kg         33           1         mg/kg         353           1         mg/kg         353           1         mg/kg         11	EQL         Units         M)         M)         M)           0.2         mg/kg         nd         nd           0.2         mg/kg         3.8         4.0           0.2         mg/kg         0.6         0.6           0.2         mg/kg         27200         27600           5         mg/kg         203         204           0.2         mg/kg         1.2         1.2           0.5         mg/kg         0.6         0.6           1         mg/kg         36         36           2         mg/kg         19         19           1         mg/kg         40         40           50         mg/kg         69400         69600           5         mg/kg         14         13           1         mg/kg         14         13           1         mg/kg         nd         nd           2         mg/kg         111         110           20         mg/kg         131         113           1         mg/kg         nd         nd           2         mg/kg         111         110           20         mg/kg         <	EQL         Units         M)         M)         M)         M)           0.2         mg/kg         nd         nd         0.7           0.2         mg/kg         3.8         4.0         64.0           0.2         mg/kg         0.6         0.6         9.4           20         mg/kg         27200         27600         33200           5         mg/kg         203         204         238           0.2         mg/kg         1.2         1.2         1.9           0.5         mg/kg         0.6         0.6         3.1           1         mg/kg         36         36         43           2         mg/kg         19         19         155           1         mg/kg         69400         69600         33800           50         mg/kg         14         13         68           1         mg/kg         2140         2100         356           3         mg/kg         111         110         11800           20         mg/kg         788         789         1800           1         mg/kg         353         358         180 <td< td=""><td>EQL         Units         M)         M)         M)         M)         CM)           0.2         mg/kg         nd         nd         0.7         0.6           0.2         mg/kg         3.8         4.0         64.0         65.0           0.2         mg/kg         0.6         0.6         9.4         10.0           20         mg/kg         27200         27600         33200         33300           5         mg/kg         203         204         238         242           0.2         mg/kg         1.2         1.2         1.9         1.9           0.5         mg/kg         0.6         0.6         3.1         3.3           1         mg/kg         36         36         43         43           2         mg/kg         19         19         155         160           1         mg/kg         40         40         1280         1340           50         mg/kg         69400         69600         33800         34500           5         mg/kg         14         13         68         71           1         mg/kg         nd         nd         nd         <t< td=""></t<></td></td<>	EQL         Units         M)         M)         M)         M)         CM)           0.2         mg/kg         nd         nd         0.7         0.6           0.2         mg/kg         3.8         4.0         64.0         65.0           0.2         mg/kg         0.6         0.6         9.4         10.0           20         mg/kg         27200         27600         33200         33300           5         mg/kg         203         204         238         242           0.2         mg/kg         1.2         1.2         1.9         1.9           0.5         mg/kg         0.6         0.6         3.1         3.3           1         mg/kg         36         36         43         43           2         mg/kg         19         19         155         160           1         mg/kg         40         40         1280         1340           50         mg/kg         69400         69600         33800         34500           5         mg/kg         14         13         68         71           1         mg/kg         nd         nd         nd <t< td=""></t<>

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

# REVISED

September 25/2001
G214120
EG009-0811
INCO
ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	TP5(95-100 CM)	TRAVEL BLA NK	TRAVEL SPI KE	
Antimony	0.2	mg/kg	0.3	0.3	0.8	
Arsenic	0.2	mg/kg	5.7	2.1	26.5	
Selenium	0.2	mg/kg	nd	nd	0.6	
Atuminum	20	mg/kg	17900	4240	17000	
Barium	5	mg/kg	156	49	161	
Beryllium	0.2	mg/kg	0.8	0.3	0.6	
Cadmium	0.5	mg/kg	nd	nd	0.8	
Chromium	1	mg/kg	25	10	49	
Cobalt	2	mg/kg	12	4	27	
Copper	1	mg/kg	26	6	33	
ron	50	mg/kg	31900	11600	33400	
Lead	5	mg/kg	11	10	27	
Manganese	1	mg/kg	552	174	1200	
Molybdenum	3	mg/kg	nd	ba	nd	
Vickel	2	mg/kg	30	4	45	
hosphorus	20	mg/kg	600	381	971	
ilver	1	mg/kg	nd	nd	2	
litanium	5	mg/kg	320	315	1150	
anadium	1	mg/kg	34	22	50	
line	5	mg/kg	69	27	133	
H	0.01	Units	7.94	ns	ns-	
foisture Content	0.01	%	15.1	na	na	

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

- na Not Applicable
- nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL
- ns Insufficient Sample Submitted

#### **Report of Analysis-Blank and Spike**

Client : Jacques Whitford Environment Ltd. REVISED Contact: Mahaboob Alam

INCO

Analysis of Soil, expressed on a dry weight basis

Client Ref#:

ONT34651.1

Parameter	Soil Value S		Expected Travel Spike Values		
Arsenic	0.2	mg/kg	2	20.4	
Antimony	0.2	mg/kg	<12	0.7	
Selenium	0.2	mg/kg	<1	0.5	
Aluminum	20	mg/kg	3960	16300	
Barium	5	mg/kg	48	157	
Beryllium	0.2	mg/kg	<1	0.6	
Cadmium	0.5	mg/kg	<1	0.3	
Chromium	1	mg/kg	7	45	
Cobalt	2	mg/kg	<10	25	
Copper	1	mg/kg	ব	32	
Iron	50	mg/kg	8180	31000	
Lead	5	mg/kg	9	20	
Manganese	1	mg/kg	159	1140	
Molybdenum	3	mg/kg		1	
Nickel	2	mg/kg	<8	43	
Phosphorus	20	mg/kg		810	
Silver	1	mg/kg	2	2	
Titanium	5	mg/kg		880	
Vanadium	1	mg/kg	14	50	
Zinc	5	mg/kg	23	125	

EQL

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd

CHAI	N OF CUSTODY RECOR	D	1.8*									1		
Client:	JWEL		9			_	P/	45 QUO	ote # :	IN	10-3	TWEL S	SPECIA	L Page of
	MARKHAN	A	5 N		÷	_	CI	ient P.O	. # :					1
			n finis	12.5		-		ient Proj		0	NT.	34651	.1	AUG 30'01 PM 1:43
Contact:	M. ALAM	( ¹ 10. 5	24	5		Sa	mpled b	y:	5	M.	ALAM	a 12		
Phone:		Fax:	1.15	4		2 1		3258 9	98	f applicable)	T. 1	CO PRI	OTOCOL	<u>/</u>
				AGA	ysis R	equired:	00000000			in de la composition de la composition La composition de la c			around Tim	
Invoice to	(if other than above):			31				5					ASE PROV	IDE ADVANCE NOTIC
				2					1.	14		teeme o	A REPORT OF	RUSH PROJECTS
		_		4A								(STD)	5-7 Busir	apply, please contact Lo ness Days
				GFAA			12			-		RUSH	Specify	2 <b>8</b>
		-	- 1 i -	P									Time	
Sample	Client Sample I.D.	Date Sampled	Time Sampled	IC	PH					1		Sample	No.of	Comments/Contamination
4 1	TP5 (0-2.5cm)	the second s	Sampied	1	1			-	-	1		Matrix	Containers	Site History FOLLOW
2	TP5(2.5-5 cm)	14.75	- 1 Mg	1	1		-					SOIL	1	20-2002 01-000 0000000000000000000000000
3	TP5(5-7.50m)		0.333	1	11			1	-			N	1	PROTOCOL
4	TP5(7.5-10m)		1.1.	V	1	2						N	1	<u> </u>
5	TP5(10-12:50)			1	1							N	1	
6	TP5(12.5-15cm)	1000		1	1							M	1	
7	TP5(15-17.50)			1	1		-		-			м		J
8	TP5(17.5-200)	54.	1.0	1	1							и	1	
9	TP5(20-22.5w)		v	1	1		-						1	
10				V	1							N	1	
11	TP5(22.5-250) TP5(25-27.500)			V	1			-			-	n		
12	TP5(27.5-304)		1	V	V							N	1	
C	Relinquished to PAS by		- 9/					Date:			Time:		Method of Shi	

HAIN	5735 McAdam Mississauga, Or OF CUSTODY RECORD	ntario L4Z	IN9 V		(905) 890 -800-263						1 <u>5.1.1</u>		Com	nents:					
ent: .	JNEL	TNEL PAS Quote # :								Jn	IEL	- INC	20		Page of				
	MARKHAM											Client P.O. # :		ONT 34651			1.1		AUG 30 '01 PH 1:43
itact:	M. ALAM	<u> </u>			le transf		Same	oled by:			U	M	A	AM					
me:		Fax:	:k	L	100	Plea	ase speci	ify Guidel	line (if a	pplicable	7	NCO	P	ROTOC	04				
100	13	a state of the sta		Adaty	sis Require		2.1							around Time					
1CE 10	(if other than above):			P/9FAA-23								STD	2						
ample #	Client Sample I.D.	Date Sampled	Time Sampled	TCI	PH	Ĭ.							mple atrix	No.of Containers	Comments/Contamination/ Site History				
1	TP5/30-3500)			N	V							50	ıL	1	FOLLOW				
2	TP 5 (35-40 cm)			V	V.							V	§	1	PROTOCOL				
3	TP5 (40-45cm)			V	1							v	1	1					
4	TP5(45-50cm)	10.0		V	r V							v		1					
5	TP5(\$0-75m)		198	V	1							V	۸.	1					
6	TP5 (95-100 cm	)	i	V	V							v	٨	1					
7			- 131- Hill						1.03		1	_							
8	· · · · · · · · · · · · · · · · · · ·	31 ¹	⁵⁴ , 9	1									_						
9		S. 19	1		3.6		1.1		1	-		-							
10	с. — ¥	12.10					_	1	1										
11		1.03			1.10														
12		1.50	Sec.	15	1.5		114		÷			<u> </u>							
mples lient S	Relinquished to PAS by ignature)							Date:			Time:			Method of Sh	ipment				
noles	Received in lab by: /	1		1.12	1.51			Date:	1. 2	130	Time:	Z'VL	8	Condition of s	samples upon receipt at lab:				

Merce -

. . المحمد

CHAIN	5735 McAdam Mississauga, O	Intario L42	2 1N9	Fax:	(905)	890-8566 890-8575 263-9040	a		2 I				mments:	
ient:	FWEL MARKHA	м			1			Quote		IN	CO	JWEL	SPECI	4 Page of
								nt P.O. # nt Project		ON	TE	4651.	1	
ntact:	MIALA	M	10 V -	2	2			pled by:			M	ALAM		
one:		Fax:	8.00	1		. Ple			eline (if appli	icable)	INC	CO PRO	TOCOLAU	G30'01 PM 1:44
	1				ysis Rec	uired:		ji Fili			ai -		naround Time	
oice to	(if other than above):			FAA-23 MG			10					10.00	FOR RL	
				0/91		1			1.00			RUSH	Time	
aniple #	Client Sample I.D.	Date Sampled	Time Sampled	Ic/	Hd		1.5					Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP1(BEDROCK)		4	1	1	-						Soil	1	FOLLOW
2			1.2.2	27				- 1						PROTOCOL
3								. S						
4		96. U.S		31.			1							
5		1				-								
6		1	- N											
7	N 4		مجلي ( ^م	- 6									-	
8	e.		1.00	for-		4	-							
9			1. 8.1.				2.1							
10	5 y	-						1.18						
11	i						10							
12	1 - N	1 4		30				199						
nples R ient Sig	elinquished to PAS by flature)	1						Date:			lime:	1111	Method of Shipr	ment
nnlae D	eceived in lab by:	11/			12			Date:	2813.		Timer	0.000	Condition of sam	nples upon receipt at lab:

CHAIN	OF CUSTODY RECOR	D			14		S	160. 1710 - 1	1	•5					Station and the second
Client:	TWEL	125	1		1		PAS	Quote #	I	VCC	7- T	WE	L SPE	CIAL	Page of
1 a 5	MARKHA	M			)	1.0.0	Clie	nt P.O. # :	.a. <u>1.</u>						
			S. July	8.2		ε 1	Clie	nt Project #	ē	ON.	IT 3	46	51.1		
Contact:	M.ALP	IM		<u></u>	-		Sam	pled by:	-				~	A	1630201 ph 1:44
Phone:		Fax:	18 - V48	742		Plea	ise spec	ify Guidelin	e (if appl	icable)	I	NCO	·PA	COTOCOL	-
				Anal	sis Re	quired:						<u></u> ]		around Time	
Invoice to	(if other than above):			3			1.2			-			PLE	FOR RL	DE ADVANCE NOTICI JSH PROJECTS
				2			1.3	3 - 4					senge ex	ceptions ap	ply, please contact Lo
		2	-	AA								9	STD	5-7 Busine	ess Days
			- 3	IGFA.		1.						F	RUSH	Specify D	ate
	A12			0	-		1							Time	
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	TC	PH								Sample Matrix	No.of Containers	Comments/Contamination Site History
1	TRAVEL BLANK	AUGZ		1	1								SOIL	1	FOLLOW
2	TRAVEL SPIKE			1	1								R	1	PROTOCOL
3		1		1.1								1.5		1. C	
4	3 N 3 N 3		14 15 1 1												
5					-								_		
6			and the												
7		1000	ti in f	iner.						_		100			
8	4.		** A	1		3									
9	1		P.			-							_		
10	State of the second		1. 19 M	121			-	-		-					
11		1.1.1	<u>r stan</u>	1		_				_					
12		1 × N		100					11						

Philip Analytical Services Corp

### Report of Analysis

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date: August 31/2001 Lab Ref# : G213868 Lab Quote #: EG009 0811 INCO Client PO#: INCO Client Ref#: ONT34646

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	ALGOMA PELLET 08/15/2001	ALGOMA ORB 08/25/2001		
Solenjum	0.2	mg/kg	12.9	29.9		
Viciniation	0.2	mg/log	ba.	1.0		
aires.	20	mgilg	1200	10300		
ayliam	0.2	mg/kg	8	84		
aderáum.	0.2	म्बह/kg	ba	1.6		
htomitum	1	mg/kg mg/kg	nd	nd		1
ðalt	2	mgag	87	48		
2.bet	1	mains	nd	ba	1	1
an a	50	me/kg	10	22		
bd	5	mg/kg	254000 nd	412000		
mainme		mg/kg	1090	ba	1	
dybdemme.	3	mg/kg	8	1820		1
ini	2	myleg	32	9	- 1	
nabyoura	20	mg/kg	226	31 338		
er.	1	mg/kg	ba	ni		
unitaria	5	mgolog	223	243	1	
adium	1	mg/kg	15	26		
	5	mg/kg	14	nd		
	0.01	Units	8.84	9.65		
			- 1	1		
						1 1

EQL nd

Estimated Quantitation Limit ~ lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL

Page 1 of 1

Philip Analytical Services Corp

#### **Report of Analysis**

 Client : Jacques Whitford Environment Ltd.
 Report Date:
 November 8/2001

 Contact: Mahaboob Alam
 Lab Ref # :
 G215491

 Lab Quote #:
 EG009-0811

 Chient PO#:
 INCO

 Analysis of Soil, expressed on a dry weight basis
 Client Ref#:
 ONT34651

Antimony	it	Units	TP-A (0-5em)	TP-A (0-Scm) Replicate	TP-C (0-5cm)	TP-D (0-5cm)	TP-E (0-5cm)
· · · · · · · · · · · · · · · · · · ·	0.2	mg/kg	0.3	0.3	0.6	0.4	0.3
Amenic	0.2	mg/kg	5,4	5.4	16.8	9.6	6.7
Selenium	0.2	tag/kg	1.0	1.0	3.6	2.3	1.6
Aluminum	20	mg/kg	12500	12700	11300	10800	13900
Bacium	5	mg/kg	100	101	113	93	118
Beryllhum	0.2	mg/kg	0.7	0.7	0.7	0.6	0.8
Cadmium	0.5	mg/log	0.6	nd	9.8	1.0	0.5
Chronaiana	1	mg/kg	18	18	22	22	21
Cobalt	2	mg/kg	11	11	37	34	20
Copper	1	mg/kg	51	52	211	193	93
inn	50	zag/log	21300	21700	22800	19100	25300
Lead	5	mg/kg	104	105	89	45	30
Mangamese	2	mg/kg	303	305	548	395	341
Molybdemm	3	mg/kg	6a	ba	nd	nd	nđ
Nickel	2	mg/kg	241	235	1840	1290	549
Phosphorus	20	mg/kg	790	790	961	1440	1350
SEver	1	mg/kg	nd	nd	лă	ba	nd
Fishium	5	mg/kg	100	99	118	99	109
Vanadium	1	mg/kg	28	28	28	26	28
Zinc	5	mg/kg	120	124	169	133	203
E C	0.03	Units	7.19		7.02	6.84	7.24

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

Not Requested



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

REGUIDECENTED 0 1 -10- 2001

Date Received:August 28/2001Date Reported:September 7/2001Lab Ref#:G214051Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1Sampled By:M. Alam

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	1) Analysis of arsenic in soil by Hydride Generation
	Atomic Absorption.
	U.S. EPA Method No. 7061 (Modifications)
	2) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	3) Analysis of trace metals in soil by Inductively Coupled
	Plasma Spectrophotometry.
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	<ol><li>Analysis of pH in soil by electrode.</li></ol>
	U.S. EPA Method No. 9045
	5) Determination of the moisture content of soil by weight.
	ASTM Method No. D2216-80

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6 Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	August 28/2001
Date Reported:	September 7/2001
Lab Ref#:	G214051
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1
Sampled By:	M. Alam

#### **Certificate of Analysis**

Instrumentation:	1) Varian VGA 76
	2) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	3) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	4) Orion Research Expandable Ion Analyzer EA940
	5) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

m

Certified By Elaine Grant

Account fanager

Certified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	September 7/2001				
Lab Ref # :	G214051				
Lab Quote#:	EG009-0811				
Client PO#:	INCO				
Client Ref#:	ONT34651.1				

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP14 COAL (50CM)	0.2	mg/kg	nd	0.5	yes	112	84	120	yes	4.5	5.0	3.5	6.5	yes	yes
Selenium	TP14 COAL (SOCM)	0.2	mg/kg	nd	0.5	yes	80	60	140	yes	4.8	5.0	3.5	6.5	yes	yes
Aluminum	-	20	mg/kg	nd	40	yes	86	74	125	yes	na .	na	na	na	na	yes
Barium	TP14 COAL (SOCM)	5	mg/kg	nd	10	yes	89	82	113	yes	103	100	70	130	yes	yes
Beryllium	TP14 COAL (50CM)	0.2	mg/kg	nd	0.4	yes	76	72	124	yes	9.7	10	7	13	yes	yes
Cadmium	TP14 COAL (SOCM)	0.5	mg/kg	nd	0.6	yes	113	0	180	yes	98.5	100	70	130	yes	yes
Chromium	TP14 COAL (SOCM)	1	mg/kg	nd	2	yes	91	72	124	yes	99	100	70	130	yes	yes
Cobalt	TP14 COAL (SOCM)	2	mg/kg	nd	4	yes	91	85	123	yes	99	100	70	130	yes	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Copper	TP14 COAL (SOCM)	1	mg/kg	nd	4	yes	90	78	122	yes	97	100	70	130	in the second	yes
Iron	na	50	mg/kg	nd	100	yes	90	85	119	yes	na	na		1.1.1.1.1.1.1	yes	yes
Lead	TP14 COAL (SOCM)	5	mg/kg	nd	10	yes	73	48	152	yes	96	100	na 70	na 130	na	yes
Manganese	TP14 COAL (SOCM)	1	mg/kg	nd	2	yes	94	85	115	yes	100	100	70	130	yes yes	yes
Molybdenum	TP14 COAL (SOCM)	3	mg/kg	nd	6	yes	71	0	210	yes	154	200	140	260		yes
Nickel	TP14 COAL (SOCM)	2	mg/kg	nd	4	yes	91	86	116	yes	100	100	70	130	yes yes	yes
Phosphorus	na.	20	mg/kg	nd	40	yes	107	73	130	yes	na	na	na	na	na	yes
Silver	na	1	mg/kg	nd	2	yes	92	25	200	1.65	253	1.000		3070	1.1228	yes
Titanium	TP14 COAL (SOCM)	5	mg/kg	nd	10	yes	97	37	174	yes	na 85	na 100	na	na	na	yes
Vanadium	TP14 COAL (SOCM)	1	mg/kg	nd	2	Yes	88	81	119	yes yes	83 96	100	70 70	130	yes	yes
Zinc	TP14 COAL (SOCM)	5	mg/kg	nd	10	yes	93	85	112	yes	99	100	70	130 130	yes	yes
рН	na	0.01	Units	nd	0.02	ves	100	90	110	ves	na	na	па	na	na	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns nd

= parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	September 7/2001
Lab Ref # :	G214051
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	ALGOMA PELLET	ALGOMA SLAG	TP14 COAL (50CM)	TP14 COAL (50CM) Replicate	
Arsenic	0.2	mg/kg	2.7	24.0	0.2	0.2	
Selenium	0.2	mg/kg	nd	1.1	0.6	0.6	
Aluminum	20	mg/kg	786	8000	369	354	
Barium	5	mg/kg	7	71	11	11	
Beryllium	0.2	mg/kg	nd	0.9	nd	nd	
Cadmium	0.5	mg/kg	0.7	3.4	nd	nd	
Chromium	1	mg/kg	24	15	1	ba	
Cobalt	2	mg/kg	nđ	nd	nd	nd	
Copper	1	mg/kg	14	24	10	12	
Iron	50	mg/kg	108000	313000	303	335	
Lead	5	mg/kg	nđ	nd	nđ	nd	
Manganese	1	mg/kg	188	1920	12	12	
Molybdenum	3	mg/kg	nd	5	nd	nd	
Nickel	2	mg/kg	32	34	4	4	
Phosphorus	20	mg/kg	147	457	nd	nd	
Silver	1	mg/kg	nd	nd	nd	nd	
Titanium	5	mg/kg	82	385	75	76	
Vanadium	1	mg/kg	9	22	3	3	
Zinc	5	mg/kg	29	9	ba	nd	
pH	0.01	Units	8.63	7.83	8.30	8.32	
Moisture Content	0.01	5	0.78	ns	0.62	0.56	
							×

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

ns Insufficient Sample Submitted



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:August 28/2001Date Reported:September 21/2001Lab Ref#:G214051Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1Sampled By:M. Alam

#### Certificate of Analysis

Analysis Performed:	Antimony, Hydride Generation, Digestion Required
Methodology:	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>
Instrumentation:	1) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Jon Certified By

Elaine Grant Account Manager

ified By

Laboratory Supervisor

1 work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip ytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

-
51
11
20
.1

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Pro	cess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	1.5	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Antimony	TP14 COAL (SOCM)	0.2	mg/kg	nd	0.5	уса	100	29	157	yes	4.4	5.0	3.5	6.5	уса	yes
																1

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis .

na

= Not Applicable = Insufficient Sample Submitted ns

= parameter not detected nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil, expressed on a dry weight basis

Report Date:	September 21/2001
Lab Ref# :	G214051
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Parameter	EQL	Units	ALGOMA PELLET	ALGOMA SLAG	TP14 COAL (50CM)	TP14 COAL (50CM) Replicate	
Antimony	0.2	mg/kg	1.5	0.9	nd	nd	

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

	TILITI			221	7 . V.	1.4		-	TAI	RA	T	ALEI SI	FLIAL	Page of
lient:	JWEL					109/959	Quote		TIV	ac		NEL SI		2.
2	MARKHAN	4					it P.O. #		ON	T	34	651.1	ng	IG 28701 pm 1=23
ontact:	M. ALAM	. s. 3		21		Sam	oled by:		2		MIF	DLAM		
hone:	· · · · · · · · · · · · · · · · · · ·	Fax:	i est.	1	Ple	ase speci	ify Guide	eline (if	applicabl	e)	TNO	O SPEC	JAL P	ROTOCOL
	a ^N i a Liba			ADAW	sis Required:								around Tim	245
nvoice to	(if other than above):		_	GFAA-23M								and the second second	FOR R ceptions a	IDE ADVANCE NOTICE USH PROJECTS pply, please contact Lab ness Days Date
-				PK		1							Time	1
Sample	Client Sample I.D.	Date Sampled	Time Sampled	IC	PH						1	Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP14 COAL (500			1						T		soil	1	Follow
2	ALGOMA SLAC	-	in the pa	V								v	d	Protocol
3	ALGOMA PELLET		to a lo	1	1							~	1	
4														
5				S	· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·
6									+				-	
7						1						_		
8		12			A									
9	1.00			* X		-		1						
10														
			12 mail			1.1	1.							
11				-										



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:August 30/2001Date Reported:September 14/2001Lab Ref#:G214115Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34651.1

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA								
	Antimony, Hydride Generation, Digestion Required								
	Selenium, Hydride Generation								
	17 Element ICP Scan								
	pH, Hydrogen Ion Activity, Extraction Required								
	Moisture Content								
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>								
	U.S. EPA Method No. 7061(Modifications)								
	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>								
	<ol> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> </ol>								
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>								
	U.S. EPA Method No. 6010								
	(Ministry of Environment ELSCAN)								
	5) Analysis of pH in soil by electrode.								
	U.S. EPA Method No. 9045								

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following repering or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Envi	ronment Ltd.	Date Received:	August 30/2001
	1200 Denison Street		Date Reported:	September 14/2001
	Markham, ON, CANA	DA	Lab Ref#:	G214115
	L3R 8G6		Lab Quote#:	EG009-0811
			Client PO#:	INCO
Fax:	905-479-9326		Client Ref#:	ONT34651.1
Attn:	Mahaboob Alam			
		Certificate of Analysis		
Methode	ology: (Cont'd)			
		6) Determination of the moisture content of soil by weig	,ht.	
		ASTM Method No. D2216-80		
Instrum	entation:	1) Varian VGA 76		
		2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian V	'GA 76	
		<ol> <li>Thermo Jarrell Ash ICAP 61E Plasma Spectrophoton</li> </ol>	neter	
		5) Orion Research Expandable Ion Analyzer EA940		
		<ol><li>Precision Mechanical Convention Oven/Sartorius Bas</li></ol>	ic Balance	
Sample	Description:	Soil		
QA/QC	ê •	Refer to CERTIFICATE OF QUALITY CONTROL rep	ort.	
Results:		Refer to REPORT of ANALYSIS attached.		

.C Tom Certified By

Elaine-Grant) Account Manager

Certified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	September 14/2001
Lab Ref # :	G214115
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Blas	nk	Pro	ocess % R	ecovery			М	atrix Spil	ce		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP12(0-2.5 CM)	0.2	mg/kg	nd	0.5	yes	114	84	120	yes		•	•		•	yes
Antimony	TP12(0-2.5 CM)	0.2	mg/kg	nđ	0.5	yes	114	29	157	yes	5.0	5.0	3.5	6.5	yes	yes
Selenkum	TP12(0-2.5 CM)	0.2	mg/kg	nđ	0.5	yes	100	60	140	yes	4.4	5.0	3.5	6.5	yes	yes
Ahamimum	-	20	mg/kg	nd	40	yes	92	74	125	yes	DA	na	DA	DA	na	yes
Barham	TP12(0-2.3 CM)	5	mg/kg	nd	10	yes	98	82	113	yes	116	100	70	130	yes	yes
Beryllhum	TP12(0-2.5 CM)	0.2	mg/kg	nd	0.4	yes	79	72	124	yes	9.5	10	7	13	yes	yes
Cadenhum	TP12(0-2.5 CM)	0.5	mg/kg	nd	0.6	yes	106	0	180	yes	98.9	100	70	130	yes	yes
Chromhum	TP12(0-2.5 CM)	1	mg/kg	nd	2	yes	100	72	124	yes	93	100	70	130	yes	yes
Cobalt	TP12(0-2.5 CM)	2	mg/kg	nd	4	yes	100	85	123	yes	90	100	70	130	yes	yes
Copper	TP12(0-2.5 CM)	1	mg/kg	nd	4	yes	105	78	122	yes	95	100	70	130	yes	yes
Iron	па	50	mg/kg	nd	100	yes	98	85	119	yes	na	na	na	DA	ma	yes
Lend	TP12(0-2.5 CM)	5	mg/kg	nd	10	yes	106	48	152	yes	90	100	70	130	yes	yes
Manganese	TP12(0-2.5 CM)	1	mg/kg	nd	2	yes	102	85	115	yes						yea
Molybdenum	TP12(0-2.5 CM)	3	mg/kg	nd	6	yes	168	0	210	yes	183	200	140	260	yes	Yes
Nickel	TP12(0-2.5 CM)	2	mg/kg	nd	4	yca	99	86	116	yes	91	100	70	130	yes	yes
Phosphorus	DA	20	mg/kg	nd	40	yes	117	73	130	yes	DA	DA	na	Da	na	yes
Silver	24	1	mg/kg	nd	2	yes	152	25	200	yes	DA	na	DA	DA	DA	yes
Titanium	DA.	5	mg/kg	nd	10	yes	103	37	174	yes	na	DA	na	na	DA	yes
Vanadium	TP12(0-2.5 CM)	1	mg/kg	nd	2	yes	96	81	119	yes	96	100	70	130	yes	yes
Zine	TP12(0-2.5 CM)	5	mg/kg	nd	10	yes	101	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis

na = Not Applicable

= Insufficient Sample Submitted ns

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	September 14/2001
Lab Ref # :	G214115
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Analysis of Soil, expressed on a dry weight basis

		Process Blank Process % Recovery									Overall					
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit		Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
μ <del>ε</del>	TA	0.01	Units	na	DA	пя	90	90	110	yes	TA.	DA	па	па	na.	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

- Unavailable due to dilution required for analysis
- na = Not Applicable
- ns = Insufficient Sample Submitted
- nd = parameter not detected
- TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil, expressed on a dry weight basis

Report Date:	September 14/2001
Lab Ref # :	G214115
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34651.1

Parameter	EQL	Units	TP12(0-2.5 CM)	TP12(0-2.5 CM) Replicate	TP12(2.5-5 CM)	TF12(5-10C M)
Antimony	0.2	mg/kg	0.9	0.9	0.3	0.2
Arsenic	0.2	mg/kg	15.2	15.2	5.9	4.9
Selenium	0.2	mg/kg	7.5	7.9	9.1	9.1
Aluminum	20	mg/kg	42100	44000	41200	36600
Barium	5	mg/kg	691	723	201	160
Beryflium	0.2	mg/kg	6.1	6.4	7.5	7.4
Cadmium	0.5	mg/kg	1.6	2.1	1.0	1.0
Chromium	1	mg/kg	39	41	23	21
Cobalt	2	mg/kg	7	8	3	nd
Copper	1	mg/kg	73	59	27	20
Iron	50	mg/kg	73100	76000	30300	18300
Lead	5	mg/kg	11	11	pd	nd
Manganese	1	mg/kg	3980	4040	3480	2960
Molybdenum	3	mg/kg	6	6	nd	nd
Nickel	2	mg/kg	77	81	33	22
Phosphorus	20	mg/kg	804	833	271	226
Silver	1	mg/kg	nd	nd	1	2
Fitanium	5	mg/kg	885	906	864	841
Vanadium	1	mg/kg	13	14	7	6
Einc	5	mg/kg	153	156	42	21
H	0.01	Units	9.00	9.00	10.3	10.5
Moisture Content	0.01	×	1.75	1.82	5.91	7.38

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

			1.	-			5=6-			7		10		0000	
ent: .	TWEL							AS Quo		4		CO-	JWEL	SPEC	LAL Page of
1	MARKH	πM			16	5 611		lient P.O			0	NT	34651	/ Al	UG 30'01 pm 1:41
ntact:	MIALAM	Fax:		5		5 6	s	ampled b	w:	(if appl	icable)	EN	COSPEC	CIALI	PROTOCOL
8		6			sis Re									around Tim	
oice to	(if other than above):			PKGFAA-23 MB										FOR R ceptions a	
ample #	Client Sample I.D.	Date Sampled	Time Sampled	王	PH			1		1			Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1_	TP12(0-2.50)			V	V				54 (j.				Soil		FOLLOW
2	TP12 (2.5-5m)		0.4	V	V			5					V	1	PROTOCOL
3	TP12 (5-100m)		S. 941	V	V	14			S.				м	1	
4				10											
5			1. A					_	1		1				
6	· · · · · · · · · · · · · · · · · · ·								*	_	-				2
7		• • • • • • • • • • • • • • • • • • •		1				-		_					
8				12		-		- 1						· · · · · ·	
9	,					-					1				
10			- <u>e</u> )			_		_							
11		St				1		_			_			1	
12			1.6					1.12	- F	1					

an adda

a,

A Construction of the second s

•



ANALYTICAL SERVICES

# Facsimile Cover Sheet

Fax No: Date: 10/09/01 Mahaboob Alam To: Total Pages (incl. Cover}: 5 JWEL Company: Fax: No: 905-890-8575 From: Jennifer McCarthy Tel No: 905-890-8566 Ext: 260 imccarthy@contactpsc.com For your review Reply ASAP Urgent O

If you do not receive all pages, please call our office.

Inorganic results for PSC job G214758, Please note comment

The information herein, solely intended for the individual or entity named as addressee hereon, is confidential and privileged. It is strictly prohibitive for anyone, other than the addressee, to use, disseminate, distribute or reproduce any portion of this facsimile message. If you have received this facsimile in error, please notify the sender immediately at the telephone number shown hereon and return the original by mail to the address shown hereon. Thank you,

*****

Philip Analytical Services Corp

# **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	October 4/2001
Lab Ref # :	G214758
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

arameter	EQL	Units	TP1 (0-2_5CM)	TP1 (0-2.SCM) Replicate	трі (2.5-5СМ)	TP16 (0-2.5CM)	TP16 (2_5-5C24)
atimony	0.2	mg/kg	0.4	0.5	0.3	nd	ba
Arsenic	0.2	mgAg	9.3	9.3	10.9	4.2	3.8
Arsenic Selenium	0.2	mg/kg	2.4	2.4	1.5	8.0	0.6
	20	mg/kg	11800	13000	15100	18000	15900
Aluminum	5	mg/kg	107	109	120	123	107
Barium	0.2	mg/kg	0.5	0.6	0.6	0.7	0.6
Beryllium	0.5	mg/kg	0.6	0.6	ba	ba	pd
Cadmium	1	mg/kg	19	21	23	26	23
Chromium	2	mg/kg	61	64	43	16	12
Cobalt	1	mg/kg	241	247	190	56	43
Copper	50	mg/kg	21400	22000	24900	26400	24500
Iron	5	mg/kg	50	52	32	9	- 11
Lead	1	mg/kg	389	396	493	515	467
Manganete	3	mg/kg	nd	ha	pd	nd	pd
Molybdenum	2	mg/kg	2460	2450	1920	195	141
Nickel	20	mg/kg	842	863	661	586	567
Phosphorus	20	mg/kg	nd	pd	nd	bà	nd
Silver	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	mg/kg	39	62	70	165	171
Titanhan	S	mg/kg	24	27	29	31	30
Vansdium	1	mg/kg	129	136	100	75	74
Zinc	5	Units	7.38	7.38	7.46	7.82	7.95
рH	0.01		7.69	7.67	11.3	16.4	15.9
Muisture Content	0.01	*	1.05	1.07			101240

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = BQL higher than listed due to dilution () Adjusted EQL

Philip Analytical Services Corp

# **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

*** ** **

******

Report Date:	October 4/2001
Lab Ref # :	G214758
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

arameter	EQL	Units	TP4 (0-2.5CM)	TP4 (2.5-5CM)	TP6 (0-2,5CM)	TP6 (2.5-5CM)	TP7 (0-2.5CM)
	0.2	mg/kg	nd	0.2	1.6	1.1	0.8
ntimony	0.2	mg/kg	3.4	3.6	45.0	51.2	48.4
rsenic	0.2	mg/kg	0.6	0.7	7.9	8.9	5.4
elenium	20	mg/kg	5960	10500	24500	31700	21100
huminunt		12323	45	69	198	233	184
larium	5	mg/kg	0.3	0.5	1.4	1.8	1.0
leryllium	0.2	mg/kg	nd	nd	2.2	3.3	1.8
ladmium	0.5	mg/kg	12	17	37	44	50
muhmord	1	mg/kg	12	17	137	168	163
Cobak	2	mg/kg	73	75	1400	1400	1400
Copper	1	mg/kg	12900	15900	19300	26100	22,800
non	50	mg/kg	29	43	85	86	59
Lead	5	mg/kg	430	426	163	179	181
Mangapete	1	mg/kg			nd	nd	ba
Molybdenom	3	mg/kg	nd	nd 518	9350	11700	11400
Nickel	2	mg/kg	503	719	2010	2090	1020
Phosphorus	20	mg/kg	782	1.244.00	5	4	1
Silver	1	mg/kg	bă	nd	25	25	12
Tranium	5	mg/kg	40	32	56	61	36
Vanadium		mg/kg	19	25	30	243	197
Zinc	5	mg/rg	90	89	1000	5.90	5.92
pH	0.01	Units	7,07	7.33	5.95	5.90	19.3
Moisoure Content	0.01	76	13.7	13.5	62.9	202	19.3
1	-				-		

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

00000000000

## Philip Analytical Services Corp

# **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	October 4/2001
Lab Ref# :	G214758
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

grameler	EQL	Units	TP7 (2.5-SCM)			
າມນັກແດງ	0.2	mg/kg	0.6			
Arsenic	0.2	mg/kg	42.1		1	
Selenium	0.2	mg/kg	5.6			1
Aluminum	20	mg/kg	24200			
Barium	5	mg/kg	192			
Beryllium	0.2	mg/kg	1.1			
Cadmium	0.5	mg/kg	1.7			
Chromium	1 1	mg/kg	36	1		15
Cobalt	2	mg/kg	147		1	
Соррет	1	mg/kg	1240		1	
iron	50	mg/kg	22,600	8		1
Lead	5	mg/kg	51			
Manganese	1	mg/kg	182	21 12		
Molybdemin	3	mg/kg	nd		1	
Nickel	2	mg/kg	10200			
Phospharus	20	mg/kg	1010			
Silver	1	mg/kg	2			
Titanlum	5	mg/kg	15		3	
Vanadiam	1	mg/kg	39		1222	
Zine	5	mg/kg	194			
pH	0.01	Units	5.91			1
Molsture Content	0.01	*	19.6			
		Ĩ.			÷ *	
			10000		 -	

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted BQL

8008880008

Client:	Jacques Whitford Environment Ltd. 1200 Denison Street	Date Received: Date Reported:	September 26/2001 October 4/2001 G214758
	Markham, ON, CANADA L3R 8G6	Lab Ref#: Lab Quote#: Client PO#:	EG009-0811 INCO
Fax:	905-479-9326	Client Ref#:	ONT34646

Attn: Mahaboob Alam

#### Certificate of Analysis

#### Additional Comments:

Antimony Analysis of Soil:

Spike recovery was below acceptance limits. Redigest and re-analysis did not improve spike recovery. Please view antimony results with discretion as they may be biased low. Post digest spike recovery was 72% (Acceptance criteria 70% - 130%).

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil, expressed of	on a dry weight basis
--------------------------------	-----------------------

Report Date:	October 1/2001
Lab Ref # :	G214769
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Antimony		Units	TP10 0-2.5	TF10 2.5-5	TP11 0-2.5	TF11 2.5-5	TP14 0-2.5
	0.2	mg/kg	1.3	1.3	1.6	1.2	2.6
Arsenic	0.2	mg/kg	7.9	8.7	11.9	11.1	17.9
Seleninm	0.2	mg/kg	1.9	1.8	2.5	1.8	4.6
Alamioum	20	mg/kg	15100	16900	9040	7980	32000
Bariam	5	mg/kg	154	167	138	123	408
Beryllium	0.2	mg/kg	0.9	1.1	1.2	0.9	4.1
Cadminam	0.5	mg/kg	1.3	1.6	1.3	1.4	2.2
Chromium	1	mg/kg	21	22	22	20	90
Cobalt	2	mg/kg	41	47	46	41	11
Copper	1	mg/kg	153	166	225	257	131
Iron	50	mg/kg	22300	23800	47700	39600	175000
Lead	5	mg/kg	133	149	138	147	623
Manganese	1	mg/kg	434	499	1040	881	5140
Molybdenum	3	mg/kg	nd	nd	nd	nd	16
Nickel	2	mg/kg	1170	1310	1610	1500	187
Phosphonus	20	mg/kg	928	929	685	566	368
Silver	1	mg/kg	1	nd	nd	1	nd
Etenium	5	mg/kg	191	177	288	300	617
Vanadium	1	mg/kg	31	34	22	21	28
Linc	5	mg/kg	215	214	311	264	382
H	0.01	Units	7.24	7.25	7.59	7.75	8.45

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil, expressed on a dry weight basis

Report Date:	October 1/2001
Lab Ref # :	G214769
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

	EQL	Units	TP14 2.5-5	TP15 0-2.5	TP15 2.5-5	TP2 0-2.5	TP2 0-2.5 Replicate
Antimony	0.2	mg/kg	2.5	0.4	1.3	1.4	1.2
Arsenic	0.2	mg/kg	18.8	3.3	6.6	37.8	37.8
Selenium	0.2	mg/kg	4.5	0.3	0.9	7.4	7.3
Aluminum	20	mg/kg	33900	10900	16700	17100	17000
Baritim	5	mg/kg	488	95	120	191	194
Beryllium	0.2	mg/kg	4.2	0.5	0.7	0.7	0.7
Cadminm	0.5	mg/kg	2.1	1.2	1.2	191 0.7 2.0 42 213 3 1330 1 17900 17 85 280 2 nd 3	
Chromium	1	mg/kg	103	17	24	42 213 2 1350 1 17900 17	
Cobalt	2	mg/kg	п	8	23 213		214
Copper	1	mg/kg	173	71	122	1330	1340
Iron	50	mg/kg	185000	18700	26900	17900	17800
Lead	5	mg/kg	665	44	103	85	88
Manganese	1	mg/kg	5880	425	490	280	287
Molybdenum	3	mg/kg	13	nd	nđ	nd	nd
Vickel	2	mg/kg	188	185	1310	10100	10100
hosphonus	20	mg/kg	372	1210	757	830	837
liver	1	mg/kg	nd	nd	nđ	4	4
Fitznium)	5	mg/kg	658	164	260	77	74
/anad ium	1	mg/kg	34	22	34	45	45
Sinc	5	mg/kg	388	146	156	159	161
H	0.01	Units	8.55	7.32	7.63	6.81	5.80

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Analysis of Soil, expressed on a dry weight basis

Report Date:	October 1/2001
Lab Ref # :	G214769
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

EQL	Units	TP2 2.5-5	TP8 0-2.5	TF8 2.5-5		
0.2	mg/kg	1.1	0.8	0.7		
0.2	mg/kg	35.7	12.4	11.5		
0.2	mg/kg	6.9	2.7	2.0		
20	mg/kg	21200	2410	2140		
5	mg/kg	164	68	37		
0.2	mg/kg	0.9	0.2	nd		
0.5	mg/kg	2.4	1.3	0.9		
1	mg/kg	35	11	11		
2	mg/kg	154	48	27		
1	mg/kg	1290	165	121		
50	mg/kg	20300	23900	23000		
5	mg/kg	47	78	61		
1	mg/kg	225	1080	446		
3	mg/kg	nd	nđ	nd		
2	mg/kg	10400	1730	1250		
20	mg/kg	540	1010	672	54	
1	mg/kg	3	1	nd		
5	mg/kg	94	94	180		
1	mg/kg	47	18	16		
5	mg/kg	149	224	205		
0.01	Units	6.56	6.91	7.29		
		-				
	0.2 0.2 0.2 20 5 0.2 0.5 1 2 1 50 5 1 3 2 20 1 5 1 5 1 5	0.2mg/kg0.2mg/kg0.2mg/kg0.2mg/kg20mg/kg5mg/kg0.2mg/kg0.5mg/kg1mg/kg1mg/kg5mg/kg1mg/kg3mg/kg3mg/kg2mg/kg1mg/kg5mg/kg1mg/kg3mg/kg1mg/kg1mg/kg1mg/kg5mg/kg1mg/kg5mg/kg	EQL         Units           0.2         mg/kg         1.1           0.2         mg/kg         35.7           0.2         mg/kg         6.9           20         mg/kg         21200           5         mg/kg         0.9           0.5         mg/kg         2.4           1         mg/kg         35           2         rmg/kg         35           2         rmg/kg         154           1         mg/kg         1290           50         mg/kg         20300           5         mg/kg         225           3         mg/kg         10400           20         mg/kg         540           1         mg/kg         147           5         mg/kg         149	EQL         Units         1.1         0.8           0.2         mg/kg         35.7         12.4           0.2         mg/kg         6.9         2.7           20         mg/kg         21200         2410           5         mg/kg         164         68           0.2         mg/kg         13         1           1         mg/kg         2.4         1.3           1         mg/kg         14         48           1         mg/kg         154         48           1         mg/kg         1290         165           50         mg/kg         20300         23900           5         mg/kg         20300         23900           5         mg/kg         10400         1730           2         mg/kg         nd         nd           2         mg/kg         540         1010           1         mg/kg         5	EQL         Units         1.1         0.8         0.7           0.2         mg/kg         35.7         12.4         11.5           0.2         mg/kg         6.9         2.7         2.0           20         mg/kg         21200         2410         2140           5         mg/kg         164         68         37           0.2         mg/kg         0.9         0.2         nd           5         mg/kg         164         68         37           0.2         mg/kg         1.3         0.9         1           0.5         mg/kg         2.4         1.3         0.9           1         mg/kg         154         48         27           1         ng/kg         1290         165         121           50         mg/kg         1200         23900         23000           5         mg/kg         47         78         61           1         ng/kg         10400         1730         1250           20         mg/kg         10400         1730         1250           20         mg/kg         540         1010         672           1	EQL         Units         1.1         0.8         0.7           0.2         mg/kg         35.7         12.4         11.5           0.2         mg/kg         6.9         2.7         2.0           20         mg/kg         21200         2410         2140           5         mg/kg         164         68         37           0.2         mg/kg         0.9         0.2         nd           0.5         mg/kg         2.4         1.3         0.9           1         mg/kg         35         11         11           2         mg/kg         154         48         27           1         mg/kg         35         11         11           2         mg/kg         154         48         27           1         mg/kg         1290         165         121           50         mg/kg         20500         23900         25000           5         mg/kg         147         78         61           1         mg/kg         10400         1730         1250           20         mg/kg         540         1010         672           1         mg/

EQL nd

QL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 26/2001
Date Reported:	October 21/2001
Lab Ref#:	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646
Sampled By:	ONT 34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	1) Analysis of arsenic in soil by Hydride Generation
	Atomic Absorption.
	U.S. EPA Method No. 7061(Modifications)
	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



Mahaboob Alam

Attn:

ANALYTICAL SERVICES Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6 Fax: 905-479-9326

Date Received:	September 26/2001
Date Reported:	October 21/2001
Lab Ref#:	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646
Sampled By:	ONT 34646

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	<ol> <li>Determination of the moisture content of soil by weight. ASTM Method No. D2216-80</li> </ol>
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Chin Certified By

Elaine Grant Account Manager

ertified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

Parameter				Process Blank			Process % Recovery				Matrix Spike					Overall
	SAMPLE ID (spike)		Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP1 -5-7.5CM	0.2	mg/kg	ba	0.5	ycs	111	84	120	yes	6.4	5.0	3.5	6.5	yes	yes
Arsenic	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	116	84	120	yes						yes
Antimony	TP1 -3-7.5CM	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.6	5.0	3.5	6.5	yce	yes
Antimony	TP6-15-17.5CM	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.8	5.0	3.5	6.5	yes	yes
Selenkam	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenhum	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.5	5.0	3.5	6.5	yes	yes
Ahminum	<b>14</b>	20	mg/kg	27	40	yes	102	74	125	yea	na	DA	DA	па	па	yes
Aluminum	74	20	mg/kg	nd	40	yes	104	74	125	yes	na	DA	DA	DA	na	yes
Barium	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	93	82	113	yes	92	100	70	130	yes	yes
Barham	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	95	82	113	yes	93	100	70	130	yes	No.co.
Beryllium	TP1 -3-7.5CM	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.6	10	7	13	yea yea	ycs yes
Berytihum	TP6 -15-17.5CM	0.2	mg/kg	nd	0.4	yes	91	72	124	yes	9.1	10	7	13	yes	yes
Cadmiam	TP1 -5-7.5CM	0.5	mg/kg	nd	0.6	yes	45	0	180	yes	90.3	100	70	130	yes	
Cadmhum	TP6 -15-17.5CM	0.5	mg/kg	nd	0.6	yes	123	0	180	yes	95.5	100	70	130	yes	yes
Chromhun	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	104	72	124	yes	87	100	70	130	yes	yes yes
Chromium	TP6 -15-17.5CM	1	mg/kg	nd	2	yea	121	72	124	yes	97	100	70	130	yes	
Cobalt	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	85	123	yes	83	100	70	130	- C	yes
Cobalt	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	111	85	123	yes	93	100	70	138332	yes	yes
Copper	TP1 -5-7.5CM	1	mg/kg	2	4	yes	95	78	122		89	100	70	130	yes	yes
Copper	TP6 -15-17.5CM	1	mg/kg	nd	4	yes	114	78	122	yes yes	94	100	70	130 130	yes yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis

= Not Applicable na

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	па	50	mg/kg	nd	100	yes	93	85	119	yes	11A	ти	па	па	na	yes
Iron	па	50	mg/kg	nd	100	yes	94	85	119	yes	DA	па	na	na	па	yes
Lead	TP1 -3-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes
Lead	TP6 -15-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes
Manganese	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yes
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes
Molybdenan	TP1 -5-7.5CM	3	mg/kg	nd	6	yes	181	0	210	yes	166	200	140	260	yes	yes
Molybdeman	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yea	yes
Nickel	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	86	116	yes	75	100	70	130	yes	yes
Nickel	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	104	86	116	yes		•	•	•	•	yes
Phosphorus	246	20	mg/kg	nd	40	yes	111	73	130	yes	ра.	na.	DA	na	па	yes
Phosphorus	па	20	mg/kg	nd	40	yes	115	73	130	yes	na	DA	na	DA	па	yes
Silver	14 E	1	mg/kg	nd	2	yes	110	25	200	yes	DA	ты	54	na	па	yes
Silver	14	1	mg/kg	nd	2	yes	95	25	200	yes	UA	BA	na	na	53A	yes
Titanhum	DA	5	mg/kg	nd	10	yea	134	37	174	yes	TA	D.S	-	na	na	yes
Titanium	54	5	mg/kg	nđ	10	yca	152	37	174	yes	D.S.	na	na	па	ра	yes
Vanadhum	TP1 -3-7.5CM	1	mg/kg	ba	2	yes	103	81	119	yes	87	100	70	130	yes	yea
Vanadium	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	yes	96	100	70	130	yes	yes
Zine	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	97	85	112	yes	89	100	70	130	yes	yes
Zinc	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	103	85	112	yes	87	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

= parameter not detected nđ

TR = trace level less than EQL

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	Process Blank			ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Lower Upper Result Limit Limit Accept					Upper Limit	Accept	QC Acceptable		
pit	IM	0.01	Units	DA	DA	БА	98	90	110	yes	DA	na	na	EA.	DA	yes
PH	па	0.01	Units	na	па	па	98	90	110	yes	ns.	па	па	па	па	yes
												*				
	15															

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

- = Not Applicable na
- = Insufficient Sample Submitted ns
- = parameter not detected nd
- TR = trace level less than EQL

#### Philip Analytical Services Corp

#### **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Report Date: October 21/2001 Contact: Mahaboob Alam Lab Ref # : G214759 Lab Quote #: EG009-0811 Client PO#: INCO Client Ref#: ONT34646

Parameter	EQL	Units	TP1 BEDROCK	TP1 -45-50CM	TP1 -5-7.5CM	TP1 -5-7.5CM Replicate	TP1 -70-75CM
Antimony	0.2	mg/kg	nd .	0.3	0.4	0.4	0.2
Arsenic	0.2	mg/kg	2.0	5.3	7.8	7.8	2.0
Selenium	0.2	mg/kg	nd	1.2	0.9	0.9	0.9
Aluminum	20	mg/kg	1830	19400	20300	19900	18600
Barium	5	mg/kg	н	133	144	141	72
Beryllium	0.2	mg/kg	nd	0.8	0.9	0.8	0.8
Cadmium	0.5	mg/kg	nd	nd	nd	nd	nd
Chromium	1	mg/kg	7	26	27	27	22
Cobalt	2	mg/kg	2	13	20	21	7
Copper	- 1	mg/kg	п	62	89	90	-41
Iron	50	mg/kg	3450	28700	31200	30500	13100
Lead	5	mg/kg	nd	12	23	21	32
Manganese	1	mg/kg	129	524	537	518	95
Molybdenam	3	mg/kg	nd	ba	nd	ha	nd
Nickel	2	mg/kg	45	582	920	924	81
Phosphorus	20	mg/kg	128	584	694	652	735
Silver	1	mg/kg	nd	nd	nd	nd	nd
Fitanium	5	mg/kg	24	330	306	295	162
Vanadium	1	mg/kg	6	37	39	38	30
Zinc	5	mg/kg	8	74	78	77	69
h	0.01	Units	8.45	7.76	7.78	7.75	7.23
vfeisture Centent	0.01	56	0.25	13.1	11.2	10.9	17.8

Analysis of Soil, expressed on a dry weight basis

EQL

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Report Date: October 21/2001 Contact: Mahaboob Alam Lab Ref # : G214759 Lab Quote #: EG009-0811 Client PO#: INCO Client Ref#: ONT34646

Parameter	EQL	Units	TP1 -10-12.5CM	TP1 -25-27.5CM		
Antimony	0.2	mg/kg	0.5	0.4		+
Amenic	0.2	mg/kg	6.7	6.7		
Selenium	0.2	mg/kg	1.6	1.7		
Aluminum	20	mg/kg	20000	18200		
Barium	5	mg/kg	140	115		
Beryllium	0.2	mg/kg	0.9	0.8		
Cadmium	0.5	mg/kg	nd	nd		
Chromium	1	mg/kg	27	29		
Cobalt	2	mg/kg	21	24		
Copper	1	mg/kg	121	177		
Iron	50	mg/kg	32400	29300		
Lead	5	mg/kg	20	26		
Manganese	1	mg/kg	532	449		
Molybdenum	3	mg/kg	nd	nd		
Nickel	2	mg/kg	1020	1970		
Phosphorus	20	mg/kg	591	582		
Silver	1	mg/kg	nd	nd		
Titanium	5	mg/kg	308	349		
Vanadium	1	mg/kg	39	38		- 1
Zinc	5	mg/kg	74	74	1	
pH	0.01	Units	7.75	7.80		
Moisture Content	0.01	%	10.7	8.72		

Analysis of Soil, expressed on a dry weight basis

EQL

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL nd



ANALYTICAL SERVICES Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

# Date Received:September 27/2001Date Reported:October 26/2001Lab Ref#:G214771Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA Antimony, Hydride Generation, Digestion Required Selenium, Hydride Generation 17 Element ICP Scan pH, Hydrogen Ion Activity, Extraction Required Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> <li>U.S. EPA Method No. 7061(Modifications)</li> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> <li>U.S. EPA Method No. 6010 (Ministry of Environment ELSCAN)</li> <li>Analysis of pH in soil by electrode.</li> <li>U.S. EPA Method No. 9045</li> </ol>

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

۲



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	September 27/2001
	1200 Denison Street	Date Reported:	October 26/2001
	Markham, ON, CANADA	Lab Ref#:	G214771
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
Attn:	Mahaboob Alam		

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	6) Determination of the moisture content of soil by weight.
	ASTM Method No. D2216-80
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

Enn Certified By

Elaine Grant

Account/Man

Certified By Laboratory Supervisor

Ill work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip ralytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting as per specific contractual arrangements. Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001						
Lab Ref # :	G214771						
Lab Quote#:	EG009-0811						
Client PO#:	INCO						
Client Ref#:	ONT34646						

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	ak	Pro	cess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Amenic	TP10 70-75	0.2	mg/kg	nd	0.5	yes	107	84	120	yca	5.4	5.0	3.5	6.5	yes	yes
Amenic	TP15 15- 17.5	0.2	mg/kg	nđ	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes
Arsenic	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes	•	•	•	1.	•	yes
Antimony	<b>TP10 70-75</b>	0.2	mg/kg	ba	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	yes
Antimony	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP2 5-7.5	0.2	mg/kg	ba	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Seienkum	TP10 70-75	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenhum	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6,5	yes	yes
Selenjum	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	100	60	140	ycs	4.0	5.0	3.5	6.5	yes	yes
Aluminum		20	mg/kg	21	40	yes	99	74	125	yes	138	па	па	па	na	yes
Ahminum		20	mg/kg	nd	40	yes	94	74	125	yes	15.8	па	па	па	na	yes
Ahmimm	л	20	mg/kg	nd	40	yes	98	74	125	yes	na	па	na	DA	па	yes
Barium	TP10 70-75	5	mg/kg	nd	10	ycs	92	82	113	yes	88	100	70	130	yes	yes
Bariam	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	yes	90	100	70	130	yes	yes
Barkam	TP2 5-7.5	5	mg/kg	nd	10	yes	92	82	113	yes	90	100	70	130	yes	yes
Beryllium	TP10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes
Beryllium	TP15 15- 17.5	0.2	mg/kg	nd	0.4	yes	79	72	124	yes	8.7	10	7	13	yes	yes
Berylihum	TP2 5-7.5	0.2	mg/kg	nd	0.4	yes	86	72	124	yes	8.9	10	7	13	yes	yes
Cadmium	TP10 70-75	0.5	mg/kg	nd	0.6	yes	53	0	180	yes	88.6	100	70	130	yes	yes
Cadmium	TP15 15- 17.5	0.5	mg/kg	nd	0.6	yes	34	0	180	yes	91.4	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable па

= Insufficient Sample Submitted ns

= parameter not detected nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001					
Lab Ref # :	G214771					
Lab Quote#:	EG009-0811					
Client PO#:	INCO					
Client Ref#:	ONT34646					

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery		-		Overall			
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Result Limit Accept Res		Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cedmium	TP2 5-7.5	0.5	mg/kg	nd	0.6	yes	121	0	180	ycs	92.1	100	70	130	yes	ycs
Chromham	TP10 70-75	1	mg/kg	nd	2	yes	105	72	124	yes	89	100	70	130	yes	yes
Chromham	TP15 15- 17.5	1	mg/kg	nd	2	yea	99	72	124	yes	90	100	70	130	yes	yes
Chromium	TP2 5-7.3	1	mg/kg	nd	2	yes	105	72	124	yes	90	100	70	130	yes	ycs
Cobalt	TP10 70-75	2	mg/kg	nd	4	yes	95	85	123	yes	87	100	70	130	yes	yes
Cobalt	TP15 15- 17.5	2	mg/kg	nd	4	yes	90	85	123	yes	87	100	70	130	yes	yes
Cobalt	TP2 5-7.5	2	mg/kg	nd	4	yes	97	85	123	yes	99	100	70	130	yes	yes
Copper	TP10 70-75	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Copper	TP15 15- 17.5	1	mg/kg	nđ	4	yes	86	78	122	yes	87	100	70	130	yes	yes
Copper	TP2 5-7.5	1	mg/kg	nd	4	yes	96	78	122	yes		•	•		•	yes
Iron	DA	50	mg/kg	nd	100	yes	86	85	119	yes	na	пя	na	na	na	yes
Iron	Tak.	50	mg/kg	nd	100	yes	88	85	119	yes	DA	13.4	па	D.B	па	yes
Iron	па	50	mg/kg	nd	100	yes	89	85	119	yes	DA	ПА	na	па	па	yes
Load	TP10 70-75	5	mg/kg	nd	10	yes	108	48	152	yes	86	100	70	130	yes	yes
Lead	TP15 15- 17.5	5	mg/kg	nd	10	yes	73	48	152	yes	86	100	70	130	yes	yes
Lead	TP2 5-7.5	5	mg/kg	nd	10	yes	113	48	152	yes	89	100	70	130	yes	yes
Mangamese	TP10 70-75	1	mg/kg	nd	2	yes	97	85	115	yes	91	100	70	130	yes	yes
Mangamese	TP15 15- 17.5	1	mg/kg	nd	2	yes	92	85	115	yes	78	100	70	130	yes	yes
Manganese	TP2 5-7.5	1	mg/kg	nd	2	yes	97	85	115	yes	82	100	70	130	yes	ycs
Molybdenson	TP10 70-75	3	mg/kg	ba	6	yes	160	0	210	yes	175	200	140	260	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

October 26/2001
G214771
EG009-0811
INCO
ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery		Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdenam	TP15 15- 17.5	3	mg/kg	nd	6	yes	128	0	210	yes	174	200	140	260	yes	yes
Molybdenum	TP2 5-7.5	3	mg/kg	nd	6	yes	147	0	210	yes	176	200	140	260	yes	yes
Nickel	TP10 70-75	2	mg/kg	nd	4	yes	97	86	116	yes	87	100	70	130	yes	yes
Nickel	TP15 15- 17.5	2	mg/kg	nd	4	yes	92	86	116	ycs	81	100	70	130	yes	yes
Nicket	TP2 3-7.3	2	mg/kg	nd	4	yes	96	86	116	yes						yes
Phosphorus	TA .	20	mg/kg	nd	40	yes	111	73	130	yes	па	54	па	DA	па	ycs
Phosphorus	<b>DA</b>	20	mg/kg	nd	40	yes	114	73	130	yes	DA	DA	118	па	Ба	yes
Phosphorus	DA .	20	mg/kg	nd	40	yes	115	73	130	yes	-	DA	па	DA	DA	yes
Silver	54	1	mg/kg	bđ	2	yes	109	25	200	yes	па	TIA	na	DA	па	yca
Silver		1	mg/kg	nd	2	yes	141	25	200	yes	DA	DA	DA	DA	na	yes
Silver	DA .	1	mg/kg	nd	2	yes	147	25	200	yes	na	DA	DA	па	па	yes
Titanium	na -	5	mg/kg	nd	10	yes	132	37	174	yes	na	DA	DA	DA	na	ycs
Titanium	TA .	5	mg/kg	nd	10	yes	134	37	174	yes	-	па	DA	DA	па	ycs
Titanhum	TP15 15- 17.5	5	mg/kg	nd	10	yes	126	37	174	yes	120	100	70	130	yes	yes
Vanadium	TP10 70-75	1	mg/kg	nd	2	yes	102	81	119	yes	87	100	70	130	yes	yes
Vanadium	TP15 15- 17.5	1	mg/kg	nd	2	yes	97	81	119	yes	88	100	70	130	yes	yes
Vanadhum	TP2 5-7.5	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Zinc	TP10 70-75	5	mg/kg	nd	10	yes	95	85	112	yes	87	100	70	130	yes	yes
Zinc	TP15 15- 17.5	5	mg/kg	nd	10	yes	91	85	112	yes	84	100	70	130	Ves	yes
Zine	TP2 3-7.5	5	mg/kg	nd	10	yes	95	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis

na

 Not Applicable
 Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			м	atrix Spil	æ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit		Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pH	EA.	0.01	Units	na	na	па	98	90	110	yes	па	na	DA	na	DA	yea
Щ	74	0.01	Units	24	na	na	98	90	110	yes	na	na	па	па	БА	yea
						. 1										
						, the second sec										
											•					
				1												

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

- = Unavailable due to dilution required for analysis ٠
- na
- Not Applicable
   Insufficient Sample Submitted
   parameter not detected ns nd
- TR = trace level less than EQL

#### Philip Analytical Services Corp

#### **Report of Analysis**

ONT34646

Client : Jacques Whitford Environment Ltd. Report Date: October 26/2001 Contact: Mahaboob Alam Lab Ref # : G214771 Lab Quote #: EG009-0811 Client PO#: INCO Client Ref#:

Analysis of Soil, expressed on a dry weight basis

			TP2 10-	TP2 15-	TP2 5-7.5	TP2 5-7.5	TP2 70-75
Parameter	EQL	Units	12.5	17.5			
					· · · · · · · · · · · · · · · · · · ·	Replicate	
Antimony	0.2	mg/kg	1.6	1.2	1.2	1.0	0.2
Arsenic	0.2	mg/kg	54.8	. 34.3	45.4	43.6	4.8
Selenium	0.2	mg/kg	7.9	8.7	8.2	7.9	nd
Aluminum	20	mg/kg	19200	21900	22200	22900	21000
Barium	5	mg/kg	160	165	183	183	141
Beryllium	0,2	mg/kg	0.9	0.9	1.0	1.0	0.9
Cadmium	0.5	mg/kg	2.0	1.0	1.3	0.9	nd
Chromium	1	mg/kg	32	32	33	- 34	27
Cobalt	2	mg/kg	192	131	153	149	12
Copper	1	mg/kg	2050	1240	2860	1790	32
Iron	50	mg/kg	19900	19400	20600	20300	30800
Lead	5	mg/kg	50	38	48	49	13
Manganese	1	mg/kg	202	205	227	229	441
Melybdenum	3	mg/kg	nd	nd	nd	ba	nd
Nickel	2	mg/kg	14900	9550	11500	11000	103
Phosphorus	20	mg/kg	684	646	720	703	583
Silver	1	mg∕kg	4	2	2	2	nd
Titanium	5	mg/kg	145	143	144	158	263
Vanadium	1	mg/kg	42	41	44	-44	39
Zinc	5	mg/kg	173	140	157	157	72
pH	0.01	Units	6.59	6.57	6.79	6.79	7.94
Moisture Content	0.01	%	15.4	15.3	15.5	15.6	12.8

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL nd



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd. 1200 Denison Street
	Markham, ON, CANADA
	L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 26/2001
Date Reported:	October 21/2001
Lab Ref#:	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646
Sampled By:	ONT 34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	2) Analysis of antimony in soil by hydride generation.
6	U.S. EPA Method No. 7042
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	4) Analysis of trace metals in soil by Inductively Coupled
	Plasma Spectrophotometry.
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	September 26/2001
	1200 Denison Street	Date Reported:	October 21/2001
	Markham, ON, CANADA	Lab Ref#:	G214759
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
		Sampled By:	<b>ONT 34646</b>
Attn:	Mahaboob Alam		

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	<ol> <li>Determination of the moisture content of soil by weight. ASTM Method No. D2216-80</li> </ol>
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

sé Com Certified By

Elaine Grant Account Manager

Certified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Process % Recovery					Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Atrenic	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	111	84	120	yes	6.4	5.0	3.5	6.5	yes	yes
Arsenic	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	116	84	120	yes						yes
Antimony	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Antimony	TP6 -15-17.5CM	0.2	mg/kg	ba	0.5	yes	129	29	157	yea	3.8	5.0	3.5	6.5	yes	yca
Selenkum	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenhum	TP6 -15-17.5CM	0.2	mg/kg	nđ	0.5	yes	100	60	140	yes	4.5	5.0	3.5	6.5	yes	yes
Ahminan	24	20	mg/kg	27	40	yes	102	74	125	yes	DA	na	na	па	DA	yes
Aluminum	114	20	mg/kg	nd	40	yes	104	74	125	yes	DA	TA	DA	na	na -	yes
Barium	TP1 -5-7.5CM	5	mg/kg	nđ	10	yes	93	82	113	yea	92	100	70	130	yes	yes
Barhum	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	95	82	113	yes	93	100	70	130	Ves	yes
Berylliam	TP1 -5-7.5CM	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.6	10	7	13	yes	yes
Berylliam	TP6 -15-17.5CM	0.2	mg/kg	nd	0.4	yes	91	72	124	yes	9.1	10	7	13	yes	yes
Cadmhum	TP1 -5-7.5CM	0.5	mg/kg	nd	0.6	yes	45	0	180	yes	90.3	100	70	130	Ves	yes
Cadmhm	TP6 -15-17.5CM	0.5	mg/kg	nd	0.6	yes	123	0	180	yes	95.5	100	70	130	yes	yes
Chromium	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	104	72	124	yes	87	100	70	130	yes	yes
Chrombam	TP6-15-17.5CM	1	mg/kg	nd	2	yes	121	72	124	yes	97	100	70	130	yes	yes
Cobalt	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	85	123	yes	83	100	70	130	Ves	yes
Cobali	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	111	85	123	yes	93	100	70	130	yes	yes
Copper	TP1 -5-7.5CM	1	mg/kg	2	4	yes	95	78	122	yes	89	100	70	130	yes	yes
Copper	TP6 -15-17.5CM	1	mg/kg	nd	4	yes	114	78	122	yes	94	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Process Blank			Process % Recovery				Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL Un	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron		50	mg/kg	nd	100	yes	93	85	119	yes	na	па	па	DA	DA	yes
Iron	DA	50	mg/kg	nd	100	yes	94	85	119	yes	BA	па	DA	па	na	yes
Lead	TP1 -5-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes
Lead	TP6 -13-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes
Mangamese	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yes
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes
Molybdenum	TP1 -5-7.5CM	3	mg/kg	nd	6	yes	181	0	210	yes	166	200	140	260	yes	yes
Mohdemm	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yes	yes
Nicket	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	86	116	yes	75	100	70	130	yes	yes
Nickel	TP6 -15-17.3CM	2	mg/kg	nd	4	yes	104	86	116	yes		•		•		yes
Photphoras	-	20	mg/kg	nd	40	yes	111	73	130	yes	па	па	na	na	па	yes
Phosphorus	DA .	20	mg/kg	nd	40	yes	115	73	130	yes	15.8	па	па	DA	DA .	yes
Silver	24	1	mg/kg	nd	2	yes	110	25	200	yes	114	па	DA	ns	па	yes
Silver	24	1	mg/kg	nd	2	yes	95	25	200	yes	Па	па	DA	D.A	na	yes
Titanium		5	mg/kg	nd	10	yes	134	37	174	yes	DB	ла	ELS.	па	DA	yea
Titanhun	24	5	mg/kg	nd	10	yes	152	37	174	yes	na.	na	na	DA	ЛА	yes
Vanadium	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	103	81	119	yes	87	100	70	130	yes	ycs
Variadium	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	ycs	96	100	70	130	ycs	уса
Zine	TP1 -5-7.5CM	5	mg/kg	nd	10	y'ca	97	85	112	yes	89	100	70	130	yes	yes
Zinc	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	103	85	112	yes	87	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted ns

= parameter not detected nd

= trace level less than EQL TR

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

October 21/2001							
G21475							
EG009-0811							
INCO							
ONT34646							

Analysis of Soil, expressed on a dry weight basis

Parameter	SAMPLE ID (spike)	EQL Units		Process Blank			Process % Recovery				Matrix Spike					Overall
			Units	Result	Upper Limit		Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit		QC Acceptable
pH	DA	0.01	Units	да	11A	DA	98	90	110	yes	па	ша	ца	па	пя	yes
pH	54	0.01	Units	па	na	па	98	90	110	yes	па	na	па	na	па	yes
						-14										
												ŝ				

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis ٠

na = Not Applicable

= Insufficient Sample Submitted = parameter not detected 118

nd

TR = trace level less than EQL

#### Philip Analytical Services Corp

#### **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

October 21/2001
G214759
EG009-0811
INCO
ONT34646

Analysis of Soil, expressed on a dry weight basis

0.3			4
	0.3	0.9	0.8
3.5	3.9	13.9	19.5
0.4	0.6	2.2	3.5
19100	18700	9140	12300
105	106	79	96
0.8	0.9	0.7	0.6
nd	nd	nd	0.9
27	27	38	24
14	13	47	67
34	38	236	477
22200	21700	19900	22500
29	32	107	133
317	356	478	438
nd	nd	nd	nđ
153	189	2630	5690
504	529	659	609
nd	nd	nd	1
268	278	272	268
41	41	32	33
76	75	195	187
7.69	7.78	7.78	7.6
11.3	9.96	5.43	7.64
	7.69	7.69 7.78	7.69 7.78 7.78

EQL nd Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 26/2001
Date Reported:	October 21/2001
Lab Ref#:	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646
Sampled By:	ONT 34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>
	<ol> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> </ol>
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	September 26/2001
	1200 Denison Street	Date Reported:	October 21/2001
	Markham, ON, CANADA	Lab Ref#:	G214759
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
		Sampled By:	ONT 34646
Attn:	Mahaboob Alam		
		<u>81</u>	

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	<ol> <li>Determination of the moisture content of soil by weight. ASTM Method No. D2216-80</li> </ol>
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

print Certified By

Elaine Grant Account Manager

Certified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Page 2 5735 McAdam Road, Mississauga, Ontario, Canada 14Z 1N9 Tel: (905) 890-8566 Fax: (905) 890-8575

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

October 21/2001
G214759
EG009-0811
INCO
ONT34646

Analysis of Soil, expressed on a dry weight basis

Parameter				Process Blank			Pro	cess % R	ecovery			Overall				
	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Ansenie	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	111	84	120	yes	6,4	5.0	3.5	6.5	yes	yes
Anenic	TP6 -13-17.5CM	0.2	mg/kg	nd	0.5	yes	116	84	120	yes		•	•	•	•	yes
Antimony	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Antimony	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.8	5.0	3.5	6.5	yes	yes
Selenkum	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenium	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.5	5.0	3.5	6.5	yes	yes
Aluminum	na	20	mg/kg	27	40	yes	102	74	125	yes	па	na	na	ns	DA	yes
Ahmimm	-	20	mg/kg	nd	40	yes	104	74	125	yes	па	na	na	DA	па	yes
Barham	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	93	82	113	yes	92	100	70	130	yes	yes
Barkom	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	95	82	113	yes	93	100	70	130	yes	yes
Beryllium	TP1 -5-7.5CM	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.6	10	7	13	yes	yes
Beryllium	TP6 -15-17.5CM	0.2	mg/kg	nd	0.4	yes	91	72	124	yes	9.1	10	7	13	yes	yes
Cadmium	TP1 -5-7.5CM	0.5	mg/kg	nd	0.6	yes	45	0	180	yes	90.3	100	70	130	yes	yes
Cadmium	TP6 -15-17.5CM	0.5	mg/kg	nd	0.6	yes	123	0	180	yes	95.5	100	70	130	yes	yes
Chromhum	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	104	72	124	yes	87	100	70	130	yes	yes
Chromium	TP6-15-17.5CM	1	mg/kg	nd	2	yes	121	72	124	yes	97	100	70	130	yes	yes
Cohalt	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95 ~	85	123	yes	83	100	70	130	yes	yes
Cobalt	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	111	85	123	yes	93	100	70	130	yes	yes
Copper	TP1 -5-7.5CM	1	mg/kg	2	4	yes	95	78	122	yes	89	100	70	130	yes	yes
Copper	TP6-15-17.5CM	1	mg/kg	nd	4	yes	114	78	122	yes	94	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

٠ = Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted ns

nd = parameter not detected TR = trace level less than EQL

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

		Process Blank			Pro	cess % R	ecovery			Overall						
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	73	50	mg/kg	nd	100	yes	93	85	119	yes	na	na	na	na	na	yes
Iron	24	50	mg/kg	nd	100	yes	94	85	119	yes	DA	DA	na	TA	DA	yes
Lesd	TP1 -5-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes
Lend	TP6 -15-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes
Mangazene	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yes
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes
Mohybdemum	TP1 -3-7.5CM	3	mg/kg	nd	6	yes	181	o	210	yes	166	200	140	260	yes	yes
Molybdenum	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yes	yes
Nickei	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	86	116	yes	75	100	70	130	yes	yes
Nickel	TP6-15-17.5CM	2	mg/kg	nd	4	yes	104	86	116	yes				•	•	yes
Phosphorus	24	20	mg/kg	nd	40	yes	111	73	130	yes	DA	DA	DA	па	па	yes
Phosphorus	14	20	mg/kg	nd	40	yes	115	73	130	yes	na	DA	na	DA	па	yes
Silver	114	1	mg/kg	nd	2	yes	110	25	200	yes	EA.	na	TA8	DA	ILS.	yes
Silver	28	1	mg/kg	nd	2	yes	95	25	200	yes	-	54	23.8	-	-	yes
Titanàun	228	5	mg/kg	nd	10	yes	134	37	174	yes	IL.R	па	ns	na	na	yes
Titanium	TM.	5	mg/kg	nd	10	yes	152	37	174	yes	DA	DA	DA	DA	na	yes
Vanadium	TPI -5-7.5CM	1	mg/kg	nd	2	yes	103	81	119	yes	87	100	70	130	yes	yes
Vanadkim	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	yes	96	100	70	130	yes	yce
Zinc	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	97	85	112	yes	89	100	70	130	yes	yes
Zinc	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	103	85	112	yes	87	100	70	130	VCS	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

			Process Blank			Pro	cess % R	ecovery			Overall					
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC
pR	216	0.01	Units	DA	DA	ця	98	90	110	yes	0.a	па	ца	tia.	Ба	yes
pE	24	0.01	Units	њ	па	па	98	90	110	yes	BA	14	па	па	na	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

- Unavailable due to dilution required for analysis
- na = Not Applicable
- ns = Insufficient Sample Submitted
- nd = parameter not detected
- TR = trace level less than EQL

#### Philip Analytical Services Corp

### **Report of Analysis**

Client : Jacques Whitford Environment Ltd.	Report Date:	October 21/2001
Contact: Mahaboob Alam	Lab Ref # :	G214759
	Lab Quote #:	EG009-0811
	Client PO#:	INCO
Analysis of Soil, expressed on a dry weight basis	Client Ref#:	ONT34646

Parameter	EQL	Units	TP6 -5-7.5CM	TP6 -70-75CM	TP6 -10-12.5CM	TP6 -15-17.5CM	TP6 -15-17.5CM Replicate
Antimony	0.2	mg/kg	1.7	0.2	1.1	0.6	0.6
Ursenic	0.2	mg/kg	62.8	3.5	46.2	23.7	24.7
elenium	0.2	mg/kg	12.0	nd	11.0	5.3	5.3
Uuminum	20	mg/kg	42000	24600	39000	34000	33600
3 ณาวันกล	5	mg/kg	280	152	243	203	203
Beryllium	0.2	mg/kg	2.2	11	1.9	1.4	1.4
Cadmium	0.5	mg/kg	3.0	0.6	2.9	0.8	1.2
Chronnium	1	mg/kg	54	34	52	-44	44
Cobalt	2	mg/kg	164	14	140	66	67
Copper	1	mg/kg	1350	34	1280	547	555
ron	50	mg/kg	31700	37300	30200	22500	22800
.esd	5	mg/kg	85	17	78	51	56
Aanganese	1	mg/kg	237	745	267	180	188
Aolybdenum.	3	mg/kg	nd	nd	nd	nd	nđ
lickel	2	mg/kg	11300	66	9590	4350	4470
hospherus	20	mg/kg	2070	644	1460	804	809
Silver	1	mg/kg	3	nd	4	nd	2
litanium	5	mg/kg	222	319	175	188	179
/anadium	1	mg/kg	87	49	80	63	63
line	5	mg/kg	241	73	235	157	165
41	0.01	Units	6,44	7.58	6.65	6.92	6.93
Anisture Content	0.01	%	47.5	21.7	39.8	36.6	35.3

EQL nd Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 26/2001
Date Reported:	October 21/2001
Lab Ref#:	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646
Sampled By:	ONT 34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA Antimony, Hydride Generation, Digestion Required Selenium, Hydride Generation 17 Element ICP Scan pH, Hydrogen Ion Activity, Extraction Required Moisture Content
Methodology:	<ol> <li>Moisture Content</li> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> <li>U.S. EPA Method No. 7061(Modifications)</li> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> <li>U.S. EPA Method No. 6010</li> </ol>
	<ul><li>(Ministry of Environment ELSCAN)</li><li>5) Analysis of pH in soil by electrode.</li><li>U.S. EPA Method No. 9045</li></ul>

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	September 26/2001
	1200 Denison Street	Date Reported:	October 21/2001
	Markham, ON, CANADA	Lab Ref#:	G214759
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
		Sampled By:	ONT 34646
Attn:	Mahaboob Alam		

#### **Certificate of Analysis**

Methodology: (Cont'd)	
	6) Determination of the moisture content of soil by weight.
	ASTM Method No. D2216-80
Instrumentation:	1) Varian VGA 76
	2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
	4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
	5) Orion Research Expandable Ion Analyzer EA940
	6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.
Sample Description: QA/QC:	<ul> <li>2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76</li> <li>4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer</li> <li>5) Orion Research Expandable Ion Analyzer EA940</li> <li>6) Precision Mechanical Convention Oven/Sartorius Basic Balance</li> <li>Soil</li> <li>Refer to CERTIFICATE OF QUALITY CONTROL report.</li> </ul>

ve Gom Certified By Elaine Grant

Account Manager 0

Certified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	ak	Pro	cess % R	ecovery		Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP1 -5-7.5CM	0.2	mg/kg	nđ	0.5	yes	111	84	120	yes	6.4	5.0	3.5	6.5	yes	yes
Arsenic	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	116	84	120	ycs						yes
Antimony	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Antimony	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.8	5.0	3.5	6.5	yes	yes
Selenham	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenhum	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.5	5.0	3.5	6.5	yes	yes
Ahuminum	54	20	mg/kg	27	40	yes	102	74	125	yes	DA	DA	na	na	DA	yes
Ahmimm	58	20	mg/kg	nd	40	yes	104	74	125	yes	DA	DA	DA	па	na	yes
Barkam	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	93	82	113	yes	92	100	70	130	yes	201
Barium	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	95	82	115	yes	93	100	70	130	yes	yes
Beryillum	TP1 -5-7.5CM	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.6	10	7	130	yes	yes
Beryilkun	'TP6 -15-17.5CM	0.2	mg/kg	nd	0,4	yes	91	72	124	yes	9.1	10	7	13		yes
Cadmhum	TP1 -5-7.5CM	0.5	mg/kg	nd	0,6	yes	45	0	180	yes	90.3	100	70	130	yes	yes
Cadmium	TP6 -15-17.5CM	0.5	mg/kg	nd	0.6	yes	123	0	180	yes	95.5	100	70	130	yes	yes
Chromhan	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	104	72	124	yes	87	100	70	130	yes	yes
Chromhum	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	121	72	124	110003	97	100	70	152550	yes	yca
Cobalt	TPI -5-7.5CM	2	mg/kg	nd	4	Ves	95	85	123	yes	83	100		130	yes	yes
Cohalt	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	111	85	123	yes yes	83 93	100	70 70	130 130	yes	yes
Copper	TP1 -5-7.5CM	1	mg/kg	2	4	yes	95	78	122	yes	89	100	70	130	yes	yes
Copper	TP6 -15-17.5CM	1	mg/kg	nd	4	yes	114	78	122	yes	94	100	70	130	yes yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

					ocess Bla	nk	Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron.	na	50	mg/kg	nd	100	yes	93	85	119	yes	Da	па	па	па	па	yes
Iron	DA	50	mg/kg	nđ	100	yes	94	85	119	yes	па	па	DA	13.8	DA	yes
Lead	TP1 -5-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes
Lead	TP6 -15-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes
Manganese	TP1 -3-7.5CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yes
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes
Molybdensm	TPI -5-7.5CM	3	mg/kg	nd	6	yes	181	0	210	yes	166	200	140	260	yes	yes
Molybdenam	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yes	yes
Nickel	TP1 -5-7.5CM	2	mg/kg	nd	4	yea	95	86	116	yes	75	100	70	130	yes	yes
Nickel	TP6 -15-17.5CM	2	mg/kg	nd	4	yca	104	86	116	yes		•		•	•	yes
Phosphorus		20	mg/kg	nd	40	yes	111	73	130	yes	na	na	na	na	na	yes
Phosphorus	DA	20	mg/kg	nd	40	yes	115	73	130	yes	DA	DA	DA	па	ПА	yes
Silver	DA	1	mg/kg	nd	2	yes	110	25	200	yes	D.B	na	DA	па	па	yes
Silver	DA	1	mg/kg	nd	2	yes	95	25	200	yes	na	14	DA	na	na	yes
Titanhum	DA	5	mg/kg	nđ	10	yes	134	37	174	yes	D.S.	па	D.B.	DA	DA	yes
Titankum	104	5	mg/kg	nd	10	yes	152	37	174	yes	na	па	na	па	па	yes
Vanadium	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	103	81	119	ycs	87	100	70	130	yes	yes
Vanadium	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	yes	96	100	70	130	yes	yes
Zinc	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	97	85	112	yes	89	100	70	130	yes	yes
Zinc	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	103	85	112	yes	87	100	70	130	ves	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis

na = Not Applicable

= Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#;	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			Overall				
Carl and the second	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC
pŧĭ	24	0.01	Units	na	13.8	8	98	90	110	yes	DA	DA	na	11.8	па	yea
pH	ta.	0.01	Units	па	na	па	98	90	110	yca	па	па	па	па	па	yes
						-										

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

#### Philip Analytical Services Corp

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd.	Report Date:	October 21/2001
Contact: Mahaboob Alam	Lab Ref # :	G214759
	Lab Quote #:	EG009-0811
	Client PO#:	INCO
Analysis of Soil, expressed on a dry weight basis	Client Ref#:	ONT34646

			127	TP7	TP7	TP7
Parameter	EQL	Units	-5-7.5CM	-70-75CM	-10-12.5CM	-15-17.5CM
Antimony	0.2	mg/kg	1.7	0.3	0.5	nd
Arsenic	0.2	mg/kg	51.6	5.7	17.6	2.9
Selenium	0.2	mg/kg	9.2	nd	3.3	0.2
Aluminum	20	mg/kg	29600	22400	26700	22100
Barium	5	mg/kg	203	138	153	116
Beryllium	0.2	mg/kg	1.3	1.0	1.0	0.9
Cadmium	0.5	mg/kg	1.9	nd	0.7	nd
Chromium	1	mgikg	59	31	42	32
Cobalt	2	mg/kg	184	13	80	20
Copper	1	mg/kg	1400	26	453	20
Iron	50	mg/kg	26100	30800	24000	23700
Lead	5	mg/kg	70	23	44	33
Manganese	1	mg/kg	241	640	206	155
Molybdenum	3	mg/kg	nd	nd	nd	nd
Nickel	2	mg/kg	12600	43	4160	350
Phosphorus	20	mg/kg	1130	585	530	266
Silver	1	mg/kg	3	nd	nd	nd
Titanium	5	mg/kg	174	307	164	282
Vanadium	1	mg/kg	60	45	63	58
Zine	5	mg/kg	208	71	125	68
pH	0.01	Units	6.46	7.95	6.26	6.23
Moisture Content	0.01	%	17.8	17.0	20.5	12.7

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

# Date Received:September 27/2001Date Reported:October 26/2001Lab Ref#:G214771Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34646

#### Certificate of Analysis

Analysis Performed:	Arsenic, Hydride Generation AA Antimony, Hydride Generation, Digestion Required Selenium, Hydride Generation 17 Element ICP Scan pH, Hydrogen Ion Activity, Extraction Required Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	<ul> <li>U.S. EPA Method No. 7061(Modifications)</li> <li>2) Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ul>
	<ol> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> </ol>
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010 (Ministry of Environment ELSCAN)
	<ol> <li>Analysis of pH in soil by electrode.</li> <li>U.S. EPA Method No. 9045</li> </ol>

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Envi	ronment Ltd.	Date Received:	September 27/2001
	1200 Denison Street		Date Reported:	October 26/2001
	Markham, ON, CANA	DA	Lab Ref#:	G214771
	L3R 8G6		Lab Quote#:	EG009-0811
		11 C	Client PO#:	INCO
Fax:	905-479-9326		Client Ref#:	ONT34646
Attn:	Mahaboob Alam			
		Certificate of Analysis		
Method	ology: (Cont'd)			
		6) Determination of the moisture content of soil by weig	ght.	
		ASTM Method No. D2216-80		
Instrum	entation:	1) Varian VGA 76		
		2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian V	/GA 76	
		<ol> <li>Thermo Jarrell Ash ICAP 61E Plasma Spectrophoton</li> </ol>	neter	
		5) Orion Research Expandable Ion Analyzer EA940		
		<ol><li>Precision Mechanical Convention Oven/Sartorius Bas</li></ol>	sic Balance	
Sample	Description:	Soil		
QA/QC		Refer to CERTIFICATE OF QUALITY CONTROL rep	ort.	
Results	:	Refer to REPORT of ANALYSIS attached.		

Certified By

Elaine Grant Accourge anager

deretsed By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Process % Recovery						Overall			
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP10 70-75	0.2	mg/kg	nd	0.5	yes	107	84	120	yes	5.4	5.0	3.5	6.5	yes	yes
Arsenic	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes
Arsenia	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes				•		yes
Antimony	TP10 70-75	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	yes
Antimony	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Selenhum.	TP10 70-75	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Sejenium	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Seleninm	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.0	5.0	3.5	6.5	yes	yes
Ahminum	24	20	mg/kg	21	40	yes	99	74	125	yes	DA	na	114	na	D.S.	yes
Ahaniram	24	20	mg/kg	nd	40	yes	94	74	125	yes	DA	DA	DA	DA	na	yes
Aluminum	DA	20	mg/kg	nd	40	yes	98	74	125	yes	па	DA	па	DA	DA	yes
Barium	TP10 70-75	5	mg/kg	nd	10	yes	92	82	113	yes	88	100	70	130	yes	yes
Barhum	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	yes	90	100	70	130	Ves	yes
Barium	TP2 5-7.5	5	mg/kg	nd	10	yes	92	82	113	yes	90	100	70	130	ves	yes
Beryllium	TP10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes
Berylihum	TP15 15- 17.5	0.2	mg/kg	nd	0,4	yes	79	72	124	yes	8.7	10	7	13	yca	yes
Berylläum	TP2 5-7.5	0.2	mg/kg	nd	0.4	yes	86	72	124	yes	8,9	10	7	13	yes	yes
Cedmänn	TP10 70-75	0.5	mg/kg	ba	0.6	yes	53	0	180	yes	88.6	100	70	130	yes	yes
Cadmium	TP15 15- 17.5	0.5	mg/kg	nd	0.6	ves	34	0	180	ycs	91.4	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

								Process % Recovery				Matrix Spike						
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable		
Iron.	na	50	mg/kg	nd	100	yes	93	85	119	yes	Da	па	па	па	па	yes		
Iron	DA	50	mg/kg	nđ	100	yes	94	85	119	yes	па	па	DA	13.8	DA	yes		
Lead	TP1 -5-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes		
Lead	TP6 -15-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes		
Manganese	TP1 -3-7.5CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yes		
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes		
Molybdensm	TPI -5-7.5CM	3	mg/kg	nd	6	yes	181	0	210	yes	166	200	140	260	yes	yes		
Molybdensm	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yes	yes		
Nickel	TP1 -5-7.5CM	2	mg/kg	nd	4	yea	95	86	116	yes	75	100	70	130	yes	yes		
Nickel	TP6 -15-17.5CM	2	mg/kg	nd	4	yca	104	86	116	yes		•		•	•	yes		
Phosphorus		20	mg/kg	nd	40	yes	111	73	130	yes	na	na	na	na	na	yes		
Phosphorus	DA	20	mg/kg	nd	40	yes	115	73	130	yes	DA	DA	DA	па	ПА	yes		
Silver	DA	1	mg/kg	nd	2	yes	110	25	200	yes	D.B	na	DA	па	па	yes		
Silver	DA	1	mg/kg	nd	2	yes	95	25	200	yes	na	14	DA	na	na	yes		
Titanhum	DA	5	mg/kg	nđ	10	yes	134	37	174	yes	D.S.	па	D.B.	DA	DA	yes		
Titankum	104	5	mg/kg	nd	10	yes	152	37	174	yes	na	па	na	па	па	yes		
Vanadium	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	103	81	119	ycs	87	100	70	130	yes	yes		
Vanadium	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	yes	96	100	70	130	yes	yes		
Zinc	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	97	85	112	yes	89	100	70	130	yes	yes		
Zinc	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	103	85	112	yes	87	100	70	130	ves	yes		

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis

na = Not Applicable

= Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#;	ONT34646

Analysis of Soil, expressed on a dry weight basis

		Pr	ocess Bla	nk	Pro	ocess % R		Overall								
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pŧĭ	24	0.01	Units	na	13.8	8	98	90	110	yes	DA	DA	na	11.8	па	yea
pH	ta.	0.01	Units	па	na	па	98	90	110	yca	па	па	па	па	па	yes
						-										

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Process % Recovery						Overall			
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP10 70-75	0.2	mg/kg	nd	0.5	yes	107	84	120	yes	5.4	5.0	3.5	6.5	yes	yes
Arsenic	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes
Arsenia	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes				•		yes
Antimony	TP10 70-75	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	yes
Antimony	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Selenhum.	TP10 70-75	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Sejenium	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Seleninm	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.0	5.0	3.5	6.5	yes	yes
Ahminum	24	20	mg/kg	21	40	yes	99	74	125	yes	DA	na	114	na	D.S.	yes
Ahaniram	24	20	mg/kg	nd	40	yes	94	74	125	yes	DA	DA	DA	DA	na	yes
Aluminum	DA	20	mg/kg	nd	40	yes	98	74	125	yes	па	DA	па	DA	DA	yes
Barium	TP10 70-75	5	mg/kg	nd	10	yes	92	82	113	yes	88	100	70	130	yes	yes
Barhum	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	yes	90	100	70	130	Ves	yes
Barium	TP2 5-7.5	5	mg/kg	nd	10	yes	92	82	113	yes	90	100	70	130	ves	yes
Beryllium	TP10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes
Berylihum	TP15 15- 17.5	0.2	mg/kg	nd	0,4	yes	79	72	124	yes	8.7	10	7	13	yca	yes
Berylläsm	TP2 5-7.5	0.2	mg/kg	nd	0.4	yes	86	72	124	yes	8,9	10	7	13	yes	yes
Cedmänn	TP10 70-75	0.5	mg/kg	ba	0.6	yes	53	0	180	yes	88.6	100	70	130	yes	yes
Cadmium	TP15 15- 17.5	0.5	mg/kg	nd	0.6	ves	34	0	180	ycs	91.4	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	Process Blank			cess % R	ecovery				Overall			
Parameter	SAMPLE ID (spike)	and the second se	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmham	TP2 5-7.5	0.5	mg/kg	nd	0.6	yes	121	0	180	yes	92.1	100	70	130	yes	yes
Chromium	TP10 70-75	1	mg/kg	nd	2	yes	105	72	124	yes	89	100	70	130	yes	yes
Chromium	TP15 15- 17.5	1	mg/kg	nd	2	yes	99	72	124	yes	90	100	70	130	yes	yes
Chromhum	TP2 5-7.5	1	mg/kg	nd	2	ycs	105	72	124	yes	90	100	70	130	yes	yes
Cobalt	TP10 70-75	2	mg/kg	nd	4	yes	95	85	123	yes	87	100	70	130	yes	yes
Cobali	<b>TP15 15- 17.5</b>	2	mg/kg	nd	4	ycs	90	85	123	yes	87	100	70	130	yea	yes
Cobalt	TP2 3-7.5	2	mg/kg	nd	4	yes	97	85	123	yes	99	100	70	130	yes	yes
Copper	TP10 70-75	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Copper	TP15 15- 17.5	1	mg/kg	nd	4 .	yes	86	78	122	yes	87	100	70	130	yes	yes
Copper	TP2 5-7.5	1	mg/kg	nd	4	yes	96	78	122	yes	•	•	•		•	yes
Iron	134	50	mg/kg	nd	100	yes	86	85	119	ycs	DA	DA	па	па	DA	yes
Iron	DA	50	mg/kg	nd	100	yes	88	85	119	yes	DA	DA.	DA	214	па	yes
Iron	14	50	mg/kg	nd	100	yes	89	85	119	yes	DA	ва	DA .	DA	DA	yes
Lead	TP10 70-75	5	mg/kg	nd	10	yes	108	48	152	yes	86	100	70	130	yes	yes
Load	TP15 15- 17.5	5	mg/kg	nd	10	yes	73	48	152	yes	86	100	70	130	yes	yes
Lend	TP2 5-7.5	5	mg/kg	ba	10	yes	113	48	152	yes	89	100	70	130	yes	yes
Mangamese	TP10 70-75	1	mg/kg	nd	2	yes	97	85	115	yes	91	100	70	130	yes	yes
Мацалия	TP15 15- 17.5	1	mg/kg	nd	2	yes	92	85	115	yes	78	100	70	130	yes	yes
Mangamese	TP2 5-7.5	1	mg/kg	nd	2	yes	97	85	115	yes	82	100	70	130	yes	yes
Moh/bdenam	TP10 70-75	3	mg/kg	nd	6	yes	160	0	210	yes	175	200	140	260	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis ٠

па

 Not Applicable
 Insufficient Sample Submitted
 parameter not detected ns

nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	Process Blank			ocess % R	ecovery		Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdemm	TP15 15- 17.5	3	mg/kg	nd	6	yes	128	0	210	yes	174	200	140	260	yes	yes
Molybdenum	TP2 5-7.5	3	mg/kg	ba	6	yes	147	0	210	yes	176	200	140	260	yes	yes
Nickel	TP10 70-75	2	mg/kg	nd	4	yes	97	86	116	yes	87	100	70	130	yes	yes
Nickel	TP15 15- 17.5	2	mg/kg	nd	4	yes	92	86	116	yes	81	100	70	130	yes	yes
Nickei	TP2 5-7.5	2	mg/kg	nd	4	yes	96	86	116	yes	•	•	•			yes
Phosphorus	па	20	mg/kg	nd	40	yes	111	73	130	yes	Da	na	DA	na	DA	yes
Phosphorus	154	20	mg/kg	nd	40	yes	114	73	130	yes	DA	БА	па	па	DA	yes
Phoephorus	Dia .	20	mg/kg	nd	40	yes	115	73	130	yes	D.B.	TA	DA	па	ДА	yes
Silver	224	1	mg/kg	nd	2	yes	109	25	200	yes	na	DA	-	Da	DA	yes
Silver	14	1	mg/kg	nd	2	yes	141	25	200	yes	2.6	па	DA	na	na	yes
Silver	DA	1	mg/kg	nd	2	yes	147	25	200	yes	na	54	DA	DA	BA	yes
Titenium	. DA	5	mg/kg	nd	10	yes	132	37	174	yes	DA	na	n.s	DA	BA	yes
Titankim	na	5	mg/kg	nd	10	yes	134	37	174	yes	DA	Da	DA	na	DA	yes
Titankam	TP15 15- 17.5	5	mg/kg	nd	10	yes	126	37	174	yes	120	100	70	130	yes	yes
Vanadium	TP10 70-75	1	mg/kg	ba	2	yes	102	81	119	yes	87	100	70	130	yes	yes
Vanadium	TP15 15- 17.5	1	mg/kg	nd	2	yes	97	81	119	yes	88	100	70	130	yes	yes
Vanadium	TP2 5-7.5	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Zinc	TP10 70-75	5	mg/kg	nd	10	yes	95	85	112	yes	87	100	70	130	yes	yes
Zinc	TP15 15- 17.5	5	mg/kg	nd	10	yes	91	85	112	yes	84	100	70	130	yes	yes
Zinc	TP2 5-7.5	5	mg/kg	ba	10	yes	95	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client :	Jacques Whitford Environment Ltd.
Contact:	Mahaboob Alam

October 26/2001
G214771
EG009-0811
INCO
ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	Process Blank			ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	a second second	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pस इस	106. 106.	0.01	Units Units	па	na na	na na	98 98	90 90	110 110	yes yes	па	DA DA	na na	na na	TA NA	yes yes
pH	10	0.01	Units	БА	IM	na	98	90	110	yes	na	na	na	па	TIA .	yes
	L.															
54 																
								š (								
								í.								
				1		1.1			. ä							
										8						
						- 8										
		i i														

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

- па
- Not Applicable
   Insufficient Sample Submitted ns
- = parameter not detected nd
- = trace level less than EQL TR

### Philip Analytical Services Corp

### **Report of Analysis**

Client : Jacques Whitford Environment Ltd.	Report Date:	October 26/2001
Contact: Mahaboob Alam	Lab Ref # :	G214771
	Lab Quote #:	EG009-0811
	Client PO#:	INCO
Analysis of Soil, expressed on a dry weight basis	Client Ref#:	ONT34646

EQL 02 02 02 20	Units mg/kg mg/kg mg/kg	0.7	17.5	0.5	0.5	
0.2 0.2 20	mg/kg		1.3	0.5	0.5	
0.2 20		14.4			Y.J.	nd
20	male		27.0	11.7	9.9	23
1 1 2 1	100.06	0.9	2.5	0.7	0.7	nd
	mg/kg	1620	2660	1900	1830	1210
5	mg/kg	26	62	31	20	23
0.2	mg/kg	nd	0.3	ha	nd	nd
0.5	mg/kg	nd	nd	0.6	nd	nd
1	mg/kg	6	25	6		3
2	mg/kg	13	48	12	11	2
1	mg/kg	75	274	96	64	15
50	mg/kg	14300	44800	17000	15700	3670
5	mg/kg	27	105	54	33	nd
1	mg/kg	292	636	171	160	119
3	mg/kg	nd	nd	nd	nd	nd
2	mg/kg	735	2940	954	689	60
20	mg/kg	459	767	681	556	302
1	mg/kg	nd	1	nd	nd	nd
5	mg/kg	184	214	182	248	115
1	mg/kg	9	18	12	12	7
5	mg/kg	113	406	120	119	12
0.01	Units	7.83	7.60	7.47	7.84	6.10
0.01	%	7.87	10.9	19.6	5.26	85.6
	1 2 1 50 5 1 3 2 20 1 5 1 5 0.01	1     mg/kg       2     mg/kg       1     mg/kg       50     mg/kg       5     mg/kg       1     mg/kg       3     mg/kg       2     mg/kg       1     mg/kg       2     mg/kg       1     mg/kg       1     mg/kg       5     mg/kg       1     mg/kg       5     mg/kg       0     0.01	ng/kg         6           2         mg/kg         13           1         mg/kg         75           50         mg/kg         14300           5         mg/kg         27           1         mg/kg         292           3         mg/kg         nd           2         mg/kg         735           20         mg/kg         459           1         mg/kg         nd           5         mg/kg         184           1         mg/kg         9           5         mg/kg         113           0.01         Units         7.83	Img/kg         6         25           2         mg/kg         13         48           1         mg/kg         75         274           50         mg/kg         14300         44800           5         mg/kg         27         105           1         mg/kg         292         636           3         mg/kg         nd         nd           2         mg/kg         735         2940           20         mg/kg         459         767           1         mg/kg         nd         1           5         mg/kg         184         2)4           1         mg/kg         9         18           5         mg/kg         113         406           001         Units         7.83         7.60	Img/kg         6         25         6           2         mg/kg         13         48         12           1         mg/kg         75         274         96           50         mg/kg         14300         44800         17000           5         mg/kg         277         105         54           1         mg/kg         292         636         171           3         mg/kg         nd         nd         nd           2         mg/kg         735         2940         954           20         mg/kg         459         767         681           1         mg/kg         nd         1         nd           5         mg/kg         184         2)4         182           1         mg/kg         9         18         12           5         mg/kg         113         406         120           001         Units         7.83         7.60         7.47	0.5         mg/kg         nd         nd         0.6         nd           1         mg/kg         6         25         6         g           2         mg/kg         13         48         12         11           1         mg/kg         75         274         96         64           50         mg/kg         14300         44800         17000         15700           5         mg/kg         277         105         54         33           1         mg/kg         292         636         171         160           3         mg/kg         nd         nd         nd         nd           2         mg/kg         735         2940         954         689           20         mg/kg         14         nd         nd         nd           3         mg/kg         14         14         182         248           1         mg/kg         184         214         182         248           1         mg/kg         9         18         12         12           5         mg/kg         113         406         120         119           0.01

EQL

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

# Date Received:September 27/2001Date Reported:October 26/2001Lab Ref#:G214771Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34646

#### **Certificate of Analysis**

Arsenic, Hydride Generation AA
Antimony, Hydride Generation, Digestion Required
Selenium, Hydride Generation
17 Element ICP Scan
pH, Hydrogen Ion Activity, Extraction Required
Moisture Content
1) Analysis of arsenic in soil by Hydride Generation
Atomic Absorption.
U.S. EPA Method No. 7061(Modifications)
2) Analysis of antimony in soil by hydride generation.
U.S. EPA Method No. 7042
3) Analysis of selenium in soil by hydride generation.
U.S. EPA Method No. 7741(Modification)
4) Analysis of trace metals in soil by Inductively Coupled
Plasma Spectrophotometry.
U.S. EPA Method No. 6010
(Ministry of Environment ELSCAN)
5) Analysis of pH in soil by electrode.
U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

۲



Client:	Jacques Whitford En	vironment Ltd.	Date Received:	Sentember 27/2001
	1200 Denison Street		Date Reported:	September 27/2001 October 26/2001
	Markham, ON, CAN	ADA	Lab Ref#:	G214771
	L3R 8G6		Lab Quote#:	EG009-0811
			Client PO#:	INCO
Fax:	905-479-9326		Client Ref#:	ONT34646
Attn:	Mahaboob Alam			
		Certificate of Analysis		
Method	ology: (Cont'd)			
		6) Determination of the moisture content of soil by	weight.	
		ASTM Method No. D2216-80		
Instrum	entation:	1) Varian VGA 76		
		2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Vari		
		<ol> <li>Thermo Jarrell Ash ICAP 61E Plasma Spectroph</li> </ol>		
		5) Orion Research Expandable Ion Analyzer EA940		
		6) Precision Mechanical Convention Oven/Sartorius	s Basic Balance	
Sample	Description:	Soil		
QA/QC:		Refer to CERTIFICATE OF QUALITY CONTROL	report.	
Results:		Refer to REPORT of ANALYSIS attached.		

ms Certified By

Elaine Grant Account

Certificat By

Laboratory Supervisor

L. work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip 'halytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting his per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	Process % Recovery				Matrix Spike					
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable	
Arsenic	TP10 70-75	0.2	mg/kg	nd	0.5	yes	107	84	120	yes	5.4	5.0	3.5	6.5	yes	yes	
Arsenio	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes	
Arsenic	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes		•	•		•	yes	
Antimony	TP10 70-75	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	yes	
Antimony	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes	
Antimony	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes	
Selenhum	TP10 70-75	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes	
Selenham	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes	
Selmhim	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.0	5.0	3.5	6.5	yes	yes	
Ahmiman	ла	20	mg/kg	21	40	yes	99	74	125	yes	па	13A	па	na	DA	yes	
Ahminum	24	20	mg/kg	nd	40	yes	94	74	125	yes	DA	na	DA	па	па	yes	
Abamirsum	24	20	mg/kg	nd	40	yes	98	74	125	yes	па	na	TA	ПА	<b>D.A</b>	yes	
Barinen	TP10 70-75	5	mg/kg	nd	10	yes	92	82	113	yes	88	100	70	130	yes	yes	
Barium	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	yes	90	100	70	130	yes	yes	
Barium	TP2 5-7.5	5	mg/kg	nd	10	yes	92	82	113	yes	90	100	70	130	yes	yes	
Berylihm	TP-10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes	
Berytikum	TP15 15- 17.5	0.2	mg/kg	nd	0.4	yes	79	72	124	yea	8.7	10	7	13	yes	yes	
Berytlium	TP2 5-7.5	0.2	mg/kg	nd	0.4	yes	86	72	124	yes	8.9	10	7	13	yes	yes	
Cadmium	TP10 70-75	0.5	mg/kg	nd	0.6	yes	53	0	180	yes	88.6	100	70	130	yes	yes	
Cadmham	TP15 15- 17.5	0.5	mg/kg	nd	0.6	yes	34	0	180	yes	91.4	100	70	130	yes	yes	

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

* = Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery		Matrix Spike					Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmium	TP2 5-7.5	0.5	mg/kg	nd	0.6	yes	121	0	180	yes	92.1	100	70	130	yes	yes
Chromhum	TP10 70-75	1	mg/kg	nd	2	yes	105	72	124	yes	89	100	70	130	yes	yes
Chromhum	TP15 15- 17.5	1	mg/kg	nd	2	yes	99	72	124	yes	90	100	70	130	yes	yes
Chromlum	TP2 5-7.5	1	mg/kg	nd	2	yes	105	72	124	yes	90	100	70	130	yes	yes
Cobalt	TP10 70-75	2	mg/kg	nd	4	yes	95	85	123	yes	87	100	70	130	yes	yes
Cobalt	TP15 15- 17.5	2	mg/kg	ba	4	yes	90	85	123	yes	87	100	70	130	yes	yes
Cobali	TP2 5-7.5	2	mg/kg	ba	4	yes	97	85	123	yes	99	100	70	130	yes	yes
Copper	TP10 70-75	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Copper	TP15 15- 17.5	1	mg/kg	ba	4	yes	86	78	122	yes	87	100	70	130	yes	yes
Copper	TP2 5-7.5	1	mg/kg	nd	4	yes	96	78	122	yes						yes
Iron	- 14	50	mg/kg	nd	100	yes	86	85	119	yes	DA	DA	D.a.	ша	па	yes
Iron	24	50	mg/kg	nd	100	yes	88	85	119	yes	na	пя	DA	DA	DA	yes
Iron	ла	50	mg/kg	nd	100	yes	89	85	119	yes	DA	па	na	na	DA	yes
Lead	TP10 70-75	5	mg/kg	nd	10	yes	108	48	152	yes	86	100	70	130	yes	yes
Lead	TP15 15- 17.5	5	mg/kg	nd	10	yes	73	48	152	yes	86	100	70	130	yes	yes
Lead	TP2 5-7.5	5	mg/kg	nd	10	yes	113	48	152	yes	89	100	70	130	Second	100 million (1
Мардарияе	TP10 70-75	1	mg/kg	nd	2	yes	97	85	115	yes	91	100	70	130	yes	yes
Manganese	TP15 15- 17.5	1	mg/kg	nd	2	yes	92	85	115	yes	78	100	70	130	yes	yes
Manganese	TP2 5-7.5	1	mg/kg	nd	2	yes	97	85	115	yes	82	100	70	130	yes	yes
Molybdenum	TP10 70-75	3	mg/kg	nd	6	yes	160	0	210	yes	175	200	140	260	yes yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

nd = parameter not detected

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	Process % Recovery				Matrix Spike				
Parameter (spike)	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Accept Acceptabl
Molybdemm	TP15 15- 17.5	3	mg/kg	ba	6	yca	128	0	210	yes	174	200	140	260	yes	yes
Molybdenam	TP2 5-7.5	3	mg/kg	ba	6	yes	147	0	210	yes	176	200	140	260	yes	yes
Nickel	TP10 70-75	2	mg/kg	nd	4	yes	97	86	116	yes	87	100	70	130	yes	yes
Nickel	TP15 15- 17.5	2	mg/kg	nd	.4	yes	92	86	116	yes	81	100	70	130	yes	yes
Nickel	TP2 5-7.5	2	mg/kg	nd	4	yes	96	86	116	yes	•	•	•	•	•	yes
Phosphorus	ла	20	mg/kg	nd	40	yes	111	73	130	yes	D.B.	DA	D.S	na	na	y'ca
Phosphorus	ла	20	mg/kg	nd	40	yes	114	73	130	yes	DA	D.B.	EA.	па	0.6	yes
Phosphorus	14	20	mg/kg	nd	40	yes	115	73	130	yes	DA	DA	DA	BA	DA	yes
Silver	54	1	mg/kg	nd	2	yes	109	25	200	yes	DA	na	DA	-	DA	yes
Silver	-	1	mg/kg	ba	2	yes	141	25	200	yes	D.A	na	na	DA	па	yes
Silver	DA .	1	mg/kg	nd	2	yes	147	25	200	yes	D.B.	na	DA .	DA	DA	yes
Titanàum	24	5	mg/kg	nd	10	ycs	132	37	174	yes	na	DA	<b>D.A</b>	na	na	yes
Titankim	na	5	mg/kg	nd	10	yes	134	37	174	yes	па	па	DA	na	68	yes
Titanhum	TP15 15- 17.5	5	mg/kg	nd	10	yes	126	37	174	yes	120	100	70	130	yes	yes
Vanadium	TP10 70-75	1	mg/kg	nd	2	yes	102	81	119	yes	87	100	70	130	yes	yes
Vanadhum	TP15 15- 17.5	1	mg/kg	nd	2	yes	97	81	119	yes	88	100	70	130	yes	yea
Vanadium	TP2 5-7.5	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Zine	TP10 70-75	5	mg/kg	nd	10	yes	95	85	112	yes	87	100	70	130	yes	yes
Zine	TP15 15- 17.5	5	mg/kg	nd	10	yes	91	85	112	yes	84	100	70	130	yes	yes
Zine	TP2 5-7.5	5	mg/kg	nd	10	yes	95	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence = Unavailable due to dilution required for analysis

na

= Not Applicable = Insufficient Sample Submitted ns

= parameter not detected nd

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

		同時日		Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	œ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pH	DA	0.01	Units	DA	пл	па	98	90	110	yes	DA	na	BA	na	па	yea
₽¥I.	та	0.01	Units	па	na	па	98	90	110	yes	na	па	па	па	па	yea
1											5					

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • Unavailable due to dilution required for analysis

- = Not Applicable na
- = Insufficient Sample Submitted ns
- = parameter not detected nd
- = trace level less than EQL TR

#### Philip Analytical Services Corp

#### **Report of Analysis**

 Client : Jacques Whitford Environment Ltd.
 Report Date:
 October 26/2001

 Contact: Mahaboob Alam
 Lab Ref # :
 G214771

 Lab Quote #:
 EG009-0811

 Client PO#:
 INCO

 Analysis of Soil, expressed on a dry weight basis
 Client Ref#:
 ONT34646

Parameter	EQL	Units	TP10 10- 12.5	TP10 20- 22.5	TP10 30-35	TP10 5-7.5	TP10 70-75
Antimony	0.2	mg/kg	1.0	1.0	0.9	1.0	nd
Arsenic	0.2	mg/kg	6.8	8.7	8.2	8.7	nd
Selenium	0.2	mg/kg	0.8	1.2	1.2	1.3	nd
Aluminum	20	mg/kg	22800	17500	14900	18600	2010
Baritim	5	mg/kg	180	162	136	159	nd
Beryllium	0.2	mg/kg	1.2	1.3	11	1.0	nd
Cadmium	0.5	mg/kg	nd	0.8	nđ	nd	nd
Chromium	1	mgikg	28	19	15	23	3
Cobalt	2	mg/kg	20	18	14	26	nd
Copper	1	mg/kg	75	119	94	104	2
Iron	50	mg/kg	32300	21000	18100	26900	2090
l, ead	5	mg/kg	85	105	74	105	nd
Manganese	1	mg/kg	728	493	430	677	25
Molybdenum	3	mg/kg	nd	nd	nd	nd	nd
Nickel	2	mg/kg	410	760	614	684	9
Phosphorus	20	mg/kg	718	544	481	754	230
Silver	1	mg/kg	nd	nđ	nd	nd	nd
Titanium	5	mg/kg	266	269	222	232	160
Vanadium	1	mg/kg	41	30	24	35	5
Zinc	5	mg/kg	138	163	130	153	11
pH	0.01	Unita	7.53	7.73	7.75	7.42	7.55
Moisture Centent	0.01	%	10.5	6.19	12.8	12.5	2.48
	±						

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

na Not Applicable

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL

## Philip Analytical Services Corp

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd.	Report Date:	October 26/2001
Contact: Mahaboob Alam	Lab Ref # :	G214771
	Lab Quote #:	EG009-0811
	Client PO#:	INCO
Analysis of Soil, expressed on a dry weight basis	Client Ref#:	ONT34646

EQL	Units	TP10 70-75 Replicate			
0.2	mg/kg	nd			
0.2	mg/kg	nd			
0.2	mg/kg	nd			
20	mg/kg	1930			
5	mg/kg	nd			
0.2	mg/kg	nd			1
0.5	mg/kg	nd			
1	mg/kg	4			
2	mg/kg	ba			
1	mg/kg	5			
50	mg/kg	2030			
5	mg/kg	6			
1	mg/kg	24			
3	mg/kg	nd			
2	mg/kg	10	5 S		
20	mg/kg	241			
1	mg/kg	nd			
5	mg/kg	173			
1	mg/kg	5			
5	mg/kg	11			
0.01	Units	7.53			
0.01	96	2.49			
	0.2 0.2 20 5 0.2 0.5 1 2 1 50 5 1 3 2 20 1 5 1 5 1 5 1 5 1 5 0.01	0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 20 mg/kg 5 mg/kg 0.2 mg/kg 0.5 mg/kg 1 mg/kg 2 mg/kg 3 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 5 mg/kg 1 mg/kg	EQL         Units         Replicate           0.2         mg/kg         nd           0.5         mg/kg         nd           1         mg/kg         f           1         mg/kg         f           1         mg/kg         nd           2         mg/kg         nd           2         mg/kg         nd           2         mg/kg         nd           2         mg/kg         nd           20         mg/kg         nd           20         mg/kg         nd           5         mg/kg	EQL         Units         Replicate           0.2         mg/kg         nd           20         mg/kg         nd           20         mg/kg         nd           0.2         mg/kg         nd           0.2         mg/kg         nd           0.2         mg/kg         nd           0.2         mg/kg         nd           0.5         mg/kg         nd           1         mg/kg         5           50         mg/kg         2030           5         mg/kg         66           1         mg/kg         nd           20         mg/kg         10           20         mg/kg         10           20         mg/kg         11           1         mg/kg         5           5         mg/kg         173           1         mg/kg         <	EQL         Units         Replicate           0.2         mg/kg         nd           0.3         mg/kg         nd           0.4         ng/kg         nd           0.5         mg/kg         nd           1         mg/kg         5           50         mg/kg         2030           5         mg/kg         66           1         mg/kg         24           3         mg/kg         nd           2         mg/kg         nd           20         mg/kg         10           20         mg/kg         14           1         mg/kg         5           5         mg/kg         11           1         mg/kg <td< td=""></td<>

EQL

r

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 27/2001
Date Reported:	October 26/2001
Lab Ref#:	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>
	<ol> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> </ol>
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	September 27/2001
	1200 Denison Street	Date Reported:	October 26/2001
	Markham, ON, CANADA	Lab Ref#:	G214771
	L3R 8G6	Lab Quote#:	EG009-0811
-		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
Attn:	Mahaboob Alam		11

#### Certificate of Analysis

<ol> <li>Determination of the moisture content of soil by weight. ASTM Method No. D2216-80</li> </ol>
1) Varian VGA 76
2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76
4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer
5) Orion Research Expandable Ion Analyzer EA940
6) Precision Mechanical Convention Oven/Sartorius Basic Balance
Soil
Refer to CERTIFICATE OF QUALITY CONTROL report.
Refer to REPORT of ANALYSIS attached.

m

Certified By Elaine Grant Account Manager

Centred By Laboratory Supervisor

Il work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip lytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting a per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	ce .		Overall
Parameter	SAMPLE ID (spike)	EQL Uni	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arrenic	TP10 70-75	0.2	mg/kg	ba	0.5	yes	107	84	120	yes	5.4	5.0	3.5	6.5	yes	ycs
Annale	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes
Arrenic	TP2 3-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes	1. C	•		•	•	yes
Antimony	TP10 70-75	0.2	mg/kg	ba	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	ycs
Antimony	TP15 15- 17.5	0.2	mg/kg	ba	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Sejenium	TP10 70-75	0.2	mg/kg	nd	0.5	ycs	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenium	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenium	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	100	60	140	ycs	4.0	5.0	3.5	6.5	yes	yes
Alaminan	na	20	mg/kg	21	40	yes	99	74	125	yes	73.8	na	DA	0.6	DA	yes
Ahminan	DA	20	mg/kg	nd	40	yes	94	74	125	yes	па	DA	DA	па	DA	yes
Ahminun	TIA.	20	mg/kg	nd	40	yes	98	74	125	yes	na	ELA.	DA	BA	BA	yes
Barhum	TP10 70-75	5	mg/kg	nd	10	yea	92	82	113	yes	88	100	70	130	yes	yes
Barken	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	ycs	90	100	70	130	yes	yes
Barium	TP2 5-7.5	5	mg/kg	nd	10	yes	92	82	113	yes	90	100	70	130	yes	yes
Beryllium	TP10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes
Beryllium	TP15 15- 17.5	0.2	mg/kg	nd	0.4	yes	79	72	124	yes	8.7	10	1	13	yes	yes
Beryllhum	TP2 5-7.5	0.2	mg/kg	nd	0.4	yes	86	72	124	yes	8.9	10	7	13	yes	yea
Cadmium	TP10 70-75	0.5	mg/kg	nd	0.6	yes	53	0	180	yes	88.6	100	70	130	ycs	yes
Cadmhum	TP15 15- 17.5	0.5	mg/kg	nd	0.6	yes	34	0	180	yes	91.4	100	70	130	Ves	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

nd = parameter not detected

= trace level less than EQL TR

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # ;	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	ke		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmium	TP2 5-7.5	0.5	mg/kg	nd	0.6	yes	121	0	180	yes	92.1	100	70			
Chromium	TP10 70-75	1	mg/kg	nd	2	yes	105	72	124			10.00	1.121	130	yes	yes
Chromium	TP15 15- 17.5	1	mg/kg	nd	2	yes	99	72	124	yea	89	100	70	130	yes	yes
Chromhun	TP2 5-7.5	1	mg/kg	nd	2	yes	105	72	1990.00	yes	90	100	70	130	yes	yes
Cobalt	TP10 70-75	2	mg/kg	nd	4	yes	95	85	124	yea	90	100	70	130	yes	yes
Cobalt	TP15 15- 17.5	2	mg/kg	nd	4	yes	90	1 222 1	123	yes	87	100	70	130	yes	yes
Cobalt	TP2 5-7.5	2	mg/kg	nd	4	0.52	895	85	123	yes	87	100	70	130	yes	yes
Copper	TP10 70-75	1	mg/kg	nd	100	yes	97	85	123	yes	99	100	70	130	yes	yes
Copper	TP15 15- 17.5	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Copper	TP2 5-7.5	1		1000	4	yes	86	78	122	yes	87	100	70	130	yes	yes
Iron	па	50	mg/kg	nd	4	yes	96	78	122	yea	•	•		•	•	yes
Iron			mg/kg	nd	100	yes	86	85	119	yes	DA	па	па	DA	DA	yes
Iron		50	mg/kg	nd	100	yes	88	85	119	yes	na	na	na	па	na	yes
Lead	TP10 70-75	50	mg/kg	nd	100	yes	89	85	119	yes	na	па	DA	na	na	yes
Lead	10-05/20250	5	mg/kg	nd	10	yes	108	48	152	yes	86	100	70	130	yes	yes.
Lead	TP15 13- 17.5	5	mg/kg	nd	10	yes	73	48	152	yes	86	100	70	130	yes	yes
Manganese	TP2 5-7.5	5	mg/kg	nd	10	yes	113	48	152	yes	89	100	70	130	yes	yes
Anganese	TP10 70-75	1	mg/kg	nd	2	yes	97	85	115	yes	91	100	70	130	yes	yes
1000 CONTRACTOR 1000	TP15 15- 17.5	I	mg/kg	nd	2	yes	92	85	115	yes	78	100	70	130	yes	- <u>Still</u>
fangamere	TP2 5-7.5	1	mg/kg	nd	2	yes	97	85	115	yes	82	100	70	130		yes
folybdenum	TP10 70-75	3	mg/kg	nd	6	yes	160	0	210	yes	175	200	140	260	yes	yes yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis na = Not Applicable ns = Insufficient Sample Submitted

nd = parameter not detected TR

= trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	æ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdenum	TP15 15- 17.5	3	mg/kg	nd	6	yes	128	0	210	yes	174	200	140	260	yes	yes
Molybdenam	TP2 5-7.5	3	mg/kg	nd	6	yes	147	0	210	yea	176	200	140	260	yes	yes
Niekei	TP10 70-75	2	mg/kg	nd	4	yes	97	86	116	yes	87	100	70	130	yes	yes
Nickel	TP15 15- 17.5	2	mg/kg	nd	4	yes	92	86	116	yes	81	100	70	130	yes	yes
Nickel	TP2 5-7.5	2	mg/kg	nd	4	yes	96	86	116	yes	3 <b>•</b> 27		•	ંગ		yes
Phosphorus	-	20	mg/kg	nd	40	yes	111	73	130	yes	na	na	na	na	па	yes
Phoeplaoraa	- 14	20	mg/kg	nd	40	yes	114	73	130	yes	na	TA .	DA	na.	DA	yes
Phosphorus	THE .	20	mg/kg	nd	40	yes	115	73	130	yes	па	ра	DA	na	na -	yea
Silver	TA .	1	mg/kg	nd	2	yes	109	25	200	yes	па	na	na	na	DA	yes
Silver	DA	1	mg/kg	nd	2	yes	141	25	200	yes	na	па	па	БА	DA	yes
Silver	DA	1	mg/kg	nd	2	yes	147	25	200	yes	na	84	па	na	па	yes
Titanium	-	5	mg/kg	nd	10	yes	132	37	174	yes	na	TA	па	DA	na	yes
Titanium		5	mg/kg	nd	10	yes	134	37	174	yes	па	E.S.	DA	БА	na	yes
Titanium	TP15 15- 17.5	5	mg/kg	nd	10	yes	126	37	174	yes	120	100	70	130	yes	yes
Vanadium	TP10 70-75	1	mg/kg	nd	2	yes	102	81	119	yes	87	100	70	130	yes	yes
Vanadium	TP15 15- 17.5	1	mg/kg	nd	2	yes	97	81	119	yes	88	100	70	130	yes	yca
Vanadium	TP2 5-7.5	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Zine	TP10 70-75	5	mg/kg	nd	10	yes	95	85	112	yes	87	100	70	130	yes	yes
Zinc	TP15 15- 17.5	5	mg/kg	nd	10	yes	91	85	112	yes	84	100	70	130	yes	yca
Zine	TP2 5-7.5	5	mg/kg	nd	10	yes	95	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

= Unavailable due to dilution required for analysis ٠

na

= Not Applicable = Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery			M	atrix Spil	te		Overall
Parameter	SAMPLE ID (spike)	EQL Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable	
pët pët	15A 15A	0.01 0.01	Units Units	па	na na	па	98 98	90 90	110 110	yes yes	па	ДА ДА	DA DA	1.8 1.8	DA TA	yes yes
F2																

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

- Unavailable due to dilution required for analysis
- na = Not Applicable
- ns = Insufficient Sample Submitted nd = parameter not detected
- nd = parameter not detected TR = trace level less than EQL

### Philip Analytical Services Corp

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Report Date: October 26/2001 Contact: Mahaboob Alam Lab Ref # : G214771 Lab Quote #: EG009-0811 Client PO#: INCO Client Ref#: ONT34646

Analysis of Soil, expressed on a dry weight basis

				( ) ( )		
0.2	mg/kg	13	nd	1.0	nd	-
0.2	mg/kg	25.2	1.9	10.8	1.3	
0.2	mg/kg	3.5	nd	2.6	nd	
20	mg/kg	12200	1650	11100	1350	
5	mg/kg	205	8	185	8	
0.2	mg/kg	1.7	nd	1.5	nd	
0.5	mg/kg	1.1	nd	1.1	nd	
1	mg/kg	26	8	26	4	
2	mg/kg	74	nd	46	nð	
1	mg/kg	294	10	249	3	
50	mg/kg	72700	17000	46600	4760	
5	mg/kg	132	8	137	nd	
1	mg/kg	1550	157	1280	120	
3	mg/kg	nd	nd	nd	nd	
2	mg/kg	2470	32	1560	5	
20	mg/kg	579	439	490	289	
1	mg/kg	nd	nd	nd	nd	
5	mg/kg	346	574	328	187	
1	mg/kg	28	35	24	8	
5	mg/kg	460	34	270	17	
0.01	Units	7.62	8	7.69	8.07	
0.01	36	434	0.3	3.38	0.79	
	0.2 20 5 0.2 0.5 1 2 1 50 5 1 3 2 20 1 5 1 5 5 6.01	0.2 mg/kg 20 mg/kg 5 mg/kg 0.2 mg/kg 0.5 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 5 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 2 mg/kg 1 mg/kg 5 mg/kg 1 mg/kg 1 mg/kg 5 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 3 mg/kg 1 mg/kg 3 mg/kg 3 mg/kg 1 mg/kg 3 mg/kg 1 mg/kg 3 mg/kg 1 mg/kg 3 mg/kg 1 mg/kg 3 mg/kg 1 mg/kg 5 mg/kg 1 mg/kg 3 mg/kg 1 mg/kg 5 mg/kg 5 mg/kg 1 mg/kg 5 mg/kg	0.2         mg/kg         3.5           20         mg/kg         12200           5         mg/kg         205           0.2         mg/kg         1.7           0.5         mg/kg         1.1           1         mg/kg         26           2         mg/kg         74           1         mg/kg         26           2         mg/kg         74           1         mg/kg         294           50         mg/kg         72700           5         mg/kg         132           1         mg/kg         132           1         mg/kg         14           20         mg/kg         2470           20         mg/kg         579           1         mg/kg         346           1         mg/kg         28           5         mg/kg         460           6.01         Units         7.62	0.2         mg/kg         3.5         nd           20         mg/kg         12200         1650           5         mg/kg         205         8           0.2         mg/kg         1.7         nd           0.5         mg/kg         1.1         nd           1         mg/kg         26         8           2         mg/kg         74         nd           1         mg/kg         264         8           2         mg/kg         74         nd           1         mg/kg         294         10           50         mg/kg         72700         17000           5         mg/kg         132         8           1         mg/kg         14         nd           2         mg/kg         nd         nd           3         mg/kg         nd         nd           2         mg/kg         2470         32           20         mg/kg         579         439           1         mg/kg         346         574           1         mg/kg         28         35           5         mg/kg         460         34	0.2         mg/kg         3.5         nd         2.6           20         mg/kg         12200         1650         11100           5         mg/kg         206         8         185           0.2         mg/kg         1.7         nd         1.5           0.5         mg/kg         1.1         nd         1.1           1         mg/kg         26         8         26           2         mg/kg         74         nd         45           1         mg/kg         294         10         249           50         mg/kg         72700         17000         45600           5         mg/kg         132         8         137           1         mg/kg         1550         157         1280           3         mg/kg         nd         nd         nd           2         mg/kg         2470         32         1560           3         mg/kg         134         nd         nd           2         mg/kg         14         nd         nd           2         mg/kg         14         nd         nd           3         mg/kg         1	0.2         mg/kg         3.5         nd         2.6         nd           20         mg/kg         12200         1650         11100         1350           5         mg/kg         205         8         185         8           0.2         mg/kg         1.7         nd         1.5         nd           0.5         mg/kg         1.1         nd         1.1         nd           1         mg/kg         26         8         26         4           2         mg/kg         74         nd         46         nd           1         mg/kg         254         10         249         3           50         mg/kg         72700         17000         46600         4760           5         mg/kg         132         8         137         nd           1         mg/kg         14         nd         nd         nd           2         mg/kg         1700         32         150         5           3         mg/kg         nd         nd         nd         nd           2         mg/kg         14         nd         nd         nd           3

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL nd



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:September 27/2001Date Reported:October 26/2001Lab Ref#:G214771Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34646

#### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>
	<ol> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> </ol>
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in fiability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES Client: Jacques Whitford Environment Ltd. Date Received: September 27/2001 1200 Denison Street Date Reported: October 26/2001 Markham, ON, CANADA Lab Ref#: G214771 L3R 8G6 Lab Quote#: EG009-0811 Client PO#: INCO Fax: 905-479-9326 Client Ref#: ONT34646 Mahaboob Alam Attn: Certificate of Analysis Methodology: (Cont'd) 6) Determination of the moisture content of soil by weight. ASTM Method No. D2216-80 1) Varian VGA 76 Instrumentation: 2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76 4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer 5) Orion Research Expandable Ion Analyzer EA940

6) Precision Mechanical Convention Oven/Sartorius Basic Balance

Sample Description:

OA/OC: Refer to CERTIFICATE OF QUALITY CONTROL report.

Soil

Results:

Refer to REPORT of ANALYSIS attached.

Certified By

Elaine Grant

Account Manager lified By

Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

							Pro	cess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Amenic	TP10 70-75	0.2	mg/kg	nd	0.5	yes	107	84	120	yes	5.4	5.0	3.5	6.5	yes	yes
Arsenic	TP15 15- 17.5	0.2	mg/kg	bđ	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes
Arrenic	TP2 3-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes	•					yes
Antimony	TP10 70-75	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	yes
Antimony	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Sejenham	TP10 70-75	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenhun	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenhum	TP2 5-7.5	0.2	mg/kg	nđ	0.5	yes	100	60	140	yes	4.0	5.0	3.5	6.5	yes	yes
Ahminun	54	20	mg/kg	21	40	yes	99	74	125	yes	па	DA	na	na	na	yes
Ahaniman	24	20	mg/kg	nd	40	yes	94	74	125	yes	na	DA	Ба	DA	na	yes
Alumirson	24	20	mg/kg	nd	40	yes	98	74	125	yes	na	па	71.6	na	DA	yes
Barium	TP10 70-75	5	mg/kg	nd	10	yes	92	82	113	yes	88	100	70	130	yes	yes
Barium	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	yes	90	100	70	130	yes	yes
Bariam	TP2 5-7.5	5	mg/kg	nd	10	yca	92	82	113	yes	90	100	70	130	yes	yes
Berylliam	TP10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes
Beryllium	TP15 15- 17.5	0.2	mg/kg	nd	0.4	yes	79	72	124	yes	8.7	10	7	13	yes	yes
Beryllium	TP2 5-7.5	0.2	mg/kg	nd	0.4	yes	86	72	124	yes	8.9	10	7	13	Yes	yes
Cedmhum	TP10 70-75	0.5	mg/kg	nd	0.6	yea	53	0	180	yes	88.6	100	70	130	yes	yes
Cadmham	TP15 15- 17.5	0.5	mg/kg	nd	0.6	yes	34	0	180	yes	91.4	100	70	130	VCB	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery			M	atrix Spil	se		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmhum	TP2 5-7.5	0.5	mg/kg	nd	0.6	yes	121	0	180	yes	92.1	100	70	130	yes	yes
Chromburn	TP10 70-75	1	mg/kg	nd	2	yes	105	72	124	yes	89	100	70	130	yes	yes
Chromiam	TP15 15- 17.5	1	mg/kg	nd	2	yes	99	72	124	yes	90	100	70	130	yes	yes
Chromitan	TP2 5-7.5	1	mg/kg	nd	2	yes	105	72	124	yes	90	100	70	130	yes	yes
Cobali	1210 70-75	2	mg/kg	nd	4	yes	95	85	123	yes	87	100	70	130	yes	yes
Cobali	TP15 15- 17.5	2	mg/kg	nd	4	yes	90	85	123	yes	87	100	70	130	yes	yes
Cobalt	TP2 5-7.5	2	mg/kg	nd	4	yes	97	85	123	ycs	99	100	70	130	yes	yes
Coppet	TP10 70-75	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Copper	TP15 15- 17.5	1	mg/kg	nđ	4	yes	86	78	122	yes	87	100	70	130	yes	yes
Copper	TP2 5-7.5	1	mg/kg	nd	4	yes	96	78	122	yes	•	•	•	•	•	yes
Iron.	204	50	mg/kg	nd	100	yes	86	85	119	yes	na	na	DA	BA	na	yes
Iron .	па	50	mg/kg	nd	100	yes	88	85	119	yes	па	24	D.A	na	na	yes
Iron	24	50	mg/kg	nd	100	yes	89	85	119	yes	DA	DA .	па	DA	na	yes
Lead	TP10 70-75	5	mg/kg	nd	10	ycs	108	48	152	yes	86	100	70	130	yea	yes
Lead	TP15 15- 17.5	5	mg/kg	nd	10	yea	73	48	152	yes	86	100	70	130	yes	yes
Lead	TP2 5-7.5	5	mg/kg	nd	10	yes	113	48	152	yes	89	100	70	130	yea	yes
Mangapese	TP10 70-75	1	mg/kg	nd	2	yes	97	85	115	yes	91	100	70	130	yes	yes
Mangamese	TP15 15- 17.5	1	mg/kg	nd	2	yes	92	85	115	yes	78	100	70	130	yes	yes
Manganese	TP2 5-7.5	1	mg/kg	nd	2	yes	97	85	115	yes	82	100	70	130	yes	yes
Molybdenam	TP10 70-75	3	mg/kg	nd	6	yes	160	0	210	yes	175	200	140	260	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns.

= parameter not detected nd

= trace level less than EQL TR

## Philip Analytical Services Corp Certificate of Quality Control

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

							Pro	ocess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdenam	TP15 15- 17.5	3	mg/kg	nd	6	yes	128	0	210	yes	174	200	140	260	yes	yes
Molybdenum	TP2 5-7.5	- 3	mg/kg	nd	6	yes	147	0	210	yes	176	200	140	260	yes	yes
Nickel	TP10 70-75	2	mg/kg	nd	4	yes	97	86	116	yes	87	100	70	130	yes	yes
Nickel	TP15 15- 17.5	2	mg/kg	nd	4	yes	92	86	116	yea	81	100	70	130	yes	yes
Nickel	TP2 5-7.5	2	mg/kg	nd	4	yes	96	86	116	yea	2.4					yes
Phosphorus	па	20	mg/kg	nđ	40	yes	111	73	130	yes	DA	DA	DA	na.	na	yes
Phosphorus	na	20	mg/kg	nd	40	yes	114	73	130	yes	па	DA	DA	DA	DA	ycs
Phosphorus	De	20	mg/kg	nd	40	yes	115	73	130	yes	па	па	БА	DA	DA	yes
Silver	EA.	1	mg/kg	nd	2	yes	109	25	200	yes	па	DA	DA	na	na	yes
Silver		I	mg/kg	nd	2	yes	141	25	200	yes	DA	па	Da	DA	DA	yes
Silver	TA .	1	mg/kg	nd	2	yes	147	25	200	yes	0.4	na	DA	na	TA	yes
Titanhum	54	5	mg/kg	nd	10	yes	132	37	174	yes	DA	BA	па	Ба	DA	yes
Titanhum	TA .	5	mg/kg	nd	10	yes	134	37	174	yes	na	04	na	па	na	yes
Titanham	TP15 15- 17.5	5	mg/kg	nd	10	yes	126	37	174	yes	120	100	70	130	yes	yes
Vanadhm	TP10 70-75	1	mg/kg	nd	2	yes	102	81	119	yes	87	100	70	130	yes	yes
Vanadhim	TP15 15- 17.5	1	mg/kg	nd	2	yes	97	81	119	yes	88	100	70	130	yes	yes
Vanadium	TP2 5-7.5	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Zinc	TP10 70-75	5	mg/kg	nd	10	yes	95	85	112	yes	87	100	70	130	yes	yes
Zine	TP15 15- 17.5	5	mg/kg	nd	10	yes	91	85	112	yes	84	100	70	130	yes	yes
Zinc	TP2 5-7.5	5	mg/kg	nd	10	yes	95	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pR	Dá	0.01	Units	na	DA	па	98	90	110	yes	да	13.6	Ba	па	ца	yes
PH	24	0.01	Units	na	na	TA	98	90	110	yes	па	na	па	DA	na	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis na = Not Applicable ns = Insufficient Sample Submitted

- = parameter not detected nd
- = trace level less than EQL TR

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Report Date: October 26/2001 Contact: Mahaboob Alam Lab Ref # : G214771 Lab Quote #: EG009-0811 Client PO#: INCO Client Ref#: ONT34646

Analysis of Soil, expressed on a dry weight basis

EQL	Units	TP14 10- 12.5	TF1415- 17.5	TP14 30-35	TP145-7.5	TP14 70-75
0.2	mg/kg	0.9	1.0	0.8	1.0	1.0
0.2	mg/kg	14.4	51.5	2.4	20.04	14.9
0.2	mg/kg	4.5				1.7
20	mg/kg	43200	5 TO 10 TO 10 TO 10	and the second	1 N. 1	10900
5	mg/kg	550		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	210/2201	10900
02	mg/kg	5.4	10000	1.00.00		142
0.5	mg/kg	nd			10.22	nd
1	10000	27	30.22	12.2	19622	26
2	mg/kg	7	73525			20
1	mg/kg	61				72
50	mg/kg	81800		and the second second	100 Aug. 1	64800
5	mg/kg	48		12/2/2025	10000	300
1		6120		10.00		1210
3	mg/kg	nd			1.000	nd
2	mg/kg	183	1.17.2 A.L.		and the second	nd 146
20	mg/kg	344	348	323		372
1	mg/kg	nd				nd
5	mg/kg	695		- G	125	332
1	10000	27	1.11	A 200 B	1000	16
5	mg/kg	147	1 - Citika - Li	17075		252
0.01	Units	8.03			100	7.86
0.01	%	3.3	101212	3225		10.8
	0.2 0.2 0.2 20 5 0.5 1 2 1 50 5 1 3 2 20 1 5 1 5 1 5 1 5 1 5 5 1 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           20         mg/kg           0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           0.2         mg/kg           0.5         mg/kg           1         mg/kg           5         mg/kg           3         mg/kg           3         mg/kg           2         mg/kg           3         mg/kg           1         mg/kg           2         mg/kg           3         mg/kg           1         mg/kg           2         mg/kg           1         mg/kg           1         mg/kg           5         mg/kg           1         mg/kg           5         mg/kg           0.01         Units	0.2         mg/kg         0.9           0.2         mg/kg         14.4           0.2         mg/kg         4.5           20         mg/kg         43200           5         mg/kg         550           0.2         mg/kg         5.4           0.5         mg/kg         61           1         mg/kg         61           50         mg/kg         81800           5         mg/kg         61           50         mg/kg         61           50         mg/kg         61           50         mg/kg         81800           5         mg/kg         81800           5         mg/kg         8180           1         mg/kg         6120           3         mg/kg         183           20         mg/kg         183           20         mg/kg         695           1         mg/kg         695           1         mg/kg         27           5         mg/kg         147           0.01         Units         8.03	0.2         mg/kg         0.9         1.0           0.2         mg/kg         14.4         16.2           0.2         mg/kg         4.5         4.9           0.2         mg/kg         43200         47200           3         mg/kg         550         340           0.2         mg/kg         5.4         5.9           0.5         mg/kg         7         7           1         mg/kg         61         53           50         mg/kg         61         53           50         mg/kg         6120         5920           3         mg/kg         6120         5920           3         mg/kg         6120         5920           3         mg/kg         81800         71800           5         mg/kg         8180         71800           5         mg/kg         8180         5920           3         mg/kg         6120         5920           3         mg/kg         nd         nd           2         mg/kg         183         166           20         mg/kg         644         348           1         mg/kg	0.2         mg/kg         0.9         1.0         0.8           0.2         mg/kg         14.4         16.2         14.4           0.2         mg/kg         4.5         4.9         4.5           0.2         mg/kg         43200         47200         44100           0.2         mg/kg         550         340         291           0.2         mg/kg         5.4         5.9         5.5           0.5         mg/kg         nd         nd         nd           1         mg/kg         27         26         23           2         mg/kg         61         53         45           50         mg/kg         81800         71800         59400           5         mg/kg         6120         5920         5740           3         mg/kg         6120         5920         5740           3         mg/kg         16         152         20           3         mg/kg         164         152         20           10         mg/kg         6120         5920         5740           3         mg/kg         166         152         20           10	EQL         Units         12.5         17.5           0.2         mg/kg         0.9         1.0         0.8         1.0           0.2         mg/kg         14.4         16.2         14.4         16.2           0.2         mg/kg         4.5         4.9         4.5         4.4           20         mg/kg         43200         47200         44100         40400           5         mg/kg         550         340         291         451           0.2         mg/kg         5.4         5.9         5.5         5.1           0.5         mg/kg         nd         nd         nd         0.6           1         mg/kg         61         53         45         58           50         mg/kg         81800         71800         59400         81900           5         mg/kg         6120         5920         5740         5870           3         mg/kg         nd         nd         nd         3         38           1         mg/kg         183         166         152         189           20         mg/kg         344         348         293         338 <tr< td=""></tr<>

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence,

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 27/2001
Date Reported:	October 26/2001
Lab Ref#:	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	1) Analysis of arsenic in soil by Hydride Generation
	Atomic Absorption.
	U.S. EPA Method No. 7061(Modifications)
	2) Analysis of antimony in soil by hydride generation.
	U.S. EPA Method No. 7042
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	4) Analysis of trace metals in soil by Inductively Coupled
	Plasma Spectrophotometry.
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Env	ironment Ltd.	Date Received:	September 27/2001
	1200 Denison Street		Date Reported:	October 26/2001
	Markham, ON, CAN.	ADA	Lab Ref#:	G214771
	L3R 8G6		Lab Quote#:	EG009-0811
			Client PO#:	INCO
Fax:	905-479-9326		Client Ref#:	ONT34646
Attn:	Mahaboob Alam			
		Certificate of Analysis		
		our canence or finally sis		
Methode	ology: (Cont'd)			
		<ol><li>Determination of the moisture content of soil by weight</li></ol>	t.	
		ASTM Method No. D2216-80		
Instrume	entation:	1) Varian VGA 76		
		2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VG	A 76	
		4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotome	ter	
		5) Orion Research Expandable Ion Analyzer EA940		
		6) Precision Mechanical Convention Oven/Sartorius Basic	Balance	
Sample	Description:	Soil		

QA/QC:

Refer to CERTIFICATE OF QUALITY CONTROL report.

Results:

Refer to REPORT of ANALYSIS attached.

are Epos

Certified By Elaine Grant Accourt/Manager

tified By Laboratory Supervisor

Il work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip lytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting s per specific contractual arrangements.

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery			M	atrix Spil	ce		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP10 70-75	0.2	mg/kg	nđ	0.5	yes	107	84	120	yes	5.4	5.0	3.5	6.5	yes	yes
Arsenic	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	114	84	120	yes	5.9	5.0	3.5	6.5	yes	yes
Arsenic	TP2 3-7.5	0.2	mg/kg	nd	0.5	yes	109	84	120	yes			•		•	yes
Antimony	TP10 70-75	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	4.8	5.0	3.5	6.5	yes	yes
Antinxeny	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.9	5.0	3.5	6.5	yes	yes
Antimony	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	129	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Selenium	17/10 70-75	0.2	mg/kg	nd	0.5	yes	120	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Seienkum.	TP15 15- 17.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6.5	yes	yes
Selenium	TP2 5-7.5	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.0	5.0	3.5	6.5	yes	yes
Ahminum	DA	20	mg/kg	21	40	yes	99	74	125	yes	T.A	na	na	tia.	The .	yes
Alamiuam	па	20	mg/kg	nd	40	yes	94	74	125	yes	па	- 114	D.B.	DA	DA	yes
Ahmimm	14	20	mg/kg	ba	40	yes	98	74	125	yes	T.A	na	па	na	ELA	yes
Barham	TP10 70-75	5	mg/kg	nd	10	yes	92	82	113	yes	88	100	70	130	yes	yes
Barham	TP15 15- 17.5	5	mg/kg	nd	10	yes	89	82	113	yes	90	100	70	130	ycs	yes
Barhum	TP2 5-7.5	5	mg/kg	nd	10	yes	92	82	113	yes	90	100	70	130	ycs	yes
Berythum	TP10 70-75	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.4	10	7	13	yes	yes
Berytlium	TP15 15- 17.5	0.2	mg/kg	nd	0.4	yes	79	72	124	yes	8.7	10	7	13	yes	yes
Beryilium	TP2 3-7.5	0.2	mg/kg	ba	0.4	yes	86	72	124	yes	8.9	10	7	13	yes	yes
Cedmium	TP10 70-75	0.5	mg/kg	nd	0.6	yes	53	0	180	yes	88.6	100	70	130	yes	yes
Cadmium	TP15 15- 17.5	0.5	mg/kg	nd	0.6	yes	34	0	180	yes	91.4	100	70	130	ves	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted = parameter not detected ns.

nd

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 26/2001
Lab Ref # :	G214771
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	æ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Cadmium	TP2 5-7.5	0.5	mg/kg	nd	0.6	yea	121	0	180	yes	92.1	100	70	130	yes	yes
Chromium	TP10 70-75	1	mg/kg	nd	2	yes	105	72	124	yes	89	100	70	130	yes	yes
Chromium	TP15 15- 17.5	1	mg/kg	nd	2	yes	99	72	124	yes	90	100	70	130	yes	yes
Chromhun	TP2 5-7.5	1	mg/kg	nd	2	yes	105	72	124	yes	90	100	70	130	yes	yes
Cobalt	TP10 70-75	2	mg/kg	bđ	4	ycs	95	85	123	yes	87	100	70	130	yes	yes
Cobalt	TP15 15- 17.5	2	mg/kg	nd	4	yes	90	85	123	yes	87	100	70	130	yes	yes
Cobalt	TP2 5-7.5	2	mg/kg	nd	- 4	yes	97	85	123	yes	99	100	70	130	yes	Yes
Copper	TP10 70-75	1	mg/kg	nd	4	yes	97	78	122	yes	84	100	70	130	yes	yes
Copper	TP15 15- 17.5	1	mg/kg	nd	4	yes	86	78	122	yes	87	100	70	130	yes	yes
Copper	TP2 5-7.5	1	mg/kg	nd	4	yes	96	78	122	yes						yes
Iron	TA .	50	mg/kg	nd	100	yes	86	85	119	yes	DA	Da	na	па	DA	yes
Iron	104	50	mg/kg	nd	100	yes	88	85	119	yes	Da	1.4	па	DA	na	yes
Iron	DA	50	mg/kg	nd	100	yes	89	85	119	yes	па	DA	ПА	DA	DA	yes
Lead	TP10 70-75	5	mg/kg	nd	10	yes	108	48	152	yes	86	100	70	130	yes	yes
Lead	TP15 15- 17.5	5	mg/kg	nđ	10	yes	73	48	152	yes	86	100	70	130	yes	yes
Lead	TP2 5-7.5	5	mg/kg	nd	10	yes	113	48	152	yes	89	100	70	130	VCS	yes
Мапдалюве	TP10 70-75	1	mg/kg	nd	2	yes	97	85	115	yes	91	100	70	130	Yes	yes
Manganese	TP15 15- 17.5	1	mg/kg	nd	2	yes	92	85	115	yes	78	100	70	130	yes	yes
Manganese	TP2 5-7.5	1	mg/kg	nd	2	yes	97	85	115	yes	82	100	70	130	yes	yes
Molybdenum	TP10 70-75	3	mg/kg	nd	6	Yes	160	0	210	yes	175	200	140	260	Vea	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

October 26/2001
G214771
EG009-0811
INCO
ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery			M	atrix Spil	æ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Molybdenam	TP15 15- 17.5	3	mg/kg	nd	6	yes	128	0	210	yes	174	200	140	260	yes	yes
Molybdemen	TP2 5-7.5	3	mg/kg	nd	6	yes	147	0	210	yea	176	200	140	260	yes	yes
Nickel	TP10 70-75	2	mg/kg	ba	4	yes	97	86	116	yes	87	100	70	130	yes	yes
Nickel	TP15 15- 17.5	2	mg/kg	nd	4	ycs	92	86	116	yes	81	100	70	130	yes	yes
Nicicel	TP2 5-7.5	2	mg/kg	nd	4	ycs	96	86	116	yes			•	•		yes
Phosphorus	DA	20	mg/kg	nd	40	yes	111	73	130	yes	DA	па	па	BA	пя	yes
Phosphorus	DA	20	mg/kg	nd	40	yes	114	73	130	yes	na	-	na	DA	Бя	yes
Phosphorus	DA	20	mg/kg	nd	40	yes	115	73	130	yes	па	na	па	па	na	yes
Silver	-	1	mg/kg	nd	2	yes	109	25	200	yes	DA	na.	DA	na	па	yes
Silver	DA.	1	mg/kg	nd	2	yes	141	25	200	yes	БА	D.S	DA	TLA .	na	yes
Silver	24	1	mg/kg	nd	2	yes	147	25	200	yes	D.A	DA	па	DA	ця	yea
Titankum		5	mg/kg	nd	10	yes	132	37	174	yes	па	па	па	па	па	yes
Titankum	DA	5	mg/kg	nd	10	yes	134	37	174	yes	DA	ДА	na	DA	104	yes
Titankum	TP15 15- 17.5	5	mg/kg	nd	10	yes	126	37	174	yes	120	100	70	130	yes	yes
Vanadhim	TP10 70-75	1	mg/kg	nd	2	yes	102	81	119	yes	87	100	70	130	yes	yes
Vanadium	TP15 15- 17.5	1	mg/kg	ba	2	yes	97	81	119	yes	88	100	70	130	yes	yes
Vanadium	TP2 5-7.5	1	mg/kg	nd	2	yes	102	81	119	yes	91	100	70	130	yes	yes
Zinc	TP10 70-75	5	mg/kg	ba	10	yes	95	85	112	yes	87	100	70	130	yes	yes
Zinc	TP15 15- 17.5	5	mg/kg	nd	10	yea	91	85	112	yes	84	100	70	130	yes	yes
Zinc	TP2 5-7.5	5	mg/kg	nd	10	yes	95	85	112	yes	98	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence

Unavailable due to dilution required for analysis

na = Not Applicable

ns = Insufficient Sample Submitted

nd = parameter not detected

TR = trace level less than EQL

Corp	
ervices	
vtical S	
Anal	
Philip	

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam Analysis of Soil, expressed on a dry weight basis

INCO **ONT34646** October 26/2001 G214771 EG009-0811 Date Reported: Lab Ref# : Lab Quote#: Client Ref#: Client PO#:

				J.L.	Process Blank	k	Pro	Process % Recovery	ecovery			W	Matrix Spike	2		Overall
	SAMPLE ID				Upper			Lower	Upper				Lower	Upper		QC
Parameter	(spike)	EQL	Units	Result	Limit	Accept	Result	Limit	Limit	Accept	Result	Target	Limit	Limit	Accept	Acceptable
pH	a	0.01	Units	1	8	N.	98	8	110	ycs	a	a	1	a	a	yeı
H.	a	10'0	Units	1	ā	8	86	8	011	ya	a	S.	N.	8	đ	ya

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence
Unavailable due to dilution required for analysis
Not Applicable
Insufficient Sample Submitted
parameter not detected
trace level tess than EQL

g. sast

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Report Date: October 26/2001 Contact: Mahaboob Alam Lab Ref # : Lab Quote #: Client PO#:

G214771 EG009-0811 INCO Client Ref#: ONT34646

Analysis of Soil, expressed on a dry weight basis

	EQL	Units	12.5	177			
Antimony				17.5	17.5 Replicate		
	D.2	mg/kg	0.5	0,5	0.5	0.5	0.6
Arsenic	0.2	mg/kg	5.3	5.8	5.9	4.2	5.8
Selenium	0.2	mg/kg	. 0.6	0.7	0.7	0.5	0.7
Aluminum	20	mg/kg	11100	9950	10000	18600	11900
Barium	5	mg/kg	90	94	95	126	92
Beryllium	0.2	mg/kg	0.5	0.5	0.5	0.9	0.6
Cadmium	0.5	mg/kg	nd	0.8	nd	nd	nd
Chromium	1	mg/kg	19	18	17	24	17
Cobalt	2	mg/kg	7	8	8	12	11
Copper	1	mg/kg	38	42	41	39	55
Iron	50	mg/kg	17900	14600	14700	22700	18400
Lead	5	mg/kg	197	91	86	562	82
Manganese	1	mg/kg	302	301	304	406	345
Molybdenum	3	mg/kg	nd	nd	nd	nd	ba
Nickel	2	mg/kg	155	250	258	164	444
Phosphorus	20	mg/kg	609	719	749	617	717
Silver	1	mg/kg	ba	nd	nd	nd	nd
Titatsiom	5	mg/kg	179	188	188	227	211
Vanadium	1	mg/kg	24	23	22	35	25
Zine	5	mg/kg	107	150	158	97	125
pH	0.01	Units	8.72	7.41	7.41	7.43	7.40
Moisture Content	0.01	96	7.27	8.84	9.88	12.9	8.54

EQL

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

## Philip Analytical Services Corp

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd.	Report Date:	October 26/2001
Contact: Mahaboob Alam	Lab Ref # :	G214771
	Lab Quote #:	EG009-0811
	Client PO#:	INCO
Analysis of Soil, expressed on a dry weight basis	Client Ref#:	ONT34646

Parameter	EQL	Units	TP15 70-75			
Antimony	0.2	mg/kg	nd			
Arsenic	0.2	mg/kg	3.6			
Selenium	0.2	mg/kg	nd			
Ahaminam	20	mg/kg	23800			
3arium	5	mg/kg	145			
Berylliam	0.2	mg/kg	1.0			
Cadminim	0.5	mg/kg	nd		1	
Thromium	1	mg/kg	30		1	
Jobalt	2	mg/kg	15			
Copper	1	mg/kg	34			
ron	50	mg/kg	31300			
.ead	5	mg/kg	18			
danganese	1	mg/kg	415			
dolybdenum	- 3	mg/kg	nd	1		
Vickel	2	mg/kg	220			
hospherus	20	mg/kg	756			
libver	1	mg/kg	nd	1		
litanium	5	mg/kg	230			
/anadium	1	mg/kg	43			
Line	5	mg/kg	81			
H	0.01	Units	7.54			
doisture Content	0.01	%	13.1			

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

Date Received:	September 26/2001
Date Reported:	October 21/2001
Lab Ref#:	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646
Sampled By:	<b>ONT 34646</b>

### **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
	Moisture Content
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	<ol> <li>Analysis of antimony in soil by hydride generation.</li> <li>U.S. EPA Method No. 7042</li> </ol>
	<ol> <li>Analysis of selenium in soil by hydride generation.</li> <li>U.S. EPA Method No. 7741(Modification)</li> </ol>
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Envi	ronment Ltd.	Date Received:	September 26/2001
	1200 Denison Street		Date Reported:	October 21/2001
	Markham, ON, CANA	DA	Lab Ref#:	
	L3R 8G6		Lab Quote#:	G214759
			Client PO#:	EG009-0811
Fax:	905-479-9326		Client Ref#:	INCO
				ONT34646
Attn:	Mahaboob Alam		Sampled By:	ONT 34646
		Certificate of Analysis		
224285-357	2 12 22			
Methodo	ology: (Cont'd)			
		6) Determination of the moisture content of soil by weight	ght.	
		ASTM Method No. D2216-80		
Instrume	ntation	1) Varian VGA 76		
motrume	indition.	The state of the s	101.01	
		2, 3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian V	/GA 76	
		4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophoton 5) Orion Research Expandible Jan Andrew Expande	neter	
		<ol> <li>5) Orion Research Expandable Ion Analyzer EA940</li> <li>6) Precision Mechanical Convention Oven/Sartorius Base</li> </ol>	a to a support of the second second	
		of meetsion meetalical convention oven/sationus Bas	sic Balance	
Sample I	Description:	Soil		
QA/QC:		Refer to CERTIFICATE OF QUALITY CONTROL rep	ort.	
Results:		Refer to REPORT of ANALYSIS attached.		

prie Com

Certified By Elaine Grant Account Manager

LL Certified By Laboratory Supervisor

¹ I work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip ^{wol}ytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting i per specific contractual arrangements.

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	icess % R	lecovery				Overall			
Parameter	SAMPLE ID (spike)	EQL U	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	111	84	120	yes	6.4	5.0	3.5	6.5	yes	yes
Americ	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	116	84	120	yes		•	•	•	1.00	yes
Antimony	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Antimony	TP6 -13-17.5CM	0.2	mg/kg	nd	0.5	yes	129	29	1.57	yes	3.8	5.0	3.5	6.5	yes	yes
Selenhum	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6,5	yes	yes
Selenium	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.5	5.0	3.5	6.5	yes	yes
Ahminum	24	20	mg/kg	27	40	yes	102	74	125	yes	DA	BA	ца	DA	па	yes
Aluminum	54	20	mg/kg	nd	40	yes	104	74	125	yes	na	158	33.6	na	па	yes
Barium	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	93	82	113	yes	92	100	70	130	yes	yes
Barium	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	95	82	113	yes	93	100	70	130	yes	yes
Berylliam	TP1 -3-7.3CM	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.6	10	7	13	yes	yes
Beryllium	TP6 -13-17.5CM	0.2	mg/kg	nd	0.4	yes	91	72	124	yes	9.1	10	7	13	yes	yes
Cadmiam	TP1 -3-7.5CM	0.5	mg/kg	nđ	0.6	yes	45	0	180	yes	90.3	100	70	130	yes	yes
Cadmham	TP6 -15-17.5CM	0.5	mg/kg	nd	0.6	yes	123	0	180	yes	95.5	100	70	130	yes	yes
Chromhum	TP1 -5-7.5CM	1	mg/kg	рц	2	yes	104	72	124	yea	87	100	70	130	yes	yes
Chromhum	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	121	72	124	yes	97	100	70	130	yes	yes
Cobali	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	85	123	yes	83	100	70	130	yes	yes
Coball	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	111	85	123	yes	93	100	70	130	yes	yes
Copper	TP1 -3-7.5CM	1	mg/kg	2	4	ycs	95	78	122	yes	89	100	70	130	yes	yes
Copper	TP6 -15-17.5CM	1	mg/kg	nd	4	yes	114	78	122	yes	94	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

na = Not Applicable

= Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

 $\overline{2}$ 

## Philip Analytical Services Corp **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	icess % R	lecovery				Overall			
Parameter	SAMPLE ID (spike)	EQL U	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Arsenic	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	111	84	120	yes	6.4	5.0	3.5	6.5	yes	yes
Americ	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	116	84	120	yes		•	•	•	1.00	yes
Antimony	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	143	29	157	yes	3.6	5.0	3.5	6.5	yes	yes
Antimony	TP6 -13-17.5CM	0.2	mg/kg	nd	0.5	yes	129	29	1.57	yes	3.8	5.0	3.5	6.5	yes	yes
Selenhum	TP1 -5-7.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	5.3	5.0	3.5	6,5	yes	yes
Selenium	TP6 -15-17.5CM	0.2	mg/kg	nd	0.5	yes	100	60	140	yes	4.5	5.0	3.5	6.5	yes	yes
Ahminum	24	20	mg/kg	27	40	yes	102	74	125	yes	DA	BA	ца	DA	па	yes
Aluminum	54	20	mg/kg	nd	40	yes	104	74	125	yes	na	158	33.6	na	па	yes
Barium	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	93	82	113	yes	92	100	70	130	yes	yes
Barium	TP6 -15-17.5CM	5	mg/kg	nd	10	yes	95	82	113	yes	93	100	70	130	yes	yes
Berylliam	TP1 -3-7.3CM	0.2	mg/kg	nd	0.4	yes	82	72	124	yes	8.6	10	7	13	yes	yes
Beryllium	TP6 -13-17.5CM	0.2	mg/kg	nd	0.4	yes	91	72	124	yes	9.1	10	7	13	yes	yes
Cadmiam	TP1 -3-7.5CM	0.5	mg/kg	nđ	0.6	yes	45	0	180	yes	90.3	100	70	130	yes	yes
Cadmham	TP6 -15-17.5CM	0.5	mg/kg	nd	0.6	yes	123	0	180	yes	95.5	100	70	130	yes	yes
Chromhum	TP1 -5-7.5CM	1	mg/kg	рц	2	yes	104	72	124	yea	87	100	70	130	yes	yes
Chromhum	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	121	72	124	yes	97	100	70	130	yes	yes
Cobali	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	85	123	yes	83	100	70	130	yes	yes
Coball	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	111	85	123	yes	93	100	70	130	yes	yes
Copper	TP1 -3-7.5CM	1	mg/kg	2	4	ycs	95	78	122	yes	89	100	70	130	yes	yes
Copper	TP6 -15-17.5CM	1	mg/kg	nd	4	yes	114	78	122	yes	94	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

na = Not Applicable

= Insufficient Sample Submitted ns

nd = parameter not detected

TR = trace level less than EQL

 $\overline{2}$ 

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

			Pr	ocess Bla	nk	Pro	ocess % R	ecovery			Overall					
Parameter	SAMPLE ID (spike)	EQL U	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	238	50	mg/kg	nd	100	yes	93	85	119	yes	na	na	na	ца	DA.	yes
Iron	па	50	mg/kg	nd	100	yes	94	85	119	yes	па	DA	па	na	na	yes
Load	TP1 -5-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes
Lend	TP6-15-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes
Manganese	TP1 -5-7.3CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yea
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes
Molybdemm.	TP1 -5-7.5CM	3	mg/kg	nd	6	yes	181	0	210	yes	166	200	140	260	yes	yes
Molybdenum	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yes	yes
Nickel	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	86	116	yes	75	100	70	130	Ves	yes
Nickel	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	104	86	116	yes						yes
Phosphorus	204	20	mg/kg	nd	40	yes	111	73	130	yes	па	DA	Da	DA	DA	yes
Phosphorus	na	20	mg/kg	nd	40	yes	115	73	130	yes	па	па	DA	na	DA	yes
Silver	DA .	1	mg/kg	nd	2	yes	110	25	200	yes	ILA	na	DA	na	ILA	yes
Silver	Ta .	1	mg/kg	nd	2	yes	95	25	200	yes	DA	na	па	T.A	DA	yes
Titanium	ля	5	mg/kg	nd	10	yes	134	37	174	yes	DA	DA	DA	Da	па	yes
Titanium	na	5	mg/kg	nd	10	yes	152	37	174	yes	ILA.	D.a.	na	ns	T.B.	yes
Vanadhim	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	103	81	119	yes	87	100	70	130	yes	yes
Vanadium	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	yes	96	100	70	130	yes	yes
Zhe	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	97	85	112	yes	89	100	70	130	yes	yes
Zine	TP6 -13-17.5CM	5	mg/kg	nd	10	Ves	103	85	112	yes	87	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence .

= Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

nđ = parameter not detected TR = trace level less than EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			М	atrix Spil	æ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	238	50	mg/kg	nd	100	yes	93	85	119	yes	na	na	na	ца	DA	yes
Iron	па	50	mg/kg	nd	100	yes	94	85	119	yes	па	DA	па	na	na	yes
Load	TP1 -5-7.5CM	5	mg/kg	5	10	yes	117	48	152	yes	88	100	70	130	yes	yes
Lend	TP6-15-17.5CM	5	mg/kg	6	10	yes	108	48	152	yes	93	100	70	130	yes	yes
Manganese	TP1 -5-7.3CM	1	mg/kg	nd	2	yes	97	85	115	yes	79	100	70	130	yes	yea
Manganese	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	109	85	115	yes	89	100	70	130	yes	yes
Molybdemm.	TP1 -5-7.5CM	3	mg/kg	nd	6	yes	181	0	210	yes	166	200	140	260	yes	yes
Molybdenum	TP6 -15-17.5CM	3	mg/kg	nd	6	yes	206	0	210	yes	167	200	140	260	yes	yes
Nickel	TP1 -5-7.5CM	2	mg/kg	nd	4	yes	95	86	116	yes	75	100	70	130	Ves	yes
Nickel	TP6 -15-17.5CM	2	mg/kg	nd	4	yes	104	86	116	yes						yes
Phosphorus	204	20	mg/kg	nd	40	yes	111	73	130	yes	па	DA	Da	DA	DA	yes
Phosphorus	na	20	mg/kg	nd	40	yes	115	73	130	yes	па	па	DA	na	DA	yes
Silver	DA .	1	mg/kg	nd	2	yes	110	25	200	yes	ILA	na	DA	na	ILA	yes
Silver	Ta .	1	mg/kg	nd	2	yes	95	25	200	yes	DA	na	па	T.A	DA	yes
Titanium	ля	5	mg/kg	nd	10	yes	134	37	174	yes	DA	DA	DA	Da	па	yes
Titanium	na	5	mg/kg	nd	10	yes	152	37	174	yes	ILA.	D.a.	na	ns	T.B.	yes
Vanadhim	TP1 -5-7.5CM	1	mg/kg	nd	2	yes	103	81	119	yes	87	100	70	130	yes	yes
Vanadium	TP6 -15-17.5CM	1	mg/kg	nd	2	yes	118	81	119	yes	96	100	70	130	yes	yes
Zhe	TP1 -5-7.5CM	5	mg/kg	nd	10	yes	97	85	112	yes	89	100	70	130	yes	yes
Zine	TP6 -13-17.5CM	5	mg/kg	nd	10	Ves	103	85	112	yes	87	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence .

= Unavailable due to dilution required for analysis

= Not Applicable na

= Insufficient Sample Submitted ns

nđ = parameter not detected TR = trace level less than EQL Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 21/2001
Lab Ref # :	G214759
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	ocess % R	ecovery			M	atrix Spil	æ		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pH	24	0.01	Units	na	na	DA	98	90	110	yes	DA	DA	DA	na	na	yes
pH .	п	0.01	Units	na	па	па	98	90	110	yes	ца	D.S.	па	па	BA	yes
														j.		
						2										

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • Unavailable due to dilution required for analysis

- = Not Applicable 118
- = Insufficient Sample Submitted = parameter not detected ns
- nd
- TR = trace level less than EQL

## **Report of Analysis**

 Client : Jacques Whitford Environment Ltd.
 Report Date:
 October 21/2001

 Contact: Mahaboob Alam
 Lab Ref # :
 G214759

 Lab Quote #:
 EG009-0811

 Client PO#:
 INCO

 Analysis of Soil, expressed on a dry weight basis
 Client Ref#:
 ONT34646

Parameter	EQL	Units	TP16 -45-50CM	TP16 -5-7.5CM	TP16 -70-75CM	TP16 -10-12.5CM	TP16 -15-17.5CM
Antimony	02	mg/kg	nd!(2.0)	nd	0.5	9.4	10.4
Arsenic	0.2	mg/kg	7.5	8.2	5.2	333	361
Selenium	0.2	mg/kg	nd/(2.0)	1.4	nd!(2.0)	19.2	7.8
Aluminum	20	mg/kg	9240	16700	5920	8350	10900
Barium	5	mg/kg	69	116	47	162	211
Beryllium	0.2	mg/kg	0.4	0.7	0.2	0.5	0.7
Cadmitum	0.5	mg/kg	2.0	nd	1.3	2.9	nd
Chromium	1	mg/kg	17	29	13	47	52
Cobalt	2	mg/kg	478	31	209	909	874
Copper	1	mg/kg	15700	142	7670	7190	7390
ron	50	mg/kg	17700	24900	11500	34700	94900
ead	5	mg/kg	45	19	-40	147	373
fanganese	1	mg/kg	317	489	182	304	283
4olybdenam	3	mg/kg	nd	nd	nd	nd	nd
lickel	2	mg/kg	39300	855	18300	48400	58300
hosphorus	20	mg/kg	176	571	346	326	235
ilver	1	mg/kg	5	nd	2	9	10
itanium	5	mg/kg	403	322	342	396	760
anadium	1	mg/kg	28	37	36	33	39
inc	5	mg/kg	133	69	56	111	163
н	0.01	Units	8.46	7.77	9.56	7.59	7.53
foisture Content	0.01	%	16.2	18.9	16.4	9.08	14.8

EQL nd Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected != EQL higher than listed due to dilution () Adjusted EQL

#### Philip Analytical Services Corp

## **Report of Analysis**

Client : Jacques Whitford Environment Ltd. Report Date: October 21/2001 Contact: Mahaboob Alam Lab Ref # : G214759 Lab Quote #: EG009-0811 Client PO#: INCO Client Ref#: ONT34646

Analysis of Soil, expressed on a dry weight basis

EQL 0.2	Units	-25-27.5CM			
0.2					
2.575	mg/kg	0.8			
0.2	mg/kg	18.6			
0.2	mg/kg	nd!(2.0)			
20	mg/kg	17600			1
5	mg/kg	63			
0.2	mg/kg	0.7			
0.5	mg/kg	1.6			
1	mg/kg	43			
2	mg/kg	294			
1	mg/kg	11300			
50	mg/kg	57800			
5	mg/kg	119			1
1	mg/kg	112			
3	mg/kg	ba			
2	mg/kg	27600			
20	mg/kg	347			
1	mg/kg	6			
5	mg/kg	1700			
1	mg/kg	62			
5	mg/kg	78			
0.01	Units	7.14			
0.01	%	26.0			
	0.2 20 5 0.2 0.5 1 2 1 50 5 1 3 2 20 1 5 1 5 1 5 1 5 0.01	0.2mg/kg20mg/kg5mg/kg0.2mg/kg0.5mg/kg1mg/kg2mg/kg50mg/kg1mg/kg3mg/kg2mg/kg1mg/kg3mg/kg1mg/kg3mg/kg1mg/kg1mg/kg1mg/kg5mg/kg1mg/kg5mg/kg1mg/kg5mg/kg0.01Units	0.2         mg/kg         nd!(2.0)           20         mg/kg         17600           5         mg/kg         63           0.2         mg/kg         0.7           0.5         mg/kg         1.6           1         mg/kg         43           2         mg/kg         294           1         mg/kg         11300           50         mg/kg         57800           5         mg/kg         112           3         mg/kg         112           3         mg/kg         8d           2         mg/kg         12           3         mg/kg         12           3         mg/kg         6           5         mg/kg         6           5         mg/kg         1700           1         mg/kg         62           5         mg/kg         78           0.01         Units         7.14	0.2       mg/kg       nd!(2.0)         20       mg/kg       17600         5       mg/kg       63         0.2       mg/kg       0.7         0.5       mg/kg       1.6         1       mg/kg       43         2       mg/kg       294         1       mg/kg       11300         50       mg/kg       57800         5       mg/kg       112         3       mg/kg       112         3       mg/kg       add         2       mg/kg       12         3       mg/kg       12         3       mg/kg       6         5       mg/kg       1700         1       mg/kg       62         5       mg/kg       78         0.01       Units       7.14	0.2       mg/kg       ndl(2.0)         20       mg/kg       17600         5       mg/kg       63         0.2       mg/kg       0.7         0.5       mg/kg       1.6         1       mg/kg       43         2       mg/kg       294         1       mg/kg       11300         50       mg/kg       57800         5       mg/kg       119         1       mg/kg       112         3       mg/kg       nd         2       mg/kg       112         3       mg/kg       6         5       mg/kg       1700         1       mg/kg       62         5       mg/kg       78         0.01       Units       7.14

EQL nd

Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

parameter not detected 1 = EQL higher than listed due to dilution () Adjusted EQL

Client:	Jacques Whitford Environment Ltd.	Date Received:	September 26/2001
	1200 Denison Street	Date Reported:	October 21/2001
	Markham, ON, CANADA	Lab Ref#:	G214759
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
		Sampled By:	ONT 34646
Attn:	Mahaboob Alam	2 828	

## **Certificate of Analysis**

#### Additional Comments:

Selenium and Antimony Analysis of Soil:

Selenium EQLs for samples TP16-25-27.5CM, TP16-45-50CM, TP16-70-75CM were adjusted due to matrix interference. Antimony EQL for TP16-45-50CM also adjusted.

CHAIN	• Mississauga, C		Z 1N9	Wats:	1-80	0-263-9	040							Con	iments:	
Client:	JNEL		Sale			→	-	PAS	6 Quot	le # :	IN	100	-Jn	JEL SP	ECIAL	Page of
- N	MARKH	AM						Clie	nt P.O.		-		-			/
	and the second second second	2	<u>et 2</u>	24	-	÷ 1.		Clie	nt Proje	oct # :	Or	<b>J</b> T	34	646		\ /
Contact:		1.0	-		4	-		Sam	pled by	11					cr	DOG 101 EIAE
hone:	and the second second	Fax:		5	<u>}</u>	_	Pleas	se spec	ify Gui	deline (ii	f applicable	)	TNC	O PRO	TOCOL	P 26'01 PM 6:06
			1.30	AN	sis R	equired:		_						TAT (Turn	around Time	ə)
nvoice to	(if other than above):			3 ME	(93									PLE	ASE PROVI	DE ADVANCE NOTICI
	· · · · · · · · · · · · · · · · · · ·	_	- 40	N	8								* (	*some ex		USH PROJECTS
		- <u>.</u>		PlaFAA-2	As.S									(STD)	5-7 Busin	oply, please contact Lo ess Days
	<u>. 18. 19. 19. 19.</u>			E	2				č. 1	11				RUSH	Specify D	ate STRICT
10.1	1979 C. 1979 C. 1970			10		F		1		1	1.1.2		6 P.J	B	Y OLTI,	Date STRICT
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	ICI		HJ		đ			51		2	2 Sample Matrix	No.of Containers	Comments/Contamination Site History
1	TP2 (0-2.5 Cm)	top in the second	1-125	1	1	$\checkmark$	1.				1		.S. (	SOIL	1	Follow Protoc
2	TP2 (215-5 cm)	14 m		1	1	1						-	5	v	1	- FORIO FIOTOC
3	TP2 (5-7.5cm)	3.5.1	11111	1		1								u	1	
4	TP2 (10-12.5cm)		10 13	1		1								и	1	
5	TP2(15-17.5cm)			1		$\checkmark$	1							и	4	Y.
6	TP2 (70-75cm)		17 J. H	~		V					1		-	и	1	
7	DUPI(70-750)	DUPS	943.55	V	1	~	-		21					v	1	
8		1	1990				1									
9		ĕ. (.,														
10	14			1.2		10.1	1.									
11		1	100								÷ .					
12	1	13-5	No.	13					.,							
Samples F (Client Sig	Relinquished to PAS by	ar	n	-					Date:	1/1	161	Time	6: 0	15	Method of Ship	ment off
Complex D	Received in lab by:	1	1		-			-	Date:	401	1010	Time		//	V	mples upon receipt at lab:

Client:	JWEL	·		6			1			<b>T</b>	10 1		054	
Chent:	MARKHAM	1.	AL					S Quote		LN	0-1	TWEL =	PECIAL	- Page of -
			1.200	10				nt P.O. #		r	NT	34646		$-\sqrt{2}$
Contact:	MALAM		51 12					pled by:	10152-0			01010		-100
Phone:		Fax:	1.20	ALS.		Ple				applicable	.)	INCO P	ROTOCO	EP 26'01 0 6:06
				Analysis	Requir		ase spee	iny Guid	ienne (n	application	.,	research and	naround Tim	/
Invoice to	(if other than above):			5				1		T	1 1			IDE ADVANCE NOTICE
				23									FOR F	RUSH PROJECTS
			100	-V 05							1	STD 6	5-7 Busin	apply, please contact Lat ness Days
				E v								RUSH		
20	A A A A A A A A A A A A A A A A A A A			10								B	YOLT 1	Date STRICT T
Sample #	Client Sample I.D.	Date Sampled	Time - Sampled	TCI	PH							Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP8(0-2.5cm)		1 1 2 4	1	1	1		1				SOIL	1	FOLLOW PRUTO
16221			1975-14	1	V			20			e 1	N	1	FULLOW FIUL
2 -	110(215-500			1	1			3/10				N		
3	TP8(215-5cm) TP8(5-7.5m)		1	V	V									
-	TP8(5-7.5w)	) · · · ·		5	1						1.	V	1	20%
3	TP8(5-7.50) TP8(10-12.50	2		~	1							v v	1	1.4 22.46 
3	TP8(5-7.5m) TP8(10-12.5m) TP8(15-17.5m)	2		>>>>	V								1	
3 4 5	TP8(5-7.50) TP8(10-12.50) TP8(15-17.50) TP8(30-350)	) ) )	94355	>>>>>	V							N	     	
3 4 5 6	TP8 (5-7.50) TP8 (10-12.50) TP8 (15-17.50) TP8 (30-350) TP8 (70-75 cm)	DUP 2	94355 094384	22222	V							v v	       	
3 4 5 6 7	TP8(5-7.50) TP8(10-12.50) TP8(15-17.50) TP8(30-350)	DUP 2	94355 094384	22222	V							5 5 5	1 1 1 1	
3 4 5 6 7 8	TP8 (5-7.50) TP8 (10-12.50) TP8 (15-17.50) TP8 (30-350) TP8 (70-75 cm)	DUP 2	94355 094384		V							5 5 5	1 1 1 1	
3 4 5 6 7 8 9	TP 8 (5-7.50) TP 8 (10-12.50) TP 8 (15-17.50) TP 8 (30-350) TP 8 (70-75 cm) DUPI (70-75 cm)	DUP 2	94355 094384	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	V							5 5 5	1 1 1	
3 4 5 6 7 8 9 10 11 12	TP 8 (5-7.50) TP 8 (10-12.50) TP 8 (15-17.50) TP 8 (30-350) TP 8 (70-75 cm) DUPI (70-75 cm)	DUP 2	094384		V						Time:	У У У У	1 1 1	

Client:	JWEL		5.8	1300 5	1		-	-	To	100.	SWEL	SDELin	10
Litent:	MARKHA	M	63.9	1.31			Quote		11		V WEL	SPLUA	Page OD
			1912		200		t P.O. #		0	NT	34640	-	$-\sqrt{2}$
Contact:	MAL	AM	3-15	e que			t Project led by:		-		210-10	SI	EP 26'0 (m 6:06
hone:		Fax:		E	10-12	Samp lease speci	125 126	Vine (if a	mliashla		ENCO	PROTO	
		1 44.	12.2	Adalysis	Required:	lease speci	ry Guide	nne (ii al	ppiicable	, <u> </u>	A DECEMBER OF A		A
nvoice to	(if other than above):			R			1	1.1	1	TT.		naround Tim EASE PROV	IDE ADVANCE NOTICE
		to salah	1027.0	53		-	10			1	in the second		USH PROJECTS
2			100	1 4			ŝ.	1					pply, please contact Lab
				5 1	A	-	$\geq l'$				STD		ness Days
		14.04	1	21	H		4				RUSH	Specify E	Date <u>STRICT TA</u> ly first 2 Sauple
Sample #	Client Sample I.D.	Date Sampled	Time Sampled	Ic	a						Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TPID (0-2.5cm)	27 A.	1.	V	V				= (e)(e)		SOIL	1	FOLLOW PROTOL
2	TP10 (215-5 (m)	- 15j	121	1	1					4	· u	1	· • • • • • • • • • • • • • • • • • • •
ALC: NO.	TP10 (5-715 cm)	1.1		V						-	U	1	
3		196 - 12 - 1		1	1					12	V	1	
3 4	CONTRACTOR AND A DAMAGE	1		1	1						· v	1	
	TP 10 (10- 12.50)	2015 1111	1.30.3	V							A DECEMBER OF THE OWNER		
4	TP 10 (10-12.50) TP 10 (20-22.50)	5		1	1						V	1	
4	TP10 (10-12.50) TP10 (20-22.50) TP10 (30-350)	-) m)	1015	1	1		-		_	4	V	1	
4 5 6	TP10 (10-12.50) TP10 (20-22.50) TP10 (30-350) TP10 (70-750)	ر س) س)		V	1						2 2 3	1	
4 5 6 7	TP10 (10-12.50) TP10 (20-22.50) TP10 (30-350)	ر س) س)		~ ~ ~ ~	1						v	1	
4 5 6 7 8	TP10 (10-12.50) TP10 (20-22.50) TP10 (30-350) TP10 (70-750)	ر س) س)		V							v	1	
4 5 6 7 8 9	TPID (10-12.50) TPID (20-22.50) TPID (30-350) TPID (70-750) DUPI (70-750)	ر س) س)		V							v		
4 5 6 7 8 9 9 9 10	TPID (10-12.50) TPID (20-22.50) TPID (30-350) TPID (70-750) DUPI (70-750)	-) ~) ~) ~) DuP		V							v		
4 5 6 7 8 9 7 10 11 12	TP10 (10-12.50) TP10 (20-22.50) TP10 (30-350) TP10 (70-750) DUP1 (70-750) Relinquished to PAS by 71.	-) ~) ~) ~) DuP		V			Date:			Time:	v	1 1	pment

A Shield

ni : m

Client:	THEL				_ ^	- P/	AS QU	ote # :	7	N	CD-3	TWEL	SPECIA	L (proce Lot )
- 4) ₋	MARK	HAM	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	14	<u>.</u>		lient P.O							EP 26'01 M 6:06
= ~ ,	A State of the second			1.1			ient Pro			Ĉ	NT	346		
Contact:	M.ALI	11			1	Sa	impled t	by:	-					-
Phone:	/A	Fax:	- 10 	5		Please sp	ecify G	uideline	(if applic	able)	IN	CO PR	OTOCOL	
				A Marysis I	Required:							TAT (Turi	naround Tim	ne)
Invoice to	(if other than above):			23							-		EASE PROV	IDE ADVANCE NOTICE
			1	10			12					"some c		RUSH PROJECTS apply, please contact Lab
_	the second s		<u>.</u>	Y.S			10					STO		ness Days
>		1.1		AP				10		2		RUSH	Specify	Date STRICT TA
			<u>(1</u> 22) (41)	20	-							E	BY PLET 1	, only first 2 san
Sample #	Client Sample LD.	Date Sampled	Time Sampled	IC	βH							- Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP11 (0-2.5 cm)			V	1							SOIL	1	FOLLOW PROTO
2	TP11 (215-5 cm	-)		1	V							и	1	/
3	TP11 (5-7.50		S.C., .	1	V		1.3					iu iu	1	
4	TP11 (10-12.5		Sala je	~	V						-	v	1	
5	TP 11 (30-350	~j	1997-00-1	V	V.		1.3					K	1	
6	TP11 (70-750	~)	20	V	V	-					. N	N	1	
7	DUPI (70-750	m) DUP	11 942	1	V				-		1.4	~	1	
8												\$5		
9	1. 12 1.		Auto	1.1.			1.5							14 (4) s
10			1.000	1.4 1								1.6		
11														
12				1.5			10		1		3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Samples R (Client Sig	Relinquished to PAS by	q'A	5 _			in fig	Date:		00	2	Time:	05	Method of Shi	ipment
againet a	Received in lab by:	yer	5	10.00	1.1		Date	1/09	126,		Time:	,	Delw	amples upon receipt at lab:

lient:	TWEL	M			<u>.</u>		AS Que		In	10-0	TWEL B	RECIA	AL Page Zof
1.8		1.8468	2.75.65	2. 1	5 A 7		lient P.O		0	NT.3	34646		
Contact: _	M. ALAI	М	19.5	700.00			ampled b	0.011.0		1 B.		. S	EP 26 '01 PM 8:05
hone: .		Fax:	1.1	S.J.F					if applicable	IN	10 PRO	TOCOL	and the second se
				Antysis	Required:						125 1 1 16 14	around Tim	ne)
nvoice to (	(if other than above):			31							PLE	ASE PROV	IDE ADVANCE NOTICE
		المتح المحمد	<u>- 1</u>	55	"	1.8					*some ex		RUSH PROJECTS apply, please contact Lab
			in the second	44							STD		ness Days
1	- 1, 121, M# (0, 1, 20)			AP.	5		12-			121	RUSH	Specify I	Date STRICT TA
3 - 5-		-	1. <u>1.</u> 1.	2	1		1	00	1	8	By	Offint 1,	first two sample on,
Sample	Client Sample I.D.	Date	Time	N	0	14 14	1.4	21			Sample	No.of	Comments/Contamination/
#		Sampled	Sampled	54	4	1.1					Matrix	Containare	Cita Uistoni
1	4	Sampled	Sampled	1	7				21 24		Matrix	Containers	Site History
1	TP14 (0-215 Lm)	these Bett	Sampled	1	1						SOIL	Containers	
# 1	TP14 (0-215 Lm) TP14 (215-5cm	)	Sampled	~~~	3							Containers	
# 1 2	TP14 (0-2:5 Lm) TP14 (2:5-5cm TP14 (5-7:5m	<u>,</u>	Sampled	<<<1	1555						SOIL	Containers	
# 1 3	TP14 (0-2:5 Lm) TP14 (2:5-5cm) TP14 (5-7:5m) TP14 (10-12:50)	) ) w)	Sampled	<u> </u>	1111						SOIL U M	Containers	
# 1 , 2 3 4	TP14 (0-2:5 Lm) TP14 (2:5-5cm) TP14 (5-7:5m) TP14 (10-12:50) TP14 (15-17:5	ي ب ب ب ب	Sampled	<<<<>>	1222						SOIL U M U	Containers	Site History FOLLOW PROTOCOL
# 1 2 3 4 5	TP14 (0-2.5 Lm) TP14 (2.5-5 Cm) TP14 (5-7.5 m) TP14 (10-12.5 m) TP14 (15-17.5 TP14 (30-35	) )) )) )) ))	Sampled	<<<<<>>	1111						SOIL U M	Containers	
# 1 , 2 3 4 5 , 1 6	TP14 (0-2:5 Lm) TP14 (2:5-5cm) TP14 (5-7:5m) TP14 (10-12:50) TP14 (15-17:5	))))))))))))))))))))))))))))))))))))))		<<<<>>	1111						SOIL U M U	Containers	
# 1 2 3 4 5 5 6 7	TP14 (0-2:5 Lm) TP14 (2:5-5 Cm) TP14 (5-7:5 m) TP14 (10-12:5 m) TP14 (10-12:5 m) TP14 (15-17:5 TP14 (30-35 TP14 (70-75	))))))))))))))))))))))))))))))))))))))		1>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1111						SOIL V N V V	Containers	
# 1 2 3 4 5 7 6 7 8	TP14 (0-2:5 Lm) TP14 (2:5-5 Cm) TP14 (5-7:5 m) TP14 (10-12:5 m) TP14 (10-12:5 m) TP14 (15-17:5 TP14 (30-35 TP14 (70-75	))))))))))))))))))))))))))))))))))))))		1>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1111						SOIL V N V V	Containers	
₩ 1 2 3 4 5 7 6 7 8 5 7 8 5 7	TP14 (0-2:5 Lm) TP14 (2:5-5 Cm) TP14 (5-7:5 m) TP14 (10-12:5 m) TP14 (10-12:5 m) TP14 (15-17:5 TP14 (30-35 TP14 (70-75	))))))))))))))))))))))))))))))))))))))		1>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1111						SOIL V N V V	Containers	
# 1 2 3 4 5 6 7 8 9 2 7 10	TP14 (0-2:5 Lm) TP14 (2:5-5 Cm) TP14 (5-7:5 m) TP14 (10-12:5 m) TP14 (10-12:5 m) TP14 (15-17:5 TP14 (30-35 TP14 (70-75	))))))))))))))))))))))))))))))))))))))		1>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1111						SOIL V N V V	Containers	

Client:	JWEL		PAS QUOTO #: INCO-JWEL SPECIAL													
	MARK			Cli	ent P.O	.#:	-	-	ONT 34646							
Contact:	M. ALA	25.00	8			ent Pro				ON	1 -	24641	2			
Phone:		Fax:		3				npled b	10 C A				T	in pp	070109	EP 26'01 PH 6:06
	Second Second	FAA	1900	Aphitysis	Remin		lease spe	city Gi	udeline	(if app	licable	)	LNC	in the		
Invoice to	(if other than above):	4	4.34	S	Nequi						175	TT	1	The second	around Tim	(IDE ADVANCE NOTICE
12.1955010000				m	2			1	1				1		FOR	RUSH PROJECTS
				N N	- 1 C				- 10-	80						pply, please contact La
	1	1.00	64 J. L	WW S					1					STD		ness Days
											1			RUSH'	Specify I SY OLT1	Date STRICT T , Only first 2 sawp
Sample #	Client Sample I.D.	Date - Sampled	Time Sampled	TCP	9				а 12					Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	TP15 (0-2154)			1	V	(		1.1						SOIL	1	FOLLOW PROTOL
2	TP15 (2.5-5cm)		No. 1	V	1									N	1	1
3	TP15 (5-7.5m)		1. S. W.	1	V			200			1	-		v	1	-
4	TP15 (10-12:5 m)		1	V	V									v	1	
5	TP15 (15-17.50	)	12/01/5	1	V				1	1		1		v	1	
6	TP15 (30-350)		1.1	1	V									~	i	
7	TP15 (70-75m)	1.16	12 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V	V		1	-					196	v	i	
[\] 8	PRIS DUPI(70	3-75m	Thing IC	V	V									v	1	
9.9		1	aug 15	0	1					100						
10	- series -	5.00	9457	1					6	1						
° n-	-19.		14.	1		-	18	10								
	27 1 1	1	1. 1.	-	1.51		-	-	-	1	-		-			
12	and the second se	25 94L													1	

			1997 (P. 1977)				+	-			r	01						
Client: JWEL MARKHAM									INCO-JWEL SPECIAL Page									
	MARKE	<u>, -</u>		ent P.O. #		<b>A</b>	1-	2	11 11									
	·	1	Clie	ent Project	#:	OA	11	5-	1646	2								
Contact:	M. ALA		Sar	apled by:		33	THI	n	SEP 26'01 PH 1:52 PROTOCOL									
hone:-		Fax:	1000	Z		Please spe	cify Guide	line (if ap	plicable).	LINC	-0							
			ALC: THE	Anassis	Required:	TT	<u>г т</u>			1-	1		around Tim	And in case of the local data	NOTICE			
voice to	(if other than above):	20						10	PLE	FOR R	USH PROJECT	S						
		2		3	6		-				1			pply, please c	ontact Lab			
			<u> </u>	W	1	1.4	1.1		1.50			STD		ness Days				
	The second second second	1000		AF.	Ř,			11	1.9		N.	RUSH R	Specify I	Date STA	LICT TAT			
110.00		1.1.1	and an	Q	F		10	12-1	12				fime 1,	only first	aud last sa			
Sample	Client Sample I.D.	Date Sampled	Time Sampled	R	A				o na			Sample Matrix	No.of Containers	Comments/C	ontamination/			
				1.1.1	-			-	-		-							
1	TP16 (215-500	)	1200	V	V		1 - 1					SOIL	1	FOLLOW	PROTOLI			
1	TP16 (2:5-5cm) TP16 (5-7:5cm)			~								SOIL	1	FOLLOW	PROTOLO			
274.0	TP16 (5-7.5 cm)	)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			+1		1				1 + 1	FOLLOW	PROTOLI			
2	TP16 (5-7.5 cm) TP16 (10-12.5 cm)	) )		1000	>>>>				2. 			~	  + 	FOLLOW				
2	TP16 (5-7.5 cm) TP16 (10-12.5 cm) TP16 (15-17.5 cm)	) 		1000	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							v V	  +    	FOLLOW				
2 3	TP16 (5-7.50) TP16 (10-12.50) TP16 (15-17.50) TP16 (25-27.50)	) ;) ;)		1000	<b>VVVVV</b>							3 ¥ 2	  +       	FOLLOW				
2 3 4 5	TP16 (5-7.50) TP16 (10-12.50) TP16 (15-17.50) TP16 (25-27.50) TP16 (45-500)	) -) -) -)		1000								х У У У		FOLLOW				
2 3 4 5 6	TP16 (5-7.50) TP16 (10-12.50) TP16 (15-17.50) TP16 (25-27.50) TP16 (45-500) TP16 (70-750)	) -) -) -)		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>								४ ४ ४ ४	             	FOLLOW				
2 3 4 5 6 7	TP16 (5-7.5 cm) TP16 (10-12.5 cm) TP16 (15-17.5 cm) TP16 (25-27.5 c) TP16 (45-50 cm) TP16 (70-75 cm) DUPI (70-75 cm)			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					i		3 72 72 72 72 72 72 72	             	FOLLOW				
2 3 4 5 6 7 8	TP16 (5-7.50) TP16 (10-12.50) TP16 (15-17.50) TP16 (25-27.50) TP16 (45-500) TP16 (70-750)			11111	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					~		3 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	                 	FOLLOW				
2 3 4 5 6 7 8 9	TP16 (5-7.5 cm) TP16 (10-12.5 cm) TP16 (15-17.5 cm) TP16 (25-27.5 c) TP16 (45-50 cm) TP16 (70-75 cm) DUPI (70-75 cm)			11111	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							3 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5		FOLLOW				
2 3 4 5 6 7 8 9 10	TP16 (5-7.5 cm) TP16 (10-12.5 cm) TP16 (15-17.5 cm) TP16 (25-27.5 c) TP16 (45-50 cm) TP16 (70-75 cm) DUPI (70-75 cm)			11111	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					Č		3 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5		FOLLOW				

Client:	JWEL	PAS Quote # :							INCO-JWEL SPECIAL BAR of								
H H	MARKH	12	1	ō., "				TIN	60=J	NEL D	CUAL	Page of					
ε		INRI				8		Client P.		A	NT 3	4646		to a			
Contact:	MIAL		2.2			Client Pr	1.1			4		1 3					
Phone:		Fax:	a lot mas	7	1	1		Sampled			TA	In Pe	OTOCOT	SEP 26'01 PM 1:45			
			A	Analy	vsis R	equired:		specify C	uideline	(if applicabl	c)	TAT	UTUCUL	SEP 26'01 PH 1:45			
Invoice to	(if other than above):	1		N		equired.	11	1	ŤΤ	11	TT			IDE ADVANCE NOTICE			
	N			33	9			13	2				FOR	RUSH PROJECTS			
	1. S		Sec. 1		5'2	24								apply, please contact Lab			
X	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6		GFAA-	, Se							STD	Q	Date STRICT TA			
1 4		H As,										RUSH	BYACT 1 only First 2 sam				
Sample #	Client Sample 1.D.	Date Sampled	Time Sampled	IC		à						Sample Matrix	No.of Containers	Comments/Contamination/ Site History			
1	TP7 (0-215 cm)	)	13, 1153	V		1		0.5	1			SOIL	1	FOLLOW PROTOC			
2	TP7 (215-Sen)	)	Dia 4	V	(	1			AL P			M	1	I OLOUN TRUTUL			
3	TP7 (5-7.5 m)	)	1	1		/						N	4				
4	TP7 (10-12.54m)	Ser .	1 BA 1 A B	~		V						v	1	1			
5	TP7 (15-17.54	.)	48 1	V		V		1				v	.1				
6	TP7 (70-75m)			1	-	1						v	1				
7	DUP1 (70-750)			V		1						6	1				
8		14		1.5													
9			8	$2^{-1}$													
. 10																	
11			-										1.1.1				
12																	
Samples R	elinquished to PAS by nature)		officer and services of the	N	1.000			Date	10		Time:	_	Method of Shi				

C	N OF CUSTODY RECORI	2	<u>112 (111</u>		<u> </u>	_		1	<u>.</u>		-		0.2-1							
Client:	IWEL		PA	PAS Quote # :				INCO-JWEL SPECIAL Page of												
MARKHAM									). # :	). <u> </u>	MIT TURNIC NO									
		Cli	ent Pro	oject # :	8. –	ONT 34646 SEP 26 01 pm 1:52 SEP 26 01 pm 1:45														
Contact:	M, ALAN	)		2 V	<u> </u>	÷. 1	Sa	mpled t	by:	-		-		00		1 20 01 PM 1	45			
Phone:		Fax:	HA CALLER	167	2	22	Please spe	ecify G	uidelin	e (if ap	plicable	)	IN	CO PR	OTOCO	<u>L</u> )				
е –		1 10.0		And		quired:	- T	-	1 1	- 1	-	r T	T T		around Tim		NOTION			
invoice to	(if other than above):		V. 18 3	N	2	-		-		7	1	1		PLE	FOR R	USH PROJECT	S			
				AA	6.5	1.54		1.		25		1.1	1			pply, please co	ontact Lab			
			<del>11</del>	4	N.			10						STD	5-7 Busin	ness Days				
*	The second second									(RUSH)	Specify [		RICT TAT							
- Martin				Q		Ha		1		1	-	-		-		only first				
Sample #	-Client Sample I.D.	Date Sampled	Time Sampled	A		~			-					Sample Matrix	No.of Containers	Comments/C Site F	ontamination/ listory			
1_1	TP6(0-2.5cm)	-		V		1								Soil	1	FOLLOW	PROTO			
' 2	TP6(215-50m)	31-2	10.12	~		~	1							ч	1	41				
3	TP6 (5-7.5cm)	5 31		1		1			1					и	- 1					
4	TP6(10-12,54)	à.	1 318	V		1		1.				1		И	1					
5	TP6 (15-1750	)	1. 21	V		~								u	1					
6	TP6 (70-75 cm)		1.1.3	V		1								U	1					
7	DUPI (70-75 cm)		5. Z. 19	1	100								100	ч	1					
8			$r_{2,2} \in \mathcal{H}$					1.8						1						
9	1		1000	S.		1.5				. É		1 -								
. 10	1	1.24	Ant				1.5	14				1								
11			1000	S.								1	2	-						
12	S	100	10 m		2				1		31.			1			1. B. 1.			
	Relinquished to PAS by	All all	8.00					Date	e:			Tim	ie:		Method of Sh	ipment				
Samples (Client S	ignature)	542	S. 74																	

lient:	_ JWEL			10.00		PA	S Quo	to # ·	TA	110	- J	WEL	SPECIL	AL Page of
	MARKH			ent P.O.				1		1001	Page of			
æ			* <	- 3			ent Proj		0	NT	3.	4646		En ofisika e
Contact:	M.ALAM.		1967	2.10	1		pled by		2	_			5	EP 26 01 pm 1=52
hone:		Fax: _		E				1.0	if applicab	le)	INC	O PRO	TOCOL	
			and the second	Analysis	Required:	1972				5	1.5		around Tim	10)
voice to	(if other than above):			34							1		ASE PROV	IDE ADVANCE NOTICE
	Acres 199	1.4	<u>e 7</u> 83	NO										USH PROJECTS
1		100		× S				1			1	STD STD		ipply, please contact Lab ness Days
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.55	ПA				6,		1	1.0		Specify I	Data STRICT TAT
6	2. 7. 2. 2. 2	2		A			23				1	Les B	YOUTI,Z	Date STRICT TAT
Sample	Client Sample I.D.	Date Sampled	Time Sampled	ICF	PH		1	1	100			Sample Matrix	No.of	Comments/Contamination/
1,	TP4 (0-2:5 cm	Contraction of the local		V	1			-		-		SOIL	Containers	Site History
2	TP4 (2'5-5 cm)	1.0	0.51	V					1	+		V	-	FOLLOW
3	TP4 (5-7.5 cm	1	1.1.1	V	V			+		1		h		PROTUCOL
4	TP4 (10-12.50		1.02	$\checkmark$				-		+		u		
	TP4 (15-17.50			V	V					-			1	
5	TP4 (25-27.50			1	V	-		-		-		N 10		
5 6			1.1	V	1			-				~	1	
12	TP4 (45-500			1	~			1				~	1	
12	TP4 (45-500)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			-				-	1			
12	TPA (45-500) DUP1 (45-500)		t jed			_				-				
6 7 8			1. 199 1. 199 1. 199				14							
6 7 8 1 9								-						
6 7 8 1 9 10		5										a.		-

CHAIN	Mississauga, C							ŝ.	N		3					
Client:	JWEL		1.1	1.1.1	<u>.</u>	PA	S Quot	le # :	IN	0- J	WEL	SPE	CIAL	Page of		
	MARKHAN	۸	10.	-		Cli	ient P.O.	#:								
di ay	5	Cli	ient Proje	ect # :	0	P26'01 PM 1:52										
Contact!	MALA	Sar	mpled by	<i>r</i> ;			<u>i e</u>	24	1980-1990 - 19	``						
hone:	Please spe	cify Gui	ideline (i	f applicabl	e)	ENCO	PRI	DTOCOL								
.1					Required:						T.	AT (Turn	around Tim	e)		
nvoice to	(if other than above):		5, 10, 10 s	ME				3			200	PLE		IDE ADVANCE NOTICE		
_			-	23	-			1			*.		and all south	pply, please contact Lab		
- 2				11								TD)		ness Days		
	A CARLENT SA	2	1	P/GFAN-							C	USH)	Specify [	Date STRICT TAT		
4:1			1	10	~				2				Time	Date STRICT TAT 1,2001 Only First I Saw		
Sample	Client Sample LD.	Date Sampled	Time Sampled	LCP	Hd	-	-			-		Sample Matrix	No.of	Comments/Contamination/		
1	TP1(0-2.5cm)		(A) (B)	V	1			E .			4	SOIL	1	FULLOW PROTOCOL		
2	TP1(2:5-5cm)	1.87	The second	V	1	1 1 12						v	1			
3	TPI (5-7.5cm)	the star	States.	V	1			1			7 10	N	1	1 1		
4	TPI (10-12.50)	1	digit in	V	1			2	-			и	1	1×60		
5	TPI (25-27.5)		Cont B	V	1	1.1.1.1						и	1	1.0		
6	TP1 (45-50 cm)		12.2.24	V	1							ν	1			
7,	TPI (70-75 cm)		a sugar	V	1	1			1			и	1			
8	TPI BEDROCK	5 8 .	()_(( ===	V	1			213				и	1			
1,9	DUP1 (70-75 cm)			~	1						3	и	1			
10		1 p	0.00													
¹ M		1.	1. 4.3	1.2			1.5		-				2			
+ 12		2		100			Sec.1									
0.220	Samples Relinquished to PAS by (Client Signature)									Time:			Method of Shi	pment		
1 6 K Kg	Relinquished to PAS by						Date:			Time:	8		Method of Shi	pment		



ANALYTICAL SERVICES

Client: Jacques Whitford Environment Ltd. 1200 Denison Street Markham, ON, CANADA L3R 8G6

Fax: 905-479-9326

Attn: Mahaboob Alam

# Date Received:October 4/2001Date Reported:October 11/2001Lab Ref#:G214965Lab Quote#:EG009-0811Client PO#:INCOClient Ref#:ONT34646

# **Certificate of Analysis**

Analysis Performed:	Arsenic, Hydride Generation AA
	Antimony, Hydride Generation, Digestion Required
	Selenium, Hydride Generation
	17 Element ICP Scan
	pH, Hydrogen Ion Activity, Extraction Required
Methodology:	<ol> <li>Analysis of arsenic in soil by Hydride Generation Atomic Absorption.</li> </ol>
	U.S. EPA Method No. 7061(Modifications)
	2) Analysis of antimony in soil by hydride generation.
	U.S. EPA Method No. 7042
	3) Analysis of selenium in soil by hydride generation.
	U.S. EPA Method No. 7741(Modification)
	<ol> <li>Analysis of trace metals in soil by Inductively Coupled Plasma Spectrophotometry.</li> </ol>
	U.S. EPA Method No. 6010
	(Ministry of Environment ELSCAN)
	5) Analysis of pH in soil by electrode.
	U.S. EPA Method No. 9045

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.



ANALYTICAL SERVICES

Client:	Jacques Whitford Environment Ltd.	Date Received:	October 4/2001
	1200 Denison Street	Date Reported:	October 11/2001
	Markham, ON, CANADA	Lab Ref#:	G214965
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
Attn:	Mahaboob Alam		

# **Certificate of Analysis**

Instrumentation:	<ol> <li>Varian VGA 76</li> <li>3) Thermo Jarrell Ash Smith-Hieftje 22 AA/Varian VGA 76</li> <li>4) Thermo Jarrell Ash ICAP 61E Plasma Spectrophotometer</li> <li>5) Orion Research Expandable Ion Analyzer EA940</li> </ol>
Sample Description:	Soil
QA/QC:	Refer to CERTIFICATE OF QUALITY CONTROL report.
Results:	Refer to REPORT of ANALYSIS attached.

mi Certified By

Elaine Grant

Account Manager

Certified By Laboratory Supervisor

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done. Your samples will be retained by PASC for a period of 30 days following reporting or as per specific contractual arrangements.

# **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 11/2001
Lab Ref # :	G214965
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

		-		Pr	ocess Bla	nk	Pro	ocess % R	ecovery				Overall			
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Алиліс	DUP-TPI 70-75CM	0.2	mg/kg	nd	0.5	yes	106	84	120	yes	3.7	5.0	3.5	6.5		
Artenic	DUP-TP17 95-100CM	0.2	mg/kg	nd	0.5	yes	112	84	120	yes	4.2	5.0	3.5	192	yes	yes
Antimony	DUP-TPI 70-75CM	0.2	mg/kg	nd	0.5	yes	100	29	157		5.8			6.5	yes	yes
Antimony	DUP-TP17 95-100CM	0.2	mg/kg	nd	0.5	yes	86	29	157	yes	1.55	5.0	3.5	6.5	yes	yes
Selenium	DUP-TP1 70-75CM	0.2	mg/kg	nd	0.5	yes	140	60	140	yes	3.8	5.0	3.5	6.5	yes	yes
Selenium	DUP-TP17 95-100CM	0.2	mg/kg	nd	0.5	yes	120	60	315	yes	0.000	5.0	3.5	6.5	yes	yes
Aluminum	m	20	mg/kg	nd	40				140	yes	4.9	5.0	3.5	6.5	yes	yes
Aluminum	-	20	mg/kg	10.00	. San	yes	89	74	125	yes	na	na	na	na	na	yes
Barium	DUP-TP1 70-75CM	5	mg/kg	nd nd	40 10	yes	94	74	125	yes	na	na	na	na	na	yes
Barium	DUP-TP17 95-100CM	5			1.00	yes	98	82	113	yes	94	100	70	130	yes	yes
Beryllium	DUP-TP1 70-75CM	0.2	mg/kg	nd	10	yes	101	82	113	yes	94	100	70	130	yes	yes
Boryllium	DUP-TP17 95-100CM	100	mg/kg	nd	0.4	yes	92	72	124	yes	9.2	10	7	13	yes	yes
Cadmium	DUP-TPI 70-75CM	0.2	mg/kg	nd	0.4	yes	97	72	124	yes	9.4	10	7	13	yes	yes
Cadmium	DUP-TP17 95-100CM	0.5	mg/kg	nd	0.6	yes	175	0	180	yes	92.9	100	70	130	yes	yes
Chromium	DUP-TP1 70-75CM	0.5	mg/kg	nd	0.6	yes	142	0	180	yes	92.1	100	70	130	yes	yes
Chromium		1	mg/kg	ba	2	yes	97	72	124	yes	92	100	70	130	yes	yes
Cobalt	DUP-TP17 95-100CM	1	mg/kg	nd	2	yes	102	72	124	yes	94	100	70	130	yes	yes
Cobalt	DUP-TP1 70-75CM	2	mg/kg	nd	4	yes	100	85	123	yes	91	100	70	130	yes	yes
	DUP-TP17 95-100CM	2	mg/kg	nd	4	yes	104	85	123	yes	92	100	70	130	yes	yes
Copper	DUP-TPI 70-75CM	1	mg/kg	nd	4	yes	101	78	122	yes	106	100	70	130	yes	yes
Copper	DUP-TP17 95-100CM	1	mg/kg	nd	4	yes	108	78	122	yes	90	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence • = Unavailable due to dilution required for analysis

na

ns

= Not Applicable = Insufficient Sample Submitted nd

= parameter not detected

TR = trace level less than EQL

# **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

October 11/2001
G214965
EG009-0811
INCO
ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	ocess Bla	nk	Pro	cess % R	ecovery			Overall				
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit	Accept	Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
Iron	ma	50	mg/kg	nd	100	yes	85	85	119	yes	na	na	na	na	па	yes
Iron	na -	50	mg/kg	nd	100	yes	89	85	119	yes	na	na	na	па	na	yes
Lead	DUP-TP1 70-75CM	5	mg/kg	nd	10	yes	100	48	152	yes	91	100	70	130	yes	yes
Lead	DUP-TP17 95-100CM	5	mg/kg	nd	10	yes	105	48	152	yes	91	100	70	130	yes	yes
Manganese	DUP-TPI 70-75CM	1	mg/kg	nd	2	yes	101	85	115	ycs	90	100	70	130	yes	yes
Manganese	DUP-TP17 95-100CM	1	mg/kg	nd	2	yes	104	85	115	yes	94	100	70	130	yes	yes
Molybdenum	DUP-TPI 70-75CM	3	mg/kg	nd	6	yes	206	0	210	yes	181	200	140	260	yes	yes
Molybdenum	DUP-TP17 95-100CM	3	mg/kg	nd	6	yes	138	0	210	yes	187	200	140	260	yes	yes
Nickel	DUP-TPI 70-75CM	2	mg/kg	nd	4	yes	97	86	116	ycs	92	100	70	130	yes	yes
Nickel	DUP-TP17 95-100CM	2	mg/kg	nd	4	yes	102	86	116	yes	87	100	70	130	yes	yes
Phosphorus	<b>m</b> .	20	mg/kg	nd	40	yes	109	73	130	yes	na	na	na	na	na	yes
Phosphorus	75	20	mg/kg	nd	40	yes	113	73	130	yes	па	na	na	na	na	yes
Silver	TA.	1	mg/kg	nd	2	yes	114	25	200	yes	па	na	na	na	na	yes
Silver	TA.	1	mg/kg	nd	2	yes	95	25	200	yes	na	na	na	na	na	yes
Titanium	n	5	mg/kg	nd	10	yes	105	37	174	yes	na	na	na	na	na	yes
Titanium	na	5	mg/kg	nd	10	yes	98	37	174	yes	na	na	na	na	na	yes
Vanadium	DUP-TPI 70-75CM	1.*	mg/kg	nd	2	yes	92	81	119	yes	92	100	70	130	yes	yes
Vanadium	DUP-TP17 95-100CM	1	mg/kg	nd	2	yes	97	81	119	yes	92	100	70	130	yes	yes
Zinc	DUP-TPI 70-75CM	5	mg/kg	nd	10	yes	96	85	112	yes	101	100	70	130	yes	yes
Zinc	DUP-TP17 95-100CM	5	mg/kg	nd	10	yes	100	85	112	yes	91	100	70	130	yes	yes

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence * = Unavailable due to dilution required for analysis

na

 Not Applicable
 Insufficient Sample Submitted
 parameter not detected ns

nd

= trace level less than EQL TR

# **Certificate of Quality Control**

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Date Reported:	October 11/2001
Lab Ref # :	G214965
Lab Quote#:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

				Pr	Process Blank			ocess % R	ecovery			M	latrix Spil	ke		Overall
Parameter	SAMPLE ID (spike)	EQL	Units	Result	Upper Limit	Accept	Result	Lower Limit	Upper Limit		Result	Target	Lower Limit	Upper Limit	Accept	QC Acceptable
pH	па	0.01	Units	na	na	па	100	90	110	yes	na	na	na	na	na	yes
pH		0.01	Units	na	na	na	99	90	110	ycs	na	na	na	na	na	yes
Δ																
						3 <b>2</b>										

EQL = Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence .

- = Unavailable due to dilution required for analysis
- na = Not Applicable
- = Insufficient Sample Submitted ns
- nd = parameter not detected TR = trace level less than EQL

Page 3 of 3

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	October 11/2001
Lab Ref # :	G214965
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

	EQL	Units	DUP-TP1 70-75CM	DUP-TP1 70-75CM Replicate	DUP-TP10 70-75CM	DUP-TP11 70-75CM	DUP-TP12 5-10CM
Antimony	0.2	mg/kg	nd	ba	nd	nd	ba
Arsenic	0.2	mg/kg	1.9	1.9	0.5	1.3	1.6
Selenium	0.2	mg/kg	1.1	1.1	nd	ba	8.6
Aluminum	20	mg/kg	12500	12300	1550	929	49400
Barium	5	mg/kg	75	73	nd	8	182
Beryllium	0.2	rog/kg	0.7	0.7	ba	nd	7.1
Cadmium	0.5	mg/kg	0.7	1.0	nd	nd	nd
Chromium	1	mg/kg	14	13	2	2	13
Cobalt	2	mg/kg	4	3	nd	nd	nd
Copper	1	mg/kg	37	40	2	4	25
Iron	50	mg/kg	10700	10600	1810	3530	11600
Lead	5	mg/kg	15	13	nd	6	nd
Manganese	1	mg/kg	73	72	17	110	3000
Molybdenum	3	mg/kg	nd	nd	nd	nd	nd
Nickel	2	mg/kg	59	58	10	3	32
Phosphorus	20	mg/kg	811	787	286	318	28
Silver	1	mg/kg	nd	nđ	nd	nd	nd
Titanium	5	mg/kg	74	73	87	77	895
Vanadium	1	mg/kg	19	19	3	5	5
Zinc	5	mg/kg	47	47	11	14	9
pH	0.01	Units	7.06	142	7.51	8.26	10.5

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

- Not Requested

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	October 11/2001
Lab Ref # :	G214965
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	DUP-TP13 70-75CM	DUP-TP14 70-75CM	DUP-TP15 70-75CM	DUP-TP16 70-75CM	DUP-TP17 95-100CM
Antimony	0.2	mg/kg	0.2	0.9	0.3	0.3	nđ
Arsenic	0.2	mg/kg	5.7	12.0	3.2	4.0	0.3
Selenium	0.2	mg/kg	0.6	2.2	0.3	0.3	nd
Aluminum	20	mg/kg	3410	10800	15000	3520	1670
Barium	5	mg/kg	12	170	125	29	5
Beryllium	0.2	mg/kg	0.4	1.6	0.8	nd	nd
Cadmium	0.5	mg/kg	nd	2.8	1.0	0.6	nd
Chromium	1	mg/kg	8	25	20	6	3
Cobalt	2	mg/kg	6	11	18	145	nd
Copper	1	mg/kg	19	73	52	5390	16
ron	50	mg/kg	9340	54700	25300	8040	2390
Lead	5	mg/kg	11	270	27	37	nd
Manganese	1	mg/kg	237	1250	511	138	19
Molybdenum	3	mg/kg	nd	5	3	nd	nd
Nickel	2	mg/kg	20	162	589	11400	34
Phospho <b>rus</b>	20	mg/kg	978	337	645	291	258
Silver	1	mg/kg	ba	nd	nd	nd	nd
Titanium	5	mg/kg	57	300	157	156	114
Vanadium	1	mg/kg	15	15	28	23	6
Zinc	5	mg/kg	25	277	83	45	12
H	0.01	Units	8.38	8.88	7.85	9.41	7.66

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	October 11/2001
Lab Ref # :	G214965
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

Parameter	EQL	Units	DUP-TP17 95-100CM Replicate	DUP-TP2 70-75CM	DUP-TP3 95-100CM	DUP-TP4 45-50CM	DUP-TP5 95-100CM
Antimony	0.2	mg/kg	nd	0.3	0.2	0.4	0.2
Arsenic	0.2	mg/kg	0.3	4.5	5.4	10.7	5.1
Selenium	0.2	mg/kg	nd	nd	0.2	3.5	nd
Aluminum	20	mg/kg	1480	16400	16700	8340	14700
Barium	5	mg/kg	nd	134	134	67	134
Beryllium	0.2	mg/kg	nd	0.7	0.7	0.5	0.6
Cadmium	0.5	mg/kg	nd	0.6	0.5	0.8	0.5
Chromium	1	mg/kg	2	22	23	14	21
Cobalt	2	mg/kg	nd	11	12	22	11
Copper	1	mg/kg	10	28	28	195	29
Iron	50	mg/kg	2080	32100	33600	19600	31300
Lead	5	mg/kg	nd	16	8	34	13
Manganese	1	mg/kg	16	499	426	185	561
Molybdenum	3	mg/kg	nd	nd	nd	nđ	nd
Nickel	2	mg/kg	20	50	32	1840	41
Phosphorus	20	mg/kg	235	566	604	678	565
Silver	1	mg/kg	bū	nd	nd	nd	nđ
Titanium	5	mg/kg	93	205	267	142	239
Vanadium	1	mg/kg	5	33	32	23	29
Zinc	5	mg/kg	11	70	71	202	67
pH	0.01	Units	7.66	7.95	7.82	7.32	7.80

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected != EQL higher than listed due to dilution () Adjusted EQL

Client : Jacques Whitford Environment Ltd. Contact: Mahaboob Alam

Report Date:	October 11/2001
Lab Ref # :	G214965
Lab Quote #:	EG009-0811
Client PO#:	INCO
Client Ref#:	ONT34646

Analysis of Soil, expressed on a dry weight basis

Antimony         0.2         mg/kg         0.2         0.3         nd         nd           Arsenic         0.2         mg/kg         2.7         4.0         1.7         1           Selenium         0.2         mg/kg         nd         nd         1.0         00           Aluminum         0.2         mg/kg         nd         nd         1.0         00           Aluminum         0.2         mg/kg         nd         nd         1.0         00           Aluminum         20         mg/kg         16800         16200         1290         45           Barium         5         mg/kg         130         138         27         22           Beryllium         0.2         mg/kg         0.7         nd         nd         0           Cadmium         0.5         mg/kg         0.7         nd         nd         nd         nd           Chromium         1         mg/kg         23         22         2         2         2           Cobalt         2         mg/kg         12         11         2         3         3         3         3         3         3         3         3         3				DUP-TP6	DUP-TP7	DUP-TP8	DUP-TP9	
Arsenic         0.2         mg/kg         2.7         4.0         1.7         1           Selenium         0.2         mg/kg         nd         nd         1.0         0           Aluminum         20         mg/kg         16800         16200         1290         45           Barium         5         mg/kg         130         138         27         2           Beryllium         0.2         mg/kg         0.7         0.7         nd         0           Cadmium         0.5         mg/kg         0.7         nd         nd         nd           Chromium         1         mg/kg         23         22         2         4           Cobalt         2         mg/kg         12         11         2         3           Cobalt         2         mg/kg         37700         31400         3720         66           Lead         5         mg/kg         655         544         131         5           Molybdenum         3         mg/kg         nd         nd         nd         nd           Nickel         2         mg/kg         31         31         33         3         3      <	Parameter	EQL	Units	70-75CM	70-75CM	70-75CM	95-100CM	
Selenium         0.2         mg/kg         nd         nd         1.0         0.0           Aluminum         20         mg/kg         16800         16200         1290         45           Barium         5         mg/kg         130         138         27         22           Beryllium         0.2         mg/kg         0.7         0.7         nd         00           Cadmium         0.2         mg/kg         0.7         0.7         nd         00           Cadmium         0.5         mg/kg         0.7         nd         nd         nd         nd           Cadmium         0.5         mg/kg         23         22         2         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	Antimony	0.2	mg/kg	0.2	0.3	nd	nd	
Aluminum       20 $mg/kg$ 16800       16200       1290       45         Barium       5 $mg/kg$ 130       138       27       2         Beryllium       0.2 $mg/kg$ 0.7       0.7       nd       00         Cadmixm       0.5 $mg/kg$ 0.7       nd       nd       0         Chromium       1 $mg/kg$ 23       22       2       4         Cobalt       2 $mg/kg$ 12       11       2       3         Copper       1 $mg/kg$ 27       25       5       3         Iron       50 $mg/kg$ 37700       31400       3720       66         Lead       5 $mg/kg$ 65       544       131       5         Molybdenum       3 $mg/kg$ 31       31       33       5         Nickel       2 $mg/kg$ 656       572       318       3         Phosphorus       20 $mg/kg$ nd       nd       nd       nd	Arsenic	0.2	mg/kg	2.7	4.0	1.7	1.6	
Barium         5         mg/kg         130         138         27         2           Beryllium         0.2         mg/kg         0.7         0.7         nd         00           Cadmium         0.5         mg/kg         0.7         nd         nd         00           Cadmium         0.5         mg/kg         0.7         nd         nd         nd         nd           Chromium         1         mg/kg         23         22         2         4           Cobalt         2         mg/kg         12         11         2         4           Copper         1         mg/kg         27         25         5         5           Iron         50         mg/kg         37700         31400         3720         666           Lead         5         mg/kg         655         544         131         5           Molybdenum         3         mg/kg         nd         nd         nd         nd           Nickel         2         mg/kg         31         31         33         5           Silver         1         mg/kg         656         572         318         36	Selenium	0.2	mg/kg	nd	nd	1.0	0.3	
Beryllium         0.2         mg/kg         0.7         0.7         nd         00           Cadmium         0.5         mg/kg         0.7         nd         nd         nd         nd           Cadmium         0.5         mg/kg         0.7         nd	Aluminum	20	mg/kg	16800	16200	1290	4580	
Cadmium         0.5         mg/kg         0.7         nd         nd	Barium	5	mg/kg	130	138	27	28	
Chromium     1     mg/kg     23     22     2       Cobalt     2     mg/kg     12     11     2     3       Copper     1     mg/kg     27     25     5     3       Iron     50     mg/kg     37700     31400     3720     66       Lead     5     mg/kg     6     6     nd     n       Manganese     1     mg/kg     655     544     131     5       Molybdenum     3     mg/kg     nd     nd     nd     n       Nickel     2     mg/kg     31     31     33     9       Silver     1     mg/kg     nd     nd     nd     n	Beryllium	0.2	mg/kg	0.7	0.7	nd	0.2	
Cobalt         2         mg/kg         12         11         2         3           Copper         1         mg/kg         27         25         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         66         6         nd         nd         nd         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5<	Cadmium	0.5	mg/kg	0.7	nd	nd	nd	
Copper         1         mg/kg         27         25         5         5           Iron         50         mg/kg         37700         31400         3720         666           Lead         5         mg/kg         6         6         nd         n           Manganese         1         mg/kg         655         544         131         5           Molybdenum         3         mg/kg         nd         nd         nd         n           Nickel         2         mg/kg         31         31         33         9           Silver         1         mg/kg         656         572         318         34	Chromium	1	mg/kg	23	22	2	9	
Iron         50         mg/kg         37700         31400         3720         66           Lead         5         mg/kg         6         6         nd         n           Manganese         1         mg/kg         655         544         131         5           Molybdenum         3         mg/kg         nd         nd         nd         n           Nickel         2         mg/kg         31         31         33         9           Phosphorus         20         mg/kg         656         572         318         36           Silver         1         mg/kg         nd         nd         nd         n	Cobalt	2	mg/kg	12	11	2	3	
Lead         5         mg/kg         6         6         nd         n           Manganese         1         mg/kg         655         544         131         5           Molybdenum         3         mg/kg         nd         nd         nd         n           Nickel         2         mg/kg         31         31         33         9           Phosphorus         20         mg/kg         656         572         318         36           Silver         1         mg/kg         nd         nd         nd         n	Copper	1	mg/kg	27	25	5	7	
Manganese         I         mg/kg         655         544         131         55           Molybdenum         3         mg/kg         nd         nd	Iron	50	mg/kg	37700	31400	3720	6610	
Molybdenum         3         mg/kg         nd         nd	Lead	5	mg/kg	6	6	ba	nd	
Nickel         2         mg/kg         31         33         33         33         33         33         33         33         34         33         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         <	Manganese	1	mg/kg	655	544	131	56	
Phosphorus 20 mg/kg 656 572 318 36 Silver 1 mg/kg nd nd nd n	Molybdenum	3	mg/kg	nd	nd	nd	nd	
Silver 1 mg/kg nd nd nd n	Nickel	2	mg/kg	31	31	33	9	
	Phosphorus	20	mg/kg	656	572	318	364	
Titanium 5 mg/kg 231 223 58 15	Silver	1	mg/kg	nd	nd	nd	nd	
	Titanium	5	mg/kg	231	223	58	159	
Vanadium 1 mg/kg 32 30 8 1.	Vanadium	1	mg/kg	32	30	8	15	
Zinc 5 mg/kg 68 68 9 2	Zinc	5	mg/kg	68	68	9	26	
pH 0.01 Units 7.50 7.90 6.13 7.	ъH	0.01	Units	7.50	7.90	6.13	7.09	

EQL Estimated Quantitation Limit = lowest level of the parameter that can be quantified with confidence.

nd parameter not detected ! = EQL higher than listed due to dilution () Adjusted EQL

Client:	Jacques Whitford Environment Ltd.	Date Received:	October 4/2001
	1200 Denison Street	Date Reported:	October 11/2001
	Markham, ON, CANADA	Lab Ref#:	G214965
	L3R 8G6	Lab Quote#:	EG009-0811
		Client PO#:	INCO
Fax:	905-479-9326	Client Ref#:	ONT34646
Attn:	Mahaboob Alam		

**Certificate of Analysis** 

Additional Comments:

pH Determination of Soil:

Sample DUP-TP870-75CM was extracted with a 1:4 soil:water ratio instead of the usual 1:2 ratio. The high organic content of this sample absorbed all the water in the 1:2 ratio.

	OF CUSTODY RECO	RD	24.	10				_							-		0
Client:	DWEL			1				PAS	S Que	ote #					WEL S		L Page of
u v ž	MARKH		191 E 191	-	<u></u>			Clie	nt P.O	.#:	- 0-	0	N.	TE	34646	5	1725 Aug. 10
3	H. ALAI			-	101	÷.		Clie	nt Proj	ject #	p :		-	-		0	ICT 4'01 pm 6:18
Contact:	- M. ALAI			- 1	-				pled b		1.5			<b>T</b>	4- 24		
Phone: .		Fax:	100	F			Please	e spec	cify Gu	uidelin	ne (if a	pplicabl	e)	1N	CO PRI	TOCOL	
		27		Analys	is Req	uired:	-		1	-			-	1671		around Tirr	
avoice to	(if other than above):			5	2							1	č i	-	PLE	ASE PROV	VIDE ADVANCE NOTICE
	-400			4	36										some ex	ceptions o	pply, please contact Lab
6	12		75	-	Se.		š						1		(STD)	5-7 Busif	hoss pays - Gatrict Th
100		11-11-1-2-	1.1	9	i.		1	1.	$\left[ n^{(n)} \right]$						RUSH	Specify I	Date BY OCT 10,
		1. 1. 5.		9	5	-				1.5					-	Time	
Sample	Client Sample I.D.	Date Sampled	Time Sampled	IC		đ	1-				20				Sample Matrix	No.of Containers	Comments/Contamination/ Site History
1	DUP-TPI4 (7	0-75 cm	)	V	1	/		33	25		1.00			1	SOIL	1	FOLLOW PROTOLO
2	DUP-TPIS(			~	1	1		1						-	u	1	100000 1401000
3	DUP-TPI6 (	70-75	cm)	V	1	1	1						1		ŭ	1	
4	DUP-TPIT			V	V	1				120					N	¢1	
5	DUP-TPIZ(	5-100	(m)	V	L	/							T	1	и	1	
6													1				
7			1.1.1	-	14		1			1						2000	
8		42		1.8					1				1			-	
9	1		1.			100		1									
10		1	1000				1						1		2		43
11			. 10 A														
12		11 - 12 1															
	elinquished to PAS by						1	-	Date:		1.50	-	Tin			Method of Shi	

100 4 4

	STUE /	4. 6.0	1200						T	. 1.0	-	10. 51	Orein	. /
Client:			1100	9.14	1	P	AS Que	ote # :	1	NGC	)-Jh	IEL SI	-ECTAL	Page of •
1		IV 1	6 5	1.2 -	<del></del> 6		lient P.O		-	DAI-	1346	A1	1	OCT 4'01 PM 6:18
3.5	MIALAM	12.2	1.1	35.77	-		lient Pro			//0	546	246		<u></u>
Contact:	MIALAM		1.1.1	7			ampled t	11	12-5-5-	20	7.1	- 00	10000	
Phone:	1000	Fax:		1×1	<u>er</u> at	/	pecify G	uideline	(if appli	able) .	IN	CO PR		
	9 × 31	1.1.2		Analysis	Required!		1	1	-				around Tim	
nvoice to	(if other than above):	1.1		34			st <b>i</b> =		P	14	1210	PLE	ASE PROV	/IDE ADVANCE NOTICI RUSH PROJECTS
	×			2 1		1	1.1				1.		xceptions c	apply, please contact Lo
			<u>.</u>	Y V					his.	2		STD	5-7 Busin	ness Days STRICT
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	-	6,F.	1. 1.				12		2	RUSH	Specify	Date BYOCT 10
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N Marine	<u> </u>	10/0	T		1.5				1 -	1	Time	5
Sample	CHI LA PARTA TA	Date	Time		-		1.1	1110			· .	22 No. 6 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	24150g	
#	Client Sample I.D.	Sampled	Sampled	2	d.	1	100	2.01	- E		5 B	Sample Matrix	No.of Containers	Comments/Contamination Site History
# 1	DUP- TP1(70-	Sampled	Sampled	/ IC	2	1							T1.00.940004744	Site History
#	DUP- TP1(70-	Sampled	Sampled	V IC	S P							Matrix	T1.00.940004744	
# 1 2	DUP-TP1(70- DUP-TP2(70	Sampled 75 cm) -75 cm	Sampled	V L IC	1							Soil	T1.00.940004744	Site History
# 1 2 3 ~~	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95	Sampled 75 cm) -75 cm -100 c	Sampled	S S S I	1							Matrix SoiL M	T1.00.940004744	Site History
# 1 2 3 ~~	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45	Sampled 75 cm) -75 cm -100 c 5-50 c	Sampled	SS SS T	111							Matrix SOIL M V	T1.00.940004744	Site History
# 1 2 3 ~ 4 5	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95	Sampled -75 cm -75 cm -100 c 5-50 c 5-100 c	Sampled ) m) m) m)	115	1111							Matrix SOIL M U U	T1.00.940004744	Site History
# 1 2 3 ~ 4 5	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95 DUP-TP6(70-	Sampled -75 cm -75 cm -100 c 5-50 c 5-100 c -75 cm	Sampled ) n) n) n) )	115	1111							Matrix SOIL M V V	T1.00.940004744	Site History
# 1 2 3 ~ 4 5 6	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95 DUP-TP5(70- DUP-TP7(70-	Sampled -75 cm -75 cm -100 c 5-50 c 5-100 c 5-100 c -75 cm	Sampled ) m) m) m) )	115	22222222							Matrix SOIL W W W W	T1.00.940004744	Site History
# 1 2 3 ~~ 4 5 6 7 ~~	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95 DUP-TP5 (70- DUP-TP7(70- DUP-TP8(70	Sampled -75 cm -75 cm -100 c 5-50 c 5-100 c 5-50 c 5-50 c 5-50 c 5-100 c 5-50 c	Sampled ) () () () () () () () () ()	115	1111							Matrix SOIL W W W W	T1.00.940004744	Site History
# 1 2 3 ~ 4 5 6 7 7 8	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95 DUP-TP5 (95 DUP-TP5 (70- DUP-TP7 (70- DUP-TP8(70 DUP-TP9 (9	Sampled 75 cm -75 cm -100 c 5-50 c 5-100 c -75 cm -75 cm -75 cm	Sampled ) m) m) ) m) (m) (m)	111111111111111111111111111111111111111	22222222							Matrix SOIL M U U M U U U U	T1.00.940004744	Site History
# 1 2 3 m 4 5 6 7 7 8 9	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95 DUP-TP5 (70- DUP-TP7(70- DUP-TP7(70- DUP-TP9(9 DUP-TP10(70	Sampled 75 cm -75 cm -75 cm -75 cm -75 cm -75 cm -75 cm -75 cm	Sampled () () () () () () () () () ()	111111111111111111111111111111111111111	222222222							Matrix SOIL M V V V V V V V V	T1.00.940004744	Site History
# 1 2 3 ~ 4 5 6 7 7 8 9 10	DUP-TP1(70- DUP-TP2(70 DUP-TP3 (95 DUP-TP4 (45 DUP-TP5 (95 DUP-TP5 (95 DUP-TP5 (70- DUP-TP7 (70- DUP-TP8(70 DUP-TP9 (9	Sampled 75 cm -75 cm -75 cm -75 cm -75 cm -75 cm -75 cm -75 cm -75 cm	Sampled ) () () () () () () () () ()	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	22222222222							Matrix SOIL W W W W W W	T1.00.940004744	Site History

# APPENDIX I

# TABLE 1: SOIL ANALYTICAL RESULTS QA/QC: JWEL AUGUST 2001

# SOIL INVESTIGATION



PARAMETER	ORIGINAL ³ TP1 (70-75 cm)	DUPLICATE [*] TPI (70-75 cm)	PERCENTAGE DIFFERENCE	ORIGINAL ^a TP2 (70-75 cm)	DUPLICATE ^a TP2 (70-75 cm)	PERCENTAGE DIFFERENCE
Antimony	0.2	<0.2	NC	0.2	0.3	NC
Arsenic	2.0	1.9	5	4.8	4.5	6
Selenium	0.9	1.1	-20	<0.2	<0.2	NC
Aluminum	18600	12500	39	21000	16400	25
Barium	72	75	-4	141	134	5
Beryllium	0.8	0.7	13	0.9	0.7	25
Cadmium	< 0.5	0.7	NC	<0.5	0.6	NC
Chromium	22	14	44	27	22	20
Cobalt	7.0	4.0	NC	12	11	9
Copper	41	37	10	32	28	13
Iron	13100	10700	20	30800	32100	-4
Lead	32	15	72	13	16	-21
Manganese	95	73	26	441	499	-12
Molybdenum	<3.0	<3.0	NC	<3.0	<3.0	NC
Nickel	81	59	31	103	50	69
Phosphorous	735	811	-10	583	566	3
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	162	74	75	263	205	25
Vanadium	30	19	45	39	33	17
Zinc	69	47	38	72	70	3
PH (Unitless)	7.23	7.06	2	7.94	7.95	0

#### Notes:

a Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.

NC Percentage difference not calculated due to low concentration



PARAMETER	ORIGINAL* TP3 (95-100 cm)	DUPLICATE ^a TP3 (95-100 cm)	PERCENTAGE DIFFERENCE	ORIGINAL ^a TP4 (45-50 cm)	DUPLICATE ^a TP4 (45-50 cm)	PERCENTAGE DIFFERENCE
Antimony	0.3	0.2	NC	0.6	0.4	NC
Arsenic	7.1	5.4	27	17.1	10.7	46
Selenium	< 0.2	0.2	NC	4.3	3.5	21
Aluminum	18200	16700	9	13900	8340	50
Barium	159	134	17	85	67	24
Beryllium	0.8	0.7	13	0.7	0.5	33
Cadmium	<0.5	0.5	NC	1.2	0.8	NC
Chromium	27	23	16	26	14	60
Cobalt	13	12	8	39	22	56
Copper	26	28	.7	274	195	34
Iron	32300	33600	-4	24500	19600	22
Lead	12	8.0	NC	70	34	69
Manganese	422	426	-1	258	185	33
Molybdenum	<3.0	<3.0	NC	<3.0	<3.0	NC
Nickel	32	32	0	3520	1840	63
Phosphorous	578	604	-4	688	678	1
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	295	267	10	334	142	81
Vanadium	37	32	14	40	23	54
Zinc	65	71	-9	282	202	33
PH (Unitless)	7.93	7.82	1	7.34	7.32	0

#### Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



PARAMETER	ORIGINAL ^a TP5 (95-100 cm)	DUPLICATE ¹ TP5 (95-100 cm)	PERCENTAGE DIFFERENCE	ORIGINAL ^a TP6 (70-75 cm)	DUPLICATE ^a TP6 (70-75 cm)	PERCENTAGE DIFFERENCE
Antimony	0.3	0.2	NC	0.2	0.2	NC
Arsenic	5.7	5.1	3	3.5	2.7	26
Selenium	<0.2	<0.2	NC	<0.2	< 0.2	NC
Aluminum	17900	14700	20	24600	16800	38
Barium	156	134	15	152	130	16
Beryllium	0.8	0.6	29	1.1	0.7	44
Cadmium	<0.5	0.5	NC	0.6	0.7	NC
Chromium	25	21	17	34	23	39
Cobalt	12	11	9	14	12	15
Copper	26	29	-11	34	27	23
Iron	31900	31300	2	37300	37700	-1
Lead	11	13	NC	17	6.0	NC
Manganese	552	561	-2	745	655	13
Molybdenum	<3.0	<3.0	NC	<3.0	<3.0	NC
Nickel	30	41	-31	66	31	72
Phosphorous	600	565	6	644	656	-2
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	320	239	29	319	231	32
Vanadium	34	29	16	49	32	42
Zinc	69	67	3	73	68	-7
PH (Unitless)	7.94	7.80	2	7.58	7.50	1

Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



PARAMETER	ORIGINAL [®] TP7 (70-75 cm)	DUPLICATE ³ TP7 (70-75 cm)	PERCENTAGE DIFFERENCE	ORIGINAL ^a TP8 (70-75 cm)	DUPLICATE* TP8 (70-75 cm)	PERCENTAGE DIFFERENCE
Antimony	0.3	0.3	NC	<0.2	<0.2	NC
Arsenic	5.7	4.0	35	2.3	1.7	30
Selenium	< 0.2	< 0.2	NC	<0.2	1.0	NC
Aluminum	22400	16200	32	1210	1290	-6
Barium	138	138	0	23	27	-16
Beryllium	1.0	0.7	47	<0.2	<0.2	NC
Cadmium	< 0.5	<0.5	NC	<0.5	<0.5	NC
Chromium	31	22	34	3.0	2.0	NC
Cobalt	13	11	17	2.0	2.0	NC
Copper	26	25	4	15	5.0	100
Iron	30800	31400	-2	3670	3720	-1
Lead	23	6.0	NC	<5.0	<5.0	NC
Manganese	640	544	16	119	131	-10
Molybdenum	<3.0	<3.0	NC	<3.0	<3.0	NC
Nickel	43	31	37	60	33	58
Phosphorous	585	572	2	302	318	-5
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	307	223	32	115	58	66
Vanadium	45	30	40	7.0	8.0	-13
Zinc	71	68	4	12	9.0	29
PH (Unitless)	7.95	7.90	1	6.10	6.13	0

#### Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences



PARAMETER	ORIGINAL ^a TP9 (95-100 cm)	DUPLICATE ^a TP9 (95-100 cm)	PERCENTAGE DIFFERENCE	ORIGINAL ^a TP10 (70-75 cm)	DUPLICATE* TP10 (70-75 cm)	PERCENTAGE DIFFERENCE
Antimony	<0.2	< 0.2	NC	<0.2	<0.2	NC
Arsenic	2.4	1.6	40	<0.2	0.5	NC
Selenium	<0.2	0.3	NC	<0.2	<0.2	NC
Aluminum	5690	4580	22	2010	1550	26
Barium	30	28	7	<5.0	<5.0	NC
Beryllium	<0.2	0.2	NC	<0.2	<0.2	NC
Cadmium	< 0.5	<0.5	NC	<0.5	< 0.5	NC
Chromium	10	9.0	11	3.0	2.0	NC
Cobalt	3.0	3.0	NC	<2.0	<2.0	NC
Copper	5.0	7.0	-33	2.0	2.0	NC
Iron	7810	6610	17	2090	1810	14
Lead	5.0	<5.0	NC	<5.0	<5.0	NC
Manganese	71	56	24	25	17	38
Molybdenum	<3.0	<3.0	NC	<3.0	<3.0	NC
Nickel	14	9.0	43	9.0	10	-11
Phosphorous	350	364	-4	230	286	-22
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	284	159	56	160	87	59
Vanadium	20	15	29	5.0	3.0	50
Zinc	27	26	4	11	11	NC
PH (Unitless)	6.80	7.09	-4	7.55	7.51	1

#### Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



PARAMETER	ORIGINAL [®] TP11 (70-75 cm)	DUPLICATE ^a TP11 (70-75 cm)	PERCENTAGE DIFFERENCE	ORIGINAL [®] TP12 (5-10 cm)	DUPLICATE ^a TP12 (5-10 cm)	PERCENTAGE DIFFERENCE
Antimony	<0.2	<0.2	NC	0.2	<0.2	NC
Arsenic	1.3	1.3	0	4.9	1.6	102
Selenium	<0.2	<0.2	NC	9.1	8.6	6
Aluminum	1350	929	37	36600	49400	-30
Barium	8.0	8.0	0	160	182	-13
Beryllium	<0.2	<0.2	NC	7.4	7,1	4
Cadmium	<0.5	< 0.5	NC	1.0	<0.5	NC
Chromium	4.0	2.0	67	21	13	47
Cobalt	<2.0	<2.0	NC	<2.0	<2.0	NC
Copper	3.0	4.0	-29	20	25	-22
Iron	4760	3530	30	18300	11600	45
Lead	<5.0	6.0	NC	<5.0	<5.0	NC
Manganese	120	110	9	2960	3000	-1
Molybdenum	<3.0	<3.0	NC	<3.0	<3.0	NC
Nickel	5.0	3.0	50	33	32	3
Phosphorous	289	318	-10	271	28	NC
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	187	77	83	226	895	-119
Vanadium	8.0	5.0	46	6.0	5.0	18
Zinc	17	14	NC	21	9.0	NC
PH (Unitless)	8.07	8.26	-2	10.5	10.5	0

#### Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



PARAMETER	ORIGINAL ³ TP13 (70-75 cm)	DUPLICATE ^a TP13 (70-75 cm)	PERCENTAGE DIFFERENCE	ORIGINAL [®] TP14 (70-75 cm)	DUPLICATE* TP14 (70-75 cm)	PERCENTAGE DIFFERENCE
Antimony	<0.2	0.2	NC	1.0	0.9	11
Arsenic	6.9	5.7	19	14.9	12	22
Selenium	0.3	0.6	NC	1.7	2,2	-26
Aluminum	5290	3410	43	10900	10800	1
Barium	17	12	NC	142	170	-18
Beryllium	0.4	0.4	NC	1.4	1.6	-13
Cadmium	0.7	<0.5	NC	<0.5	2.8	NC
Chromium	14	8.0	55	26	25	4
Cobalt	8.0	6.0	29	9.0	11	-20
Copper	20	19	5	72	73	-1
lron	11300	9340	19	64800	54700	17
Lead	5.0	11	NC	300	270	11
Manganese	293	237	21	1210	1250	-3
Molybdenum	<3.0	<5.0	NC	<3.0	5.0	NC
Nickel	25	20	22	146	162	-10
Phosphorous	919	978	-6	372	337	10
Silver	<1.0	<1.0	NC	<1.0	<1.0	NC
Titanium	105	57	59	332	300	10
Vanadium	22	15	38	16	15	6
Zinc	29	25	15	252	277	-9
PH (Unitless)	8,41	8.38	0	7.86	8.88	-12

#### Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



PARAMETER	ORIGINAL ^a TP15 (70-75 cm)	DUPLICATE [®] TP15 (70-75 cm)	PERCENTAGE DIFFERENCE	ORIGINAL* TP16 (70-75 cm)	DUPLICATE ^a TP16 (70-75 cm)	PERCENTAGE
Antimony	<0.2	0.3	NC	0.5	0.3	NC
Arsenic	3.6	3.2	12	5.2	4.0	26
Selenium	<0.2	0.3	NC	<2.0	0.3	NC
Aluminum	23800	15000	45	5920	3520	51
Barium	145	125	15	47	29	47
Beryllium	1.0	0.8	33	0.2	<0.2	NC
Cadmium	<0.5	1.0	NC	1.3	0.6	NC
Chromium	30	20	40	13	6.0	74
Cobalt	15	18	-18	209	145	36
Copper	34	52	-42	7670	5390	35
lron	31300	25300	26	11500	8040	35
Lead	18	27	-40	40	37	8
Manganese	415	511	21	182	138	27
Molybdenum	<3.0	3.0	NC	<3.0	<3.0	NC
Nickel	220	589	-91	18300	11400	46
Phosphorous	756	645	16	346	291	17
Silver	<1.0	<1.0	NC	2.0	<1.0	NC
Titanium	230	157	38	342	156	75
Vanadium	43	28	42	36	23	44
Zinc	81	83	-2	56	45	22
PH (Unitless)	7.54	7.85	-4	9.56	9.41	2 .

#### Notes:

a Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



PARAMETER	ORIGINAL ^a TP17 (95-100 cm)	DUPLICATE ^a TP17 (95-100 cm)	PERCENTAGE DIFFERENCE
Antimony	<0.2	<0.2	NC
Arsenic	0.5	0.3	50
Selenium	<0.2	<0.2	NC
Aluminum	1450	1670	-14
Barium	5.0	5.0	NC
Beryllium	< 0.2	<0.2	NC
Cadmium	<0.5	<0.5	NC
Chromium	3.0	3.0	0
Cobalt	<2.0	<2.0	NC
Copper	2.0	16	NC
Iron	2290	2390	-4
Lead	<5.0	<5.0	NC
Manganese	17	19	-11
Molybdenum	<3.0	<3.0	NC
Nickel	4.0	34	NC
Phosphorous	246	258	-5
Silver	<1.0	<1.0	NC
Titanium	97	114	-16
Vanadium	5.0	6.0	-18
Zinc	11	12	NC
PH (Unitless)	7.44	7.66	-3

Notes:

 Original analysis results are considered as Test 1 and Duplicate results are considered as Test 2 in the Calculation of Percentage Differences.



# APPENDIX J

# TABLE 1 TO TABLE 4: SOIL ANALYTICAL RESULTS: TORONTO LEAD STUDY BY MOE 1971 TO 1991



# TABLE 1 TORONTO LEAD STUDY BY MOE 1971 TO 1992 (Lead in soil 0 to 2.5 cm depth, 7.5 m distance from Road)^a (Concentration in mg/kg or ppm)

SITE NO.	LEAD CONCENTRATION IN 1971	LEAD CONCENTRATION 1981	LEAD CONCENTRATION 1991
SITE NO. 4	270	260	210
SITE NO. 5	55	60	135
SITE NO. 6	37	80	200
SITE NO. 12	96	192	120
SITE NO. 14	760	712	185
SITE NO. 16	315	292	305
SITE NO. 23	132	190	130
SITE NO. 24	117	270	28
SITE NO. 25	336	310	205
SITE NO. 28	185	230	160
SITE NO. 29	306	228	130
SITE NO. 32	145	280	220
SITE NO. 33	345	350	280
SITE NO. 38	208	230	300
SITE NO. 39	105	80	315
SITE NO. 41	20	238	180
SITE NO. 45	125	172	135
SITE NO. 50	170	310	200
SITE NO. 58	48	75	115
SITE NO. 59	250	135	270
SITE NO. 60	163	270	365
SITE NO. 62	200	165	120
SITE NO. 63	275	380	275
Maximum Mean	760 203	712 240	365 199

<u>Notes</u>: a

.

Sites remained constant from 1971 to 1991



# TABLE 2 TORONTO LEAD STUDY BY MOE 1971 TO 1992 (Lead in soil 0 to 2.5 cm depth, 25 m distance from Road)^a (Concentration in mg/kg or ppm)

SITE NO.	LEAD CONCENTRATION IN 1971	LEAD CONCENTRATION 1981	LEAD CONCENTRATION 1991
SITE NO, 4	196	160	110
SITE NO. 5	41	35	94
SITE NO. 6	290	38	62
SITE NO. 12	222	245	115
SITE NO. 14	850	712	405
SITE NO. 16	243	288	290
SITE NO. 23	310	82	58
SITE NO. 24	112	25	119
SITE NO. 25	375	390	580
SITE NO. 28	52	121	75
SITE NO. 29	148	158	145
SITE NO. 32	90	195	110
SITE NO. 33	280	132	190
SITE NO. 38	95	205	125
SITE NO. 39	115	225	140
SITE NO. 41	38	175	110
SITE NO. 45	120	145	105
SITE NO. 50	108	210	135
SITE NO. 58	275	145	64
SITE NO. 59	225	258	535
SITE NO. 60	55	315	430
SITE NO. 62	150	65	125
SITE NO. 63	120	135	135
Maximum Mean	850 196	712 194	580 185

Notes:

a

Sites remained constant from 1971 to 1991



# TABLE 3 TORONTO LEAD STUDY BY MOE 1971 TO 1992 (Lead in soil 10 to 15 cm depth, 7.5 m distance from Road)^a (Concentration in mg/kg or ppm)

SITE NO.	LEAD CONCENTRATION IN 1971	LEAD CONCENTRATION 1981	LEAD CONCENTRATION 1991
SITE NO. 4	154	130	- 150
SITE NO. 5	17	25	86
SITE NO. 6	25	38	125
SITE NO. 12	136	88	150
SITE NO. 16	305	238	245
SITE NO. 23	55	38	47
SITE NO. 24	70	355	86
SITE NO. 25	250	470	290
SITE NO. 28	70	52	110
SITE NO. 29	195	150	135
SITE NO. 32	38	40	106
SITE NO. 33	288	90	106
SITE NO. 38	60	40	23
SITE NO. 39	60	990	84
SITE NO. 41	33	62	62
SITE NO. 45	98	118	100
SITE NO. 50	70	35	80
SITE NO. 58	23	22	83
SITE NO. 60	33	25	33
SITE NO. 62	50	172	84
SITE NO. 63	150	205	195
Maximum	305	990	290

161

113

Mean

Notes:

а

Sites remained constant from 1971 to 1991



# TABLE 4 TORONTO LEAD STUDY BY MOE 1971 TO 1992 (Lead in soil 10 to 15 cm depth, 25 m distance from Road)^{*} (Concentration in mg/kg or ppm)

SITE NO.	LEAD CONCENTRATION IN 1971	LEAD CONCENTRATION 1981	LEAD CONCENTRATION 1991
SITE NO. 4	68	50	50
SITE NO. 5	102	15	50
SITE NO. 6	212	20	63
SITE NO. 12	190	185	190
SITE NO. 14	670	535	3150
SITE NO. 16	190	128	290
SITE NO. 23	151	30	15
SITE NO. 24	70	90	94
SITE NO. 25	336	330	445
SITE NO. 28	62	45	75
SITE NO. 29	67	100	115
SITE NO. 32	35	35	81
SITE NO. 33	100	40	98
SITE NO. 38	35	12	34
SITE NO. 39	23	58	58
SITE NO. 41	38	30	34
SITE NO. 45	168	140	93
SITE NO. 50	95	10	100
SITE NO. 58	63	205	43
SITE NO. 59	113	145	1900
SITE NO. 60	30	110	220
SITE NO. 61	25	43	68
SITE NO. 62	38	60	70
SITE NO. 63	125	105	135
Maximum Mean	670 125	535 105	3150 311

Notes:

a

Sites remained constant from 1971 to 1991



APPENDIX K

# LITERATURE REVIEW ON BERYLLIUM OCCURRENCES IN SOIL



## OCCURRENCES OF BERYLLIUM IN SOIL AND ROCKS

## Properties and Abundance

Beryllium is a hard gray metal of atomic weight 9.013, specific gravity 1.8 at 20^oC and high melting point (1283^oC) and high boiling point of about 2500^oC. In compounds, beryllium forms bivalent ions of relatively small radius.

The most common beryllium minerals are beryl (beryllium aluminosilicate) and Chrysoberyl (beryllium aluminumoxide). Beryllium is found in a variety of rocks, and is apparently concentrated in certain veins and pegmatite bodies. The following abundance data are by Sill and Willis (1962):

Rock	Beryllium Concentration in ppm
Iron Meteorite	<1
Granite (G-1)	2.74
Diabase (W-1)	0.623
Shale	6.14
Basalt	1.00

The average concentration of beryllium in the earth's crust is estimated to be 2.5 ppm. During the weathering of crystalline rocks, and during sedimentation processes, beryllium appears to follow the course of aluminum, and is enriched in some bauxite deposits, clays, and deep-sea deposits (Fairbridge, 1972).

## Beryllium Concentration in Coal

Beryllium is abundant in coal with other metals. A review of the metal composition of coal indicates that U.S. coal deposits range in beryllium concentrations from 0.23 to 4.0 ppm (Gluskoter *et al*, 1980). Table 1 shows the abundance of beryllium together with other metals in U.S. coal (Gluskoter *et al*, 1980).



## TABLE 1 TRACE ELEMENT CONCENTRATIONS IN U.S. COAL¹ (Selected Metal Parameters, mg/kg or ppm except as noted)

PARAMETER	ILLINOIS BASIN COAL ²	APPALACHIAN COAL ²	
Mercury	0.03 - 1.6 (0.2)	0.05 - 0.47 (0.2)	
Arsenic	1.0 - 120 (14)	1.8-100 (25)	
Selenium	0.4 - 7.7 (2.2)	1.1-8.1 (4.0)	
Barium	5.0 - 750 (100)	72 - 420 (200)	
Boron	12 - 230 (110)	5.0-120 (42)	
Beryllium	0.5 - 4.0 (1.7)	0.23 - 2.6 (1.3)	
Cadmium	0.1 - 65 (2.2)	0.1-0.6 (0.24)	
Chromium	4.0 - 60 (18)	10 - 90 (20)	
Cobalt	2.0 - 34 (7.3)	1.5 - 33 (9.8)	
Copper	5.0 - 44 (14)	5.1 - 30 (18)	
Lead	0.8 - 220 (32)	1.0-18 (5.9)	
Manganese	6.0 - 210 (53)	2.4 - 61 (18)	
Molybdenum	0.3 – 29 (8.1)	0.1 - 22 (4.6)	
Nickel	7.6 - 68 (21)	6.3 - 28 (15)	
Phosphorus	10-340 (64)	15-1500 (150)	
Silver	0.02 - 0.08 (0.03)	0.01 - 0.06 (0.02)	
Strontium	10 - 130 (35)	28-550 (130)	
Vanadium	11 – 90 (32)	14 - 73 (38)	
Zinc	10 - 5300 (250)	2.0 - 120 (25)	

Note:

1

Gluskoter H.J., Ruch R.R., Cahill R.A. Drecher G.B. and Kuhn J.K., (1977 updated in 1980), Trace Elements in Coal: Occurrence and Distribution, Illinois State Geological Survey Circular No. 499. Number in the parenthesis indicates arithmetic mean.

Hence, it is evident from the above-noted table that U.S. coal contains significant concentrations of beryllium ranging from 0.23 ppm to 4.0 ppm.

# Beryllium Concentration of Slag, Shales and Soils in Ontario

Review of the MOE (2001) report on Soil Investigation and Human Health Risk Assessment for the Rodney Street Community: Port Colborne dated October 2001 revealed that beryllium contamination in the Rodney Street area of Port Colborne could be related to slag and/or natural resources. MOE (2001) reported that beryllium concentration in slag routinely range from 1 to 3 ppm and concluded that slag which may have originated from former Algoma steel plant was a common material for road bed construction in the Rodney Street community. MOE (2001) also concluded that slag is present in the surface soil in the Rodney Street community, and this presence most likely account for the generally higher concentration of beryllium in soils.

As mentioned by Sill and Willis (1962), shales contain about 6.14 ppm of beryllium. Shales are defined as detrital rocks whose particles have a diameter of less than 1/16 mm (Clark 1954) or simply as lithified mud (Bates and Sweet, 1966)

Subsequent to the publication of the 1997 Guidelines for Use at Contaminated Sites in Ontario, the Ontario Ministry of Environment (MOE) became aware of circumstances where elevated concentrations of beryllium were found to be associated with shale deposits. In 1997, the Phytotoxicology and Soil Standard Section of the MOE undertook a preliminary program of sampling some representative shale deposits in the province of Ontario. This report (MOE, 1998) was reviewed by JWEL.

Review of the MOE (1998) report indicates that nine (9) of the twenty seven (27) shale samples contained beryllium concentrations that exceeded MOE 1997 (Table A) Guideline of 1.2 ug/g for any land uses. The review also indicates that 5 of the 14 rocks, 1 of the 12 surface soils (0 to 5 cm) and 1 of the 15 C Horizon soil samples contained beryllium concentrations exceeding the MOE 1997 Table A Guideline.

Table 2 shows the MOE's chemical test results for beryllium concentrations in soil, rock and shale deposits in Ontario. As shown in Table 2, the highest beryllium concentration found in the province wide shale study was 3.4 ppm detected in samples from the Animikie-Gunflint formation in the Thunder Bay area. The Queenston and Rockcliffe formations, closer to Port Colborne, showed beryllium concentration ranging up to 2.3 ppm (Table 2).

MOE (2001) concluded that elevated soil beryllium levels in the Rodney Street community of Port Colborne are consistent with naturally occurring beryllium in soils derived from shale. Review of the MOE (2001) report also revealed that the soil beryllium concentrations in the Rodney Street community are highly correlated with soil aluminum levels suggesting a primarily natural origin of beryllium.



TABLE 2 CONCENTRATIONS OF BERYLLIUM IN SHALE AND ASSOCIATED SOIL MATERIAL¹ (Samples collected from Ontario shale deposits, results in mg/kg)

Fermation	Location	Shale	Rock	Soil (0-5 cm)	Soil, C Horizon	MOE TABLE A GUIDELINE CRITERIA ¹
Animikie - Gunflint	Oliver Road	3.2	2/2	N/D	0.8	1.2
Animiki - Gunflint	West Timber (fresh)	2.9	217	1.7	1.0	1.2
Animiki – Gunflint	West Timber (weathered)	3.4	3.2	N/D	N/D	1.2
Animiki – Rove	Middle Falls	0.9	0.8	0.6	0.7	1.2
Animiki – Rove	Sibley (fresh)	0.7	0.7	0.6	N/D	1.2
Animiki – Rove	Sibley (weathered)	0.8	0.7	0.7	1.1	1.2
Blue Mountain	Camperdown	13	1.1	1.1	13	1.2
Blue Mountain	Sheguindah 2	1.2	1.2	1.1	N/D	1.2
Cabot Head	Cataract	1.0	N/D	N/D	0.9	1.2
Cabot Head	Ice lake	1.1	N/D	N/D	N/D	1.2
Collingwood	Sheguindah 1	1.2	N/D	13	1.2	1.2
Gloucester	Pickering	1.3	1.2	0.5	0.6	1.2
Hamilton	Arkona	0.9	N/D	N/D	N/D	1.2
Queenston	Chaltenham Green	1.0	N/D	N/D	N/D	1.2
Queenston	Cheltenham Red	1.1	N/D	N/D	N/D	1.2
Queenston	Homing's Mills	1.1	N/D	N/D	0.7	1.2
Queenston	Milton	1.0	N/D	N/D	0.9	1.2
Queenston	Owen Sound	1.0	N/D	0.7	0.7	1.2
Rockeliffe	Rockeliffe 1	1.8	1.6	N/D	0.7	1.2
Rockeliffe	Rockcliffe 2	2.3	N/D	N/D	N/D	1.2
Salina	Ayton	0.5	N/D	N/D	N/D	1.2
Salina	Neustadt	0.6	N/D	N/D	0.9	1.2
Shadow Lake	Coboconk Lower	0.7	0.7	N/D	N/D	1.2
Shadow Lake	Coboconk Upper	0.7	0.6	0.6	N/D	1.2
Uncertain	Creemore	13	N/D	N/D	N/D	1.2
Georgian Bay	Kagawong Lower	0.5	0.5	1.0 •	1.0	1.2
Georgian Bay	Woodbridge	15	1.3	0.8	0.9	1.2

Notes:

1

2

Bold

Ministry of Environment's 1998 Phytotoxicology Technical Memorandum Investigation Into the Chemical Composition of Shales in Ontario 1997, Report No. SDB-023-3511-1998.

Ministry of Environment's Guideline For Use At Contaminated Sites in Ontario, revised February, 1997, (Table A)
potable groundwater use at residential/parkland sites with all types of soils.

Exceeds Table A Guideline Value No Data

N/D

Occurrences of Beryllium in Soils and Rocks

Potential CoC Identification Using Soil Chemical Data in Exceedance of MOE Generic Guidelines Port Colborne Community Based Risk Assessment Project No. ONT34645

Page 4

# CONCLUSIONS

It is evident from the above-mentioned literature data and chemical test results as shown in Table 1 and Table 2 that natural rocks, coal, shale and associated soil samples can exceed the MOE 1997 Table A Guideline criteria of 1.2 ppm for beryllium in soil.

# REFERENCES

Sill, C. W., and Willis, C. P., 1962, "The Beryllium Content of some Meteorites" in Geochim. Cosmochim. Acta, Vol. 26, 1209-1214.

Fairbridge, R. W.(editor), 1972, "The Encyclopedia of Geochemistry and Environmental Sciences", Van Nostrand Reinhold Company, Toronto

Gluskoter H.J., Ruch R.R., Cahill R.A., Dreher, G.B. and Kuhn J.K. (1977 updated in 1980), Trace Elements in Coal: Occurrence and Distribution, Illinois State Geological Survey, Circular No. 499.

Bates, R. L. and Sweet, W.C., 1966, Geology, an Introduction, D.C. Heath and Co., Boston, 367 pp.

Clark, T. H, 1954, Shale a study of nomenclature, Transaction of the Royal Society of Canada 48: Series 3, Section 4, pp. 1-7

MOE 1998. Phytotoxicology Technical Memorendum, Investigation Into The Chemical Composition of Shales in Ontario 1997. Report No. SDB-023-3511-1998, Ministry of the Environment. September 1998.

MOE 1997. Guideline for Use at Contaminated Sites in Ontario. Ministry of the Environment. February, 1997.

MOE 2001. Soil Investigation and Human Health Risk Assessment for the Rodney Street Community: Port Colborne (2001) (ISBN 0-7794-2272-4, PIBS 4161).Ontario Ministry of Environment. October 2001.

